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Atomic configurations, formation energies, electronic transition energies, and binding energies of the silicon
divacancy in the +1, 0, −1, and −2 charge states were obtained from density functional theory calculations. The
calculations were performed using the local density approximation �LDA� and also the Perdew, Burke, Ern-
zerhof �PBE� formulation of the generalized-gradient approximation. Supercells of nominally 216, 512, and
1000 atoms were used to extrapolate formation energies for infinite-sized supercells corresponding to isolated
defects. The predicted ground-state configuration was found to depend on charge state and the chosen formu-
lation of exchange and correlation �LDA or PBE�. Structures, binding energies, and transition energies are
compared to values reported in the literature.
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I. INTRODUCTION

The Si divacancy �VVSi� has been a subject of research for
over 40 years and as a result, the electronic properties are
generally understood. It is interesting however, that there is
still considerable disagreement concerning the ground-state
atomic configuration. The early electron paramagnetic reso-
nance �EPR� work of Watkins and Corbett1,2 characterized
the structure of the singly charged �+ or −� VVSi as a large-
pairing �LP� Jahn-Teller distortion with C2h symmetry. Saito
and Oshiyama, using density functional theory �DFT�, cor-
roborated the LP structure for the singly positive VVSi, but
for the singly negative VVSi they proposed a new resonant-
bond �RB� structure that also has C2h symmetry.3 Another
theoretical study by Seong and Lewis also predicts the RB
structure for the neutral VVSi.

4 These early theoretical find-
ings are not entirely consistent with the experimental obser-
vations and they have been contradicted by more recent den-
sity functional calculations that used larger supercells and
different formulations of exchange and correlation. Pesola
and co-workers5 report a low-symmetry S2 configuration
�mixed LP and RB character� and Öğüt and Chelikowsky6

report the LP configuration for the positive, neutral, and
negative charge states of the VVSi.

This controversy concerning the VVSi configuration be-
comes somewhat less crucial when one considers the effect
of temperature and the small energetic differences between
the proposed configurations. Svensson et al.7 point out that
the EPR experiments of Watkins and Corbett1,2 were per-
formed at �20 K where the low-symmetry LP structure may
be frozen-in, and propose that at temperatures �30 K there
will be thermally activated reorientation of the symmetry
plane by electronic bond switching. In their model, the bond
switching would take place at such a high rate that a
symmetry-breaking relaxation could not occur and the result-
ing configuration would have D3d symmetry. This is the
same symmetry obtained by removing two neighboring Si
atoms from the perfect crystal. Moreover, Makhov and
Lewis8 recently reported that there is essentially no energy
barrier for the transition between the RB and LP configura-
tions. Many of the above-mentioned authors have made note

of the relatively flat energy surface associated with the struc-
ture of the VVSi. This is consistent with the results of this
study, which indicate that even at low temperatures all the
proposed configurations may be populated.

As part of a larger effort to quantitatively model the be-
havior of radiation-induced defects in Si,9–11 we have inves-
tigated the VVSi using density functional theory. Our goal
was to obtain accurate zero-temperature formation energies
for the defect in all of its stable charge states and calculate
the energies where electronic transitions between charge
states occur. These values are compared to experimental data
obtained from EPR and deep-level transient spectroscopy
�DLTS�,1,2,7,12 and will be used in subsequent multiscale
modeling. In the course of formation-energy calculations, the
zero-temperature ground-state configurations were deter-
mined and will be discussed in the context of the before-
mentioned controversy. The distinguishing aspect of this
study is computational breadth: We have performed con-
verged calculations using nominally 216-, 512- and 1000-
atom supercells to extrapolate to infinite-sized supercells.

II. THEORETICAL TECHNIQUES

The density functional theory �DFT� calculations were
performed using the Socorro13 code developed at Sandia Na-
tional Laboratories. Supercell total energies were obtained
using both the local density approximation �LDA�14 and the
PBE �Perdew, Burke, Ernzerhof�15 formulation of the
generalized-gradient approximation �GGA� for electronic ex-
change and correlation �XC�. Norm-conserving pseudopo-
tentials were generated using Don Hamann’s GNCPP �Ref.
16� code for the LDA calculations and the Fritz-Haber
FHI98PP �Ref. 17� code for the PBE calculations. The meth-
odology used for these defect calculations is similar to that
used in a recently published study of the silicon
monovacancy.9 For a more in-depth discussion of the meth-
ods, see Ref. 9. The parameters and details specific to this
study are outlined below.

The plane-wave basis was determined by the convergence
of VSi calculations performed by Wright and published
elsewhere.9 As a result, the plane-wave energy cutoff for
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LDA �PBE� was set at 17 �20� Ry, which provided the con-
verged lattice parameter of 10.175 �10.335� bohrs. The
electron-density-cutoff was always set to 4� that used for
the Kohn-Sham functions. Convergence with respect to
k-point sampling was evaluated for each size of supercell and
each charge state; �4,4 ,4� Monkhorst-Pack18 �nMP=4� pa-
rameters for 216-atom supercells, nMP=4 for 512-atom su-
percells, and nMP=3 for 1000-atom supercells. The elec-
tronic temperature was set to 1.887�10−3 Ry.

Local energy minimum configurations �LEMC� for a de-
fect were determined as follows. A starting configuration was
generated by removing 2 neighboring Si atoms from a nomi-
nally 216- or 512-atom cell and perturbing the lattice to re-
move all symmetries. A standard DFT atomic relaxation pro-
ceeded until all atomic forces were less than 5
�10−5 Ry/bohrs. For the 1000-atom supercells, the LEMC
was determined as above with nMP=1 Brillouin-zone sam-
pling. Then, the symmetry group of the LEMC configuration
was determined and a symmetrized configuration was used
as a starting point for 1000-atom calculations with more
dense �nMP=2 and nMP=3� Brillouin-zone sampling. The ini-
tial LEMC relaxations were carried out to such an extent that
the difference in total energy before and after applying sym-
metrization is negligible.

The formation energies of the proposed LEMCs discussed
in the Introduction �LP, RB, or D3d� are similar enough that
for a few of the charge states the assignment of the lowest-
energy configuration is ambiguous. However, the ground-
state configuration was determined by comparing the forma-
tion energies from 510-atom �nMP=2� calculations and
choosing the structure with the lowest energy. This determi-
nation was done with 510-atom supercells in order to reduce
the number of computationally demanding 998-atom calcu-
lations. Only the lowest-energy configuration of each charge
state was refined with higher k-point sampling and larger
supercells.

After the LEMC for each defect charge state and supercell
size was obtained, the formation energy was computed using
the expression

Ef�VVSi
q � = ET�VVSi

q � − nSi�Si + q�EV + �VBE + EF� , �1�

where Ef is the formation energy, ET is the total energy for a
VVSi in charge state q, nSi is the number of Si atoms in the
defect supercell, and �Si is the Si reference chemical poten-
tial and was set equal to the energy per atom of bulk Si
obtained from a DFT calculation using the same supercell,
pseudopotentials, plane-wave basis, Brillouin-zone sampling,
and XC formulation as in the defect calculation. EF is the
Fermi level and EV is the Kohn-Sham eigenvalue at the
valence-band edge �VBE� in the bulk Si calculation. �VBE is
defined to be the difference between the DFT and measured
VBE energies. The value of �VBE depends on the formulation
of exchange and correlation as well as the pseudopotentials,
but is expected to be independent of supercell size. We are
not aware of a definitive procedure for computing �VBE. The
method we have used to estimate its value is discussed at the
end of this section.

Earlier studies have defined �VBE to be the difference in
VBE energies from a bulk and a defect calculation,19,20 in

which case �VBE varies with the size and shape of the super-
cell and becomes zero in an infinite-sized supercell. In addi-
tion, there is an underlying assumption that the computed
value of the VBE energy in an infinite-sized supercell would
be the same as the measured value. Hence, for the time be-
ing, we used the before-mentioned provisional estimate
based on a comparison with experimental measurements.

For the VVSi, q was found to range from +1 to −2. In
calculations where q�0, a uniform background charge
�UBC� was used to remove the infinite electrostatic interac-
tion energy between the VVSi

q and its periodic images.21 In a
separate study by one of the authors, the formation energies
of unrelaxed VSi

2+ were computed in simple cubic 63-, 215-,
511-, 999-, and 1727-atom supercells using two different
methods to remove the infinite electrostatic interaction: �1�
the UBC method used in this study and �2� the local-moment
countercharge �LMCC� method developed recently by
Schultz.22 When the formation energies from the two meth-
ods were extrapolated to an infinite-sized supercell, they
agreed to within 2 meV demonstrating the consistency of the
two methods.23 A similar level of agreement has also been
found by Lento et al.24 in UBC and LMCC calculations for
an unrelaxed +2 Si self-interstitial. In the context of the
LMCC method, Schultz has noted that �VBE has a single
value for all point defects in a material obtained using
a given exchange-correlation formulation and pseudo-
potentials.11 The definition of �VBE that we have used in this
study is consistent with Schultz’s finding.

Formation energies from three sizes of defect supercells
�214-, 510-, and 998-atom� were extrapolated to the infinite
case via a maximum-likelihood fit to the Makov-Payne for-
mula truncated at the 1/L3 term,25

Ef�VVSi
q ;L,nMP,EF� = Ef�VVSi

q ;L → � ,EF� −
�q2

�L
+

A3

L3 .

�2�

In this formula, Ef�VVSi
q ;L ,nMP ,EF� is the formation energy

of a VVSi
q in a supercell of length L obtained using

Monkhorst-Pack parameters �nMP� noted previously,
Ef�VVSi

q ;L→ � ,EF� is the formation energy in an infinitely
sized supercell �determined from the fit�, �=2.8373 is the
Madelung constant for a simple cubic lattice of point charges
embedded in a uniform compensating background, � is the
static dielectric constant of Si, and A3 is the coefficient of the
1/L3 term �determined from the fit�. For consistency, DFT
values of � were used in the fits: 12.9 for the LDA and 12.6
for the GGA.26 For the fit, we assume Gaussian uncertainties
where the error in each data point is estimated by the differ-
ence in formation energy between maximum Brillouin-zone
sampling and the next-lower level of sampling �calculated
during k-point convergence�. The use of extrapolation to re-
move errors in the supercell approximation has been success-
fully used by Lento et al.24 and Castleton et al.27

The transition energy between two charge states is the
value of EF where their formation energies become equal.
For example, the transition between the q and q+1 states
occurs at an energy
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Eq/q+1 = Ef�VVSi
q ;L → � ,EF = 0�

− Ef�VVSi
q+1;L → � ,EF = 0� �3�

relative to the VBE. Notice that EF is set to zero when evalu-
ating the extrapolated formation energies on the right-hand
side of this expression. Furthermore, this expression cannot
be fully evaluated until a value for �VBE is obtained. In this
study, �VBE was selected to bring a computed transition en-
ergy into agreement with a measured value; specifically the
E0/1+ level, which occurs 0.21 eV above the VBE.1,2,7,12 Do-
ing so yields �VBE=−0.329 for the LDA results and −0.267
for the GGA results. We emphasize that an optimal proce-
dure for computing �VBE has not yet been determined and
the present approach should be viewed as provisional.

III. RESULTS

In this section we present VVSi LEMCs converged with
respect to Brillouin-zone sampling and supercell size. We
will then discuss the formation energies from 214-, 510-, and
998-atom defect supercells, which were fit to an extrapola-
tion to obtain formation energies corresponding to infinitely
spaced defects. The VVSi has four charge states: singly posi-
tive �+�, neutral �0�, singly negative �−�, and doubly negative
�−−�. The transition energies between charge states and the
binding energy for VVSi

0 were computed and will be com-
pared to experimentally measured values.

The VVSi is created by removing two neighboring Si at-
oms, which leaves six under-coordinated Si atoms and 18
associated bonds that can accommodate the resulting strain.
Because the strain may be distributed over such a large num-
ber of bonds, the formation energy of the defect is not sen-
sitive to small changes in the atomic configuration. As a
consequence, there are relatively small differences between
the formation energies of the LP, RB, and D3d structures.

Figure 1 is a representation of the VVSi. In particular, this
is the relaxed ground-state configuration of the + charge state
obtained from a calculation with 998 atoms, nMP=3, and the
PBE functional. Figure 2 is an abstracted view of the VVSi

showing the �111� axis of the defect and the surrounding
undercoordinated atoms. Triangles can be constructed from
the three atoms on each side of the defect. If the defect is
viewed along the �111� axis, as shown in Fig. 3, the sense of
the Jahn-Teller distortion �LP or RB� can be seen by com-
paring the relative lengths labeled d1,2 and d1,3 in the figure.
Quantitatively, the LP configuration is characterized by d1,2
	d1,3, where two of the atoms in each triangle strongly pair
�Fig. 3�b��. The RB configuration is characterized by d1,2

FIG. 1. �Color online� Atomic configuration of the VVSi
+ . The

solid circles represent Si atoms. Dashed circles represent the miss-
ing Si atoms. In color, the red solid atoms represent the six Si atoms
surrounding the VVSi

+ .

FIG. 2. �Color online� Abstracted view of the VVSi showing only
the six atoms surrounding the defect and the missing Si atoms. The
axis of the VVSi is along the �111� direction. Solid circles represent
the undercoordinated Si atoms surrounding the VVSi. Dashed circles
represent missing Si atoms.

FIG. 3. �Color online� Views of the VVSi rotated so the �111�
direction is perpendicular to the plane of the page. �a� The D3d

structure where d1,2=d1,3=d2,3 involves only a breathing-mode re-
laxation. �b� The LP structure �C2h� is characterized by d1,2	d1,3

=d2,3. �c� The RB structure �C2h� is characterized by d1,2
d1,3

=d2,3. In all three images, d1,3=d2,3. Solid circles represent the
undercoordinated Si atoms surrounding the VVSi. Dashed circles
represent missing Si atoms.

FORMATION ENERGIES, BINDING ENERGIES,… PHYSICAL REVIEW B 74, 205208 �2006�

205208-3




d1,3, where there is a more equitable distribution of bond
strain �Fig. 3�c��. Both of these configurations exhibit the
same C2h symmetry. The intermediate case, when d1,2=d1,3
=d2,3, results in D3d symmetry; In this case there is no
symmetry-lowering relaxation and instead a breathing-mode
relaxation occurs where the magnitude depends on the par-
ticular defect charge state.

The determined ground-state configurations are listed in
Table I. Also listed in the table are the differences in energy
between the ground-state configuration and the alternate con-
figuration �RB when LP is listed or LP when RB is listed�. In
several cases, the energy difference between LP, RB, or even
D3d is less than 10 meV.

By looking at the symmetry or the relative lengths d1,2
and d1,3 �Fig. 3�, it may appear that there is a drastic differ-
ence between the LP, RB, or D3d configurations. However, a
0.5 Å change in length A or B may represent only slight
bond bending and a much smaller change in the three near-
neighbor bond lengths associated with each atom. In other
words, the lengths d1,2 and d1,3 that characterize the sense
and magnitude of the Jahn-Teller distortion do not directly
correlate to actual bond lengths. Because the actual bond
lengths and angles are only changing slightly, the change in
the energy of the defect is correspondingly slight.

In the −− charge state, the symmetry was initially broken
�set towards both RB and LP� but the structure relaxed back
towards the D3d symmetry. Neither of the C2h symmetry con-
figurations were found to be locally stable for this charge
state. For the other three charge states, we additionally con-
strained the symmetry to D3d and computed the total energy
with PBE, 510-atom cells, and nMP=4 sampling. The results

were then compared to the LP configuration. The structure
with D3d symmetry was 63, 169, and 37 meV higher in en-
ergy for the +, 0, and − charge states.

Formation energies corresponding to the converged
ground-state configurations of each cell size were used to
extrapolate to an L→� value, where L is the length of one
side of the supercell. The extrapolation was performed by
fitting to the Makov-Payne formula as described in Sec. II.
The L→� formation energies are listed in Table II �LDA�
and Table III �PBE�.

The changes in formation energy with supercell size indi-
cate that the dependence of the electrostatic interactions be-
tween periodically repeated defects is not simply a Madelung
term, i.e., linear in 1/L where L is the cube root of the
supercell volume. Notice also that the formation energies for
the neutral defect change with increasing supercell size. This
could be due to higher-order electrostatic interactions
�quadrupole-quadrupole� or interactions between defect
strain fields in the periodically repeated supercells. A more
in-depth discussion of strain interactions in periodic bulk de-
fect calculations can be found elsewhere.9

Computed energy levels for the transitions between
charge states are shown in Fig. 4 where they are compared to
experimental values taken from the literature.1,2,7,12 As dis-
cussed in the previous section, �VBE was chosen such that the
E+/0 transition is aligned with the measured value �0.21 eV�.
The measured values for the E0/− and E−/−− transitions are

TABLE I. The lowest-energy configuration for each charge state
with either LDA or PBE for XC. The energies in parentheses are the
difference between the lowest-energy configuration and the other
�RB when LP is listed or LP when RB is listed�. In the −− charge
state, neither the RB nor the LP configuration was found to be a
LEMC configuration and therefore no energy difference is listed.

Charge state �q� LDA PBE

+ LP �7 meV� LP �60 meV�
0 RB �15 meV� LP �1 meV�
− RB �8 meV� LP �29 meV�
−− D3d D3d

TABLE II. Formation energies for VVSi calculated with the
LDA. The Brillouin-Zone was sampled using nMP=4, nMP=4, and
nMP=3 MP parameters for the 214-, 510-, and 998-atom supercells,
respectively. The last row contains values extrapolated to an infinite
sized supercell.

Cell size VVSi
+ VVSi

0 VVSi
− VVSi

−−

214 5.481 5.340 5.498 5.627

510 5.368 5.269 5.545 5.777

998 5.298 5.228 5.560 5.843

� 5.336 5.217 5.635 6.108

TABLE III. Formation energies for VVSi calculated with the
PBE. The Brillouin zone was sampled using nMP=4, nMP=4, and
nMP=3 MP parameters for the 214-, 510-, and 998-atom cells re-
spectively. The last row contains values extrapolated to an infinite-
sized supercell.

Cell size VVSi
+ VVSi

0 VVSi
− VVSi

−−

214 5.486 5.445 5.681 5.786

510 5.415 5.402 5.691 5.952

998 5.383 5.370 5.710 6.032

� 5.420 5.363 5.801 6.301

FIG. 4. Calculated electronic transitions between VVSi charge
states compared to measured values from the literature.
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0.75 and 0.94 eV. The calculated LDA �PBE� transitions are
E0/−=0.75�0.71� eV and E−/−−=0.80�0.77� eV. The LDA re-
sults reproduce the correct spacing between E+/0 and E0/−,
and the PBE results are also in good agreement. However, in
this study, neither LDA or PBE quantitatively predict the
correct spacing between E0/− and E−/−−. In order to rule out
the possibility that the low predicted values for E−/−− were
the result of partial occupation of eigenstates in the conduc-
tion band, we recalculated the total energy of a 214-atom,
PBE, nMP=4, VVSi

−− using a discrete occupation scheme sug-
gested by Schultz.11 However, compared to our original cal-
culation, the discrete occupation of energy levels changed
the total energy by only 2.4 meV.

In a recent LDA study using a Gaussian basis, 248-atom
supercells, and nMP=2, and the LP structure, Schultz11 has
also predicted the spacings between the E+/0, E0/−, and E−/−−

transitions, which qualitatively agree with our results and
agree well with experiment.

Binding energies can be calculated from the extrapolated
VVSi formation energies and similarly obtained formation en-
ergies for the monovacancy9 using the equation

EB = Ef�VSi1
q1 � + Ef�VSi2

q2 � − Ef�VVSi
q1+q2� , �4�

where VSi1 and VSi2 are the resulting dissociated Si monova-
cancies, and where q1 and q2 are the corresponding mono-
vacancy charge states. The most simple case is where q1
=0 and q2=0, since the charge state remains unchanged be-
fore and after dissociation. The corresponding Ef�VSi

0 ,L
→ � � for LDA and PBE are 3.457 and 3.605 eV,9 which
gives binding energies for VVSi

0 of 1.70 �LDA� and 1.85 eV
�PBE�. These values agree reasonably well with the 1.60 eV
�LDA� reported by Pesola et al.5 and the experimentally es-
timated value of �1.6 eV.2 Using the data in Tables II and
III, and monovacancy data from Wright,9 one may calculate
binding energies for various values of q1 and q2.

IV. SUMMARY

Atomic configurations, formation energies, electronic
transition energies, and binding energies of VVSi

q were
obtained from DFT calculations using norm-conserving
pseudopotentials, a plane-wave basis, and both the LDA and
PBE formulations of exchange and correlation. Formation
energies from supercells containing 214, 510, and 998 atoms
were extrapolated to an infinite-sized supercell to remove
spurious electrostatic interactions arising from the use of pe-
riodic boundary conditions. The atomic structure was found
to depend on the defect charge state and the formulation of
exchange and correlation. The PBE structures more closely
agree with EPR experiments predicting the LP structure with
C2h symmetry for the +, 0, and − charge states, but predict
the D3d structure for the −− charge state. The LDA calcula-
tions predict RB structure with C2h symmetry for the 0 and −
charge state, the LP structure for the + charge state, and the
D3d structure for the −− charge state. However, because there
is only a small difference in formation energies between the
two C2h �RB and LP� and also the D3d structure, all of the
configurations should be relevant even at low temperature.
Computed binding energies, which agree closely with experi-
ment, indicate that monovacancies will react to form strongly
bound divacancies if they become mobile.
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