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General expressions for the longitudinal and transverse resistivities of single-crystalline cubic and tetragonal
ferromagnets are derived from a series expansion of the resistivity tensor with respect to the magnetization
orientation. They are applied to strained �Ga,Mn�As films, grown on �001�- and �113�A-oriented GaAs sub-
strates, where the resistivities are theoretically and experimentally studied for magnetic fields rotated within
various planes parallel and perpendicular to the sample surface. We are able to model the measured angular
dependences of the resistivities within the framework of a single ferromagnetic domain, calculating the field-
dependent orientation of the magnetization by numerically minimizing the free-enthalpy density. Angle-
dependent magnetotransport measurements are shown to be a powerful tool for probing magnetic anisotropy.
The anisotropy parameters of the �Ga,Mn�As films inferred from the magnetotransport measurements agree
with those obtained by ferromagnetic resonance measurements within a factor of 2.

DOI: 10.1103/PhysRevB.74.205205 PACS number�s�: 75.50.Pp, 75.47.�m, 75.30.Gw, 76.50.�g

I. INTRODUCTION

Realization of ferromagnetism in III-V semiconductors by
introducing high concentrations of magnetic elements has
motivated intense research on the dilute magnetic semicon-
ductor �Ga,Mn�As. This system is considered a potential
candidate for spintronic applications due to its compatibility
with conventional semiconductor technology.1,2 In
�Ga,Mn�As, magnetic Mn acceptors are predominantly in-
corporated on cation sites as Mn2+ ions having a total spin of
S=5/2. �Ga,Mn�As is paramagnetic at room temperature
and undergoes a transition to the ferromagnetic phase at the
Curie temperature TC, where maximum values of up to
�170 K have been reported so far.2 The ferromagnetism has
been successfully explained within the Zener mean-field
model by an indirect Mn-Mn exchange interaction mediated
by delocalized holes.3 �Ga,Mn�As is grown by low-
temperature molecular-beam epitaxy and, if necessary, sub-
jected to postgrowth annealing to reduce the density of com-
pensating defects. Considerable progress has been made in
understanding its structural, electronic, and magnetic proper-
ties. In particular, anisotropic magnetoresistance �AMR�,4–9

planar Hall effect �PHE�,10 and magnetic anisotropy
�MA�,11–17 have been identified as characteristic features,
making �Ga,Mn�As potentially suitable for field-sensitive
devices and nonvolatile memories. These properties have
been shown to be governed by several parameters, such as
Mn concentration, hole density, strain, or temperature. Most
of the work carried out on AMR in �Ga,Mn�As, however,
has been restricted to special cases where the magnetic field
was applied parallel or perpendicular to the layer and equa-
tions for the angular dependence of the longitudinal and
transverse resistivities, describing the AMR and the PHE,

respectively, have been given only for in-plane configuration
and polycrystalline films. A comprehensive theoretical model
describing the resistivities as a function of arbitrary field ori-
entation is still missing. Moreover, �Ga,Mn�As layers are
usually grown on GaAs�001� substrates and only little is
known about the magnetic properties of films grown on high-
index substrates.16–21

In this work, the longitudinal and transverse resistivities
of �Ga,Mn�As layers, grown on �001�- and �113�A-oriented
GaAs substrates, are studied for arbitrarily orientated mag-
netic fields. The anisotropy of the resistivities and the MA
are experimentally probed by rotating the magnetic field H at
fixed field strengths within different planes parallel and per-
pendicular to the sample surface. General expressions for the
resistivities, holding for single-crystalline cubic and tetrago-
nal ferromagnets, are derived from a series expansion of the
resistivity tensor with respect to the direction cosines of the
magnetization M. The measured data are well modeled by
applying the expressions to the given experimental configu-
rations, assuming the �Ga,Mn�As films to consist of a single
ferromagnetic domain. Analytical expressions, widely used
in the literature to describe the angular dependence of AMR
and PHE, are shown to be inappropriate to single-crystalline
materials. Finally, anisotropy parameters are estimated from
the low-field magnetotransport data and compared with those
obtained from ferromagnetic resonance �FMR� spectroscopy.

II. EXPERIMENTAL DETAILS

40-nm-thick �001� and �113�A �Ga,Mn�As films with Mn
concentrations of �5% were simultaneously grown by low-
temperature molecular-beam epitaxy �MBE� in a RIBER
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32 MBE machine on semi-insulating GaAs�001� and
GaAs�113�A substrates mounted together on the same Mo
holder. A conventional Knudsen cell and a hot-lip effusion
cell were used to provide the Ga and Mn fluxes, respectively.
A valved arsenic cracker cell was operated in the noncrack-
ing mode to supply As4 with a maximum V to III flux ratio
of about 5. First, a 30-nm-thick GaAs buffer layer was grown
at a temperature of Ts�580 °C �conventional growth tem-
perature for GaAs�, then the growth was interrupted and Ts
was lowered to �250 °C. The Mn concentrations in the
�Ga,Mn�As films were determined by flux measurements.

For the magnetotransport and FMR studies, the �001� and
�113�A samples were cleaved into small rectangular pieces

with edges along �110� and �1̄10�, and along �332̄� and

�1̄10�, respectively. The �110� and �1̄10� directions of the
�001� sample were identified by selective wet chemical etch-
ing and the orientation of the �001� crystal axis in the �113�A
sample was determined by x-ray diffraction. The crystallo-
graphic orientations of the samples are shown in Fig. 1. Hall
bars with Ti-AuPt-Au contacts were prepared on several
pieces of the cleaved �001� and �113�A samples with the

current directions along �110� and �332̄�, respectively. The
width of the Hall bars was 0.3 mm and the longitudinal volt-
age probes were separated by 1 mm. Hole densities of 3
�1020 cm−3 for the �001� sample and 1.2�1020 cm−3 for the
�113�A sample were determined by means of high-field mag-
netotransport measurements �up to 14.5 T� at 4.2 K using an
Oxford SMD 10/15/9 VS liquid helium cryostat with super-
conducting coils. Least-squares fits were performed to sepa-
rate the contributions of the normal and anomalous Hall ef-
fects. Curie temperatures of TC�65 and 54 K, respectively,
were estimated from the peak positions of the temperature-
dependent sheet resistivities at 10 mT. For the angle-
dependent magnetotransport measurements carried out at
4.2 K, the Hall bars were mounted on the sample holder of a
liquid-He-bath cryostat, which was positioned between the
poles of a LakeShore electromagnet system providing a
maximum field strength of 0.7 T. The sample holder pos-
sesses two perpendicular axes of rotation, allowing for an
arbitrary alignment of the Hall bars with respect to the ap-
plied magnetic field H. Using a dc current density of 8
�102 A cm−2, the longitudinal and transverse resistivities
�long and �trans were measured at fixed magnitudes �0H
=0.1, 0.25, and 0.7 T of H while rotating its orientation.
Prior to each angular scan, the magnetization M was put into
a clearly defined initial state by raising the field to 0.7 T
where M is nearly saturated and aligned with the external

field. The field was then lowered to one of the above men-
tioned magnitudes and the scan was started.

The FMR measurements were carried out at 5 K in a
commercial Bruker ESP 300 electron paramagnetic reso-
nance spectrometer operated at a fixed frequency of
�HF/2��9.3 GHz �X band�. The spectrometer consists of a
microwave bridge for the high-frequency radiation and an
electromagnet providing a variable dc magnetic induction up
to 1 T. To increase the sensitivity, lock-in techniques were
used in which the dc induction is superimposed by a
100 kHz modulation field of 3.2 mT.

III. THEORETICAL OVERVIEW

In our theoretical considerations the total magnetic mo-
ment arising from the Mn ion–hole spin complex is treated
within the framework of the Stoner-Wohlfarth model,22 i.e.,
for temperatures below TC the whole �Ga,Mn�As layer is
assumed to consist of a single homogeneous ferromagnetic
domain. This simple model has been astoundingly successful
in describing a large variety of magnetization-related phe-
nomena in �Ga,Mn�As. Under the given experimental con-
ditions described above, domain nucleation and expansion,
which have been shown to accompany in-plane and perpen-
dicular magnetization-reversal processes,11,13 are expected to
play only a minor role. Accordingly, we may write the mag-
netization as a vector M=Mm where M denotes its magni-
tude and the unit vector m its direction. In terms of the polar
and azimuth angles � and 	, respectively, which are defined
in Fig. 1, the components of m read as mx=sin � cos 	, my
=sin � sin 	, and mz=cos �. The equations used in the dis-
cussion of the angle-dependent magnetotransport data can be
written in a concise way by introducing the unit vectors j, n,
and t, which specify the current direction, the surface nor-
mal, and an in-plane vector defined by t=n� j, respectively.
Throughout this work, all vector components refer to the
cubic coordinate system with the �100�, �010�, and �001�
directions of the crystal denoted by x, y, and z, respectively.

A. Longitudinal and transverse resistivities

In standard magnetotransport measurements the longitudi-
nal and transverse voltages, measured along and across the
current direction, arise from the components Elong= j ·E and
Etrans= t ·E of the electric field E, respectively. Starting from
Ohm’s law E= �̄ ·J, where �̄ represents the resistivity tensor
and J=Jj the current density, the corresponding longitudinal
resistivity �long �sheet resistivity� and transverse resistivity
�trans �Hall resistivity� can be written as

�long =
Elong

J
= j · �̄ · j ,

�trans =
Etrans

J
= t · �̄ · j . �1�

In �Ga,Mn�As, as in many other ferromagnets, the resistivity
tensor sensitively depends on the orientation of M with re-
spect to the crystallographic axes.23 Thus, in order to quan-

FIG. 1. Orientation of the �001� and �113�A samples with re-
spect to the crystallographic axes.
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titatively model the measured resistivities in the general case
of an arbitrarily oriented magnetization, a universal math-
ematical relationship between �long and �trans and the direc-
tion cosines mi of M has to be derived. For these purposes,
we follow the ansatz of Birss23 and Muduli et al.24 and write
the resistivity tensor �̄ as a series expansion in powers of mi
using the Einstein summation convention:

�ij = aij + akijmk + aklijmkml + ¯ . �2�

For cubic symmetry Td, most of the components aij ,akij , . . .
of the galvanomagnetic tensors vanish and, considering
terms up to the second order, we obtain

�̄cubic = A�1 0 0

0 1 0

0 0 1
� + B�mx

2 0 0

0 my
2 0

0 0 mz
2�

+ C� 0 mxmy mxmz

mxmy 0 mymz

mxmz mymz 0
�

+ D� 0 mz − my

− mz 0 mx

my − mx 0
� , �3�

with the resistivity parameters

A = a11 + a1122, B = a1111 − a1122,

C = a2323, D = a123. �4�

Insertion of Eq. �3� into Eqs. �1� and elementary vector al-
gebra yields the general expressions

�long
cubic = A + C� j · m�2 + �B − C�	

i

ji
2mi

2,

�trans
cubic = C� j · m��t · m� + �B − C�	

i

tijimi
2 − D�n · m� ,

�5�

which apply to single-crystalline ferromagnetic materials of
cubic symmetry. The transverse resistivity in Eqs. �5� in-
cludes the contribution of the anomalous Hall effect, which
correlates with the perpendicular component of M, but it
does not account for the ordinary Hall effect. For magnetic
field strengths �0H
1 T and hole concentrations p
�1020 cm−3 as in our experiments, however, the maximum
contribution of the ordinary Hall effect is �0H /ep�6
�10−6 � cm �e denotes the elementary charge�, and thus
about two orders of magnitude smaller than the measured
peak values of �trans

cubic �see Sec. IV�.
In the following, Eqs. �5� are applied to three different

experimental configurations using the relation

mi = ji� j · m� + ti�t · m� + ni�n · m� . �6�

In the simplest case of a sample with �001� surface, where
the current flows along the �100� or �010� direction, Eqs. �5�
reduce to

�long
cubic = A + B� j · m�2,

�trans
cubic = C� j · m��t · m� − D�n · m� . �7�

The magnetotransport studies presented in this work were
performed on �001�- and �113�A-oriented samples with the

current directions j along �110� and �332̄�, respectively. The
corresponding resistivities are as follows.

(001) surface and j 
 [110]

�long
cubic = A +

1

2
�B − C� + C� j · m�2 +

1

2
�C − B��n · m�2,

�trans
cubic = B� j · m��t · m� − D�n · m� . �8�

(113)A surface and j 
 [332̄]

�long
cubic = A +

9

22
�B − C� +

1

121
�126C − 5B�� j · m�2

+
45

242
�C − B��n · m�2 +

15�2

121
�B − C�� j · m��n · m� ,

�trans
cubic =

1

11
�9B + 2C�� j · m��t · m� +

3�2

11
�B − C��t · m��n · m�

− D�n · m� . �9�

The � j ·m�2 terms of �long
cubic give rise to a dependence of the

sheet resistivity on the relative orientation between magneti-
zation M and current density J, commonly referred to as
AMR. Microscopically, it is explained by a strong spin-orbit
coupling in the semiconductor valence band. Experimentally
observed differences in the in-plane and out-of-plane AMR
�A�, often defined as

Aip =
�long�m 
 j� − �long�m 
 t�

�long�m 
 j�
,

Aop =
�long�m 
 j� − �long�m 
 n�

�long�m 
 j�
, �10�

have been ascribed to biaxial strain in the layer.5–8 According
to Eqs. �8� and �9�, however, such differences may be ex-
pected even in the case of perfect cubic symmetry due to the
�n ·m�2 terms of �long

cubic. As will be shown below, a strain-
induced tetragonal distortion leads to further �n ·m�2 terms,
additionally affecting the difference between Aip and Aop.
The PHE, represented by the � j ·m��t ·m� terms of �trans, is
closely related to the AMR and describes the appearance of a
transverse voltage in the presence of an in-plane magnetic
field, or, more precisely, of an in-plane magnetization. From
the summation terms in Eqs. �5� it becomes clear that �long
and �trans, and thus the AMR and PHE, depend not only on
the relative orientation between m and j, but also on the
orientations of m, j, and t with respect to the crystal axes.

So far, quantitative studies on the angular dependences of
the AMR and the PHE in �Ga,Mn�As were restricted to in-
plane configurations with n ·m=0 and the discussions were
based on the well-known expressions26,27
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�long = �� + ��
 − ��� cos2  j ,

�trans = ��
 − ��� sin  j cos  j , �11�

with  j denoting the angle between j and M. These expres-
sions, however, hold only for polycrystalline films, whereas
�Ga,Mn�As layers are normally of high crystalline quality
with a uniform crystallographic orientation of the layer. Ac-
cordingly, the expressions given in Eqs. �7�–�9� are incom-
patible with Eqs. �11� and cannot be brought into agreement
by simply setting n ·m=0. In fact, Eqs. �11� result from Eqs.
�5� by averaging the summation terms over all possible crys-
tal orientations in space25 with M lying in the plane spanned
by j and t:

	
i

ji
2mi

2 =
1

5
�2� j · m�2 + 1� ,

	
i

tijimi
2 =

2

5
� j · m��t · m� . �12�

Inserting the averaged terms into Eqs. �5� and using the re-
lations j ·m=cos  j and t ·m=sin  j �the latter holds only for
n ·m=0�, we obtain

�long
poly = A +

1

5
�B − C� +

1

5
�2B + 3C�cos2  j ,

�trans
poly =

1

5
�2B + 3C�sin  j cos  j . �13�

These equations are formally identical to Eqs. �11� and apply
to polycrystalline materials. A comparison between Eqs. �11�
and Eqs. �13� allows us to connect the quantities �
 and �� to
the components of the galvanomagnetic tensors for cubic
symmetry up to second order:

�
 = A +
1

5
�3B + 2C� = a11 +

1

5
�3a1111 + 2a1122 + 2a2323� ,

�� = A +
1

5
�B − C� = a11 +

1

5
�a1111 + 4a1122 − a2323� .

�14�

Thus, in general Eqs. �11� are not appropriate to describe the
in-plane AMR and the PHE in single-crystalline �Ga,Mn�As
layers. Only in the limiting case where B=C do Eqs. �7�–�9�
simplify to Eqs. �11�.

Analyzing the angle-dependent magnetotransport data
presented in Sec. IV, it turns out that additional terms pro-
portional to �n ·m�2 have to be introduced in the expressions
of �long

cubic to achieve a satisfactory description of the experi-
mental results.17 They are supposed to originate from a dis-
tortion of the crystal lattice due to compressive strain in the
�Ga,Mn�As layer. To account for such strain-induced effects
in a correct way, we extend our model to a tetragonal distor-
tion of the cubic lattice along the �001� direction. As will be

shown below, our FMR and magnetotransport data suggest
that this applies not only for the �001�- but also for the
�113�A-oriented sample.

In the case of a tetragonal lattice distortion along �001�,
the symmetry reduces to D2d and the series expansion of �̄ in
Eq. �2� yields further contributions which can be subsumed
into an additional term ��̄. The resistivity tensor then reads
as

�̄ tetra = �̄ cubic + ��̄ , �15�

with

��̄ = �0 0 0

0 0 0

0 0 a
� + � 0 dmz 0

− dmz 0 0

0 0 0
�

+ � b1mz
2 cmxmy 0

cmxmy b1mz
2 0

0 0 b2mz
2� . �16�

The additional resistivity parameters are given by

a = a33 − a11 + a1133 − a1122,

b1 = a3311 − a1122,

b2 = a3333 − a1111 − a1133 + a1122,

c = a1212 − a2323,

d = a312 − a123. �17�

Accordingly, Eqs. �7�–�9� have to be rewritten as follows.
(001) surface and j 
 [100]

�long
tetra = A + B� j · m�2 + b1�n · m�2

�trans
tetra = �C + c�� j · m��t · m� − �D + d��n · m� . �18�

(001) surface and j 
 [110]

�long
tetra = A +

1

2
�B − C − c� + �C + c�� j · m�2

+ �1

2
�C − B + c� + b1�n · m�2

�trans
tetra = B� j · m��t · m� − �D + d��n · m� . �19�

(113)A surface and j 
 [332̄]

�long
tetra = A +

2

11
a +

9

22
�B − C − c� +

1

121
�126C − 5B + b + 90c�

�� j · m�2 +
9

242
�5C − 5B + b + 13c��n · m�2

+
3�2

121
�5B − 5C − b + 9c�� j · m��n · m� ,
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�trans
tetra =

1

11
�9B + 2C�� j · m��t · m� +

3�2

11
�B − C��t · m��n · m�

− �D +
9

11
d�n · m� +

3�2

11
d� j · m� , �20�

where b=18b1+4b2. For perfect cubic symmetry the param-
eters a, b1, b2, c, and d vanish and Eqs. �18�–�20� reduce to
Eqs. �7�–�9�. It should be emphasized that the expressions for
�long and �trans derived above generally apply to ferromagnets
of cubic or tetragonal symmetry, provided that the angular
dependence of the resistivity tensor is exclusively deter-
mined by the direction cosines of the magnetization. Effects
correlated with the magnitude B of the magnetic induction B,
such as the negative magnetoresistance, can be easily taken
into account by considering B-dependent resistivity param-
eters.

B. Magnetic anisotropy

The pronounced MA in �Ga,Mn�As is associated with a
density of the free enthalpy28 G being highly anisotropic
with respect to the orientation of M. The direction of M, i.e.,
the vector m which enters the equations for �long and �trans
given above, aligns in such a way that G takes its minimum
value. In addition to the single-domain model, we assume
that the magnitude M of the magnetization is nearly constant
under the given experimental conditions while its orientation
m is strongly affected by the applied magnetic field H. In-
stead of G we therefore consider the normalized quantity
GM =G /M, allowing for a more concise description of the
MA. For a biaxially strained �Ga,Mn�As film grown on
GaAs�001� substrate, it can be written as13

GM
001 = − �0H · m + Bc
�mx

4 + my
4� + Bc�mz

4 + B001�n · m�2

+ B1̄10�t · m�2, �21�

with n 
 �001� and t 
 �1̄10�. The terms refer, respectively, to
the Zeeman energy, the cubic anisotropy under tetragonal
distortion, an effective uniaxial anisotropy perpendicular to
the film including demagnetization and magnetoelastic ef-
fects, and a uniaxial in-plane contribution whose origin is
still under discussion.14,29,30 The anisotropy parameters Bi
introduced in Eq. �21� are in SI units. Expressed by the an-
isotropy fields Hi and 4�Meff used in Refs. 13 and 31, they
read as Bc
 =−�0H4
 /4, Bc�=−�0H4� /4, B1̄10=−�0H2
 /2,
and B001=�04�Meff /2. Note that, by using the trivial identity

�m�2 = � j · m�2 + �t · m�2 + �n · m�2 = 1, �22�

Eq. �21� can be easily converted to a completely equivalent

expression where the in-plane contribution along �1̄10� is
formally replaced by a contribution along �110�. The only
consequence is a redefinition of the anisotropy parameters
and the addition of a constant term which does not alter the
physical information provided by GM. In Fig. 2, the free
enthalpy is visualized by a three-dimensional �3D� plot, cal-
culated for a weak magnetic field �0H=0.15 T and a set of
anisotropy parameters with arbitrarily chosen values Bc


=Bc�=−0.1 T, B001=0.15 T, and B1̄10=−0.05 T. The direc-

tion of M was calculated, as throughout the present work, by
numerically minimizing GM with respect to � and 	 �see Fig.
1�. In doing so, we are able to trace the motion of M, starting
from a given orientation, while sweeping or rotating H. Fig-
ure 3 shows as an example the simulated polar ��H ,�� and
azimuth �	H ,	� angles of H �dashed line� and M �solid line�,
respectively, while H is rotated within the �111� plane. For
the simulation the same field strength and the same aniso-
tropy parameters have been chosen as for the 3D plot in Fig.
2. While H smoothly rotates within the �111� plane, M re-
mains very close to the �001� plane ���90° � and undergoes
sudden jumps in 	 whenever the minimum of GM discon-
tinuously changes its position.

In the case of the �Ga,Mn�As films grown on
GaAs�113�A substrates, the best fits to the experimental data
�see Sec. IV B� are achieved for a normalized free-enthalpy
density of the form17

GM
113 = − �0H · m + Bc
�mx

4 + my
4� + Bc�mz

4 + B113�n · m�2

+ B1̄10�t · m�2 + B001mz
2. �23�

The first five terms correspond to those already presented in

FIG. 2. GM as a function of m, calculated for a given magnetic
field �0H=0.15 T and a set of anisotropy parameters with arbi-
trarily chosen values Bc
 =Bc�=−0.1 T, B001=0.15 T, and B1̄10=
−0.05 T. The equilibrium position of M is determined by the mini-
mum of GM.

FIG. 3. Simulated polar �left axis� and azimuth �right axis�
angles of the magnetic field H �dashed lines� and the magnetization
M �solid lines� for H rotated in the �111� plane. The same field
strength and anisotropy parameters have been used as in Fig. 2.
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Eq. �21�. The sixth term, which has to be additionally intro-
duced to obtain an optimal agreement between experiment
and theory, is an inclined uniaxial contribution along �001�,
i.e., neither parallel nor perpendicular to the film.16 We at-
tribute it to a lattice distortion along the �001� direction.

C. Ferromagnetic resonance

A highly efficient and widely used tool to study MA is
ferromagnetic resonance spectroscopy.32 Most recently, a de-
tailed review on FMR in �Ga,Mn�As has been given by Liu
and Furdyna.31 In the FMR experiments, the total magnetic
moment of the Mn ion–hole spin complex and thus the mag-
netization M precesses around its equilibrium position
�which in general is not identical to the orientation of H� at
the Larmor frequency �L. Sweeping the magnitude of the
magnetic field H at a fixed microwave frequency �HF, the
resonance condition �L=�HF is satisfied at the resonance
field Hres which strongly depends on the orientation of H due
to MA. The resonance condition is given by33

��HF

�
2

=
1

sin2 �
� �2GM

��2

�2GM

�	2 − � �2GM

�� � 	
2� , �24�

where �=g�B�−1 denotes the gyromagnetic ratio, g the g
factor, �B the Bohr magneton, and � the Planck constant. At
any given direction of H, the resonance field is obtained by
solving Eq. �24� at the equilibrium position of M, i.e., for
�GM /�	=0 and �GM /��=0. The anisotropy parameters can
then be derived from a fit to the measured Hres recorded as a
function of field orientation. In the present work, most of the
calculations were carried out numerically.

IV. RESULTS AND DISCUSSION

The longitudinal and transverse resistivities of the �001�
and �113�A �Ga,Mn�As layers were measured as a function
of the magnetic field orientation at fixed field strengths
�0H=0.1, 0.25, and 0.7 T. In order to probe the anisotropy
in all three directions in space, the applied magnetic field H
was rotated within three different crystallographic planes
perpendicular to n, j, and t, respectively, as shown in Fig. 4.
In the following, the measured angular dependences of �long
and �trans are discussed and values for the resistivity and
anisotropy parameters are derived by fits to the experimental
data using the theoretical formalism presented in Sec. III.
The results of FMR measurements, carried out on the same
samples, are presented for reference. Note, however, that it is
not the aim of the present study to yield a detailed or com-
plete set of anisotropy parameters. In fact, the work is meant

to provide a comprehensive theoretical tool for the descrip-
tion of the resistivities in arbitrarily oriented �Ga,Mn�As lay-
ers and to demonstrate the potential of angle-dependent mag-
netotransport studies for the investigation of magnetic
anisotropy.

A. (001) orientation

The anisotropy of the �001�-oriented sample was probed

by rotating H within the �001�, �110�, and �1̄10� planes. The
corresponding angular dependences of �long and �trans, mea-
sured with the current direction along �110�, are shown in
Fig. 5. At 0.7 T the Zeeman energy dominates the free en-
thalpy and MA only plays a minor role. As a consequence, M
is expected to nearly align with the applied magnetic field
and to continuously follow the motion of H. In fact, the
curves of �long and �trans at 0.7 T are smooth and largely
reflect the anisotropy of the resistivity tensor. With decreas-
ing magnetic field the influence of the MA increases and the
orientation of M deviates more and more from the field di-
rection. Accordingly, jumps and kinks occur in the curves at
0.25 and 0.1 T, arising from sudden movements of M caused
by discontinuous displacements of the minimum of the free
enthalpy. The observed angular dependences of �long and
�trans can be understood in great detail by modeling the mea-
sured curves within the theoretical framework presented in
Sec. III. For this purpose, the resistivity and anisotropy pa-
rameters from Eqs. �4�, �17�, and �21� were determined by an
iterative fit procedure. Starting with an initial guess for the
anisotropy parameters, the resistivity parameters were ob-
tained by fitting Eqs. �19� to the experimental data recorded
at 0.7 T. Then the anisotropy parameters were modified for
an optimal agreement at 0.25 and 0.1 T, and the whole pro-
cedure was repeated until no further improvement of the fit
could be achieved. The unit vector m at any given magnetic
field H was calculated by numerically minimizing GM

001 in
Eq. �21� with respect to the polar and azimuth angles of M.
With the exception of A, the resistivity parameters turned out
to be field independent within the accuracy of the fit and are
given by B=−2.3�10−4 � cm, C+c=−1.7�10−4 � cm, b1
=0.9�10−4 � cm, and D+d � −4.4�10−4 � cm. The resis-
tivity parameter A was found to decrease from 7.24
�10−3 � cm at 0.1 T to 7.11�10−3 � cm at 0.7 T, reflect-
ing the negative-magnetoresistance behavior of �long.

1,7 For
the anisotropy parameters we obtained the values Bc
 =
−0.015 T, Bc�=0 T, B001=0.17 T, and B1̄10=0.002 T. The
theoretical curves calculated with these parameters are in ex-
cellent agreement with the experiment and are drawn as solid
lines in Fig. 5.

Once the anisotropy parameters are known, the orienta-
tions of the easy axes can be determined by minimizing GM

001

with respect to m at zero magnetic field. The easy axes are
found to lie within the �001� layer plane ��=90° � at the
azimuth angles 	1=1.9° and 	2=88.1° �see Fig. 1�. The
slight deviation from the cubic �100� and �010� axes toward
the �110� direction arises from the positive value of B1̄10.

Using the expression for �long
tetra in Eqs. �19�, the in-plane

and out-of-plane AMR coefficients defined in Eqs. �10� read
for a �001� layer with j 
 �110� as

FIG. 4. The angle-dependent magnetotransport measurements
were carried out for H rotated within �a� the layer plane, �b� a plane
perpendicular to the current direction j, and �c� a plane spanned by
j and the normal vector n.
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Aip =
C + c

A + �B + C + c�/2
,

Aop =
�B + C + c�/2 − b1

A + �B + C + c�/2
. �25�

Inserting the resistivity parameters derived above, we find
Aip=−2.5% and Aop=−4.2%. Similar values, namely, −3.4%
and −4.0%, respectively, have been reported by Wang et al.8

for a 50-nm-thick �Ga,Mn�As layer with 5% Mn.
Based on the resistivity and anisotropy parameters given

above, plots similar to Fig. 3 can be drawn for each configu-
ration and field strength, revealing in great detail the motion
of M. Figure 6 shows as an example the polar ��H ,�� and
azimuth �	H ,	� angles of H and M, respectively, plotted as
functions of the angle of rotation � for H rotated in the �110�
plane at 0.1 T �see Fig. 5�b��. While �H passes through all
values between 0° and 180° �dashed line, left axis�, M re-
mains very close to the �001� plane with 75° 
�
105°
�solid line, left axis�. For 40° 
�
140° and 220° 
�

320°, where H is closer to the �001� plane than to the
�001� axis, the azimuth angles 	H and 	 of H and M, respec-
tively, almost perfectly coincide. When H approaches the
hard �001� axis, however, M tends toward the easy �100� axis
�azimuth angles 0° and 180°� or to the easy �010� axis �azi-
muth angles −90° and 90°�. At �=180° and �=360°, where

H exactly aligns with the �001̄� and �001� directions, respec-
tively, the azimuth angle of M undergoes a sudden jump by
90°.

Considerable information can also be obtained by com-
paring the measured angular dependences with those ex-
pected for the limiting case where M perfectly aligns with H.
To this end, �long and �trans were calculated with m replaced
by the vector h=H /H in Eqs. �19�. The resulting curves are
depicted by the dashed lines in Fig. 5. For H rotated within

FIG. 5. Angle-dependent resistivities �long �circles� and �trans �dots� of the �001� �Ga,Mn�As sample at 4.2 K. The measurements were

carried out at fixed field strengths of �0H=0.1, 0.25, and 0.7 T with H rotated in �a� the �001�, �b� the �110�, and �c� the �1̄10� plane. The
solid lines represent fits to the experimental data using Eqs. �19� and one set of resistivity and anisotropy parameters. The dashed lines at
0.7 T simulate the limiting case where M perfectly aligns with H. In �a� the dashed lines completely coincide with the solid lines.

FIG. 6. Calculated polar �left axis� and azimuth �right axis�
angles of the magnetic field H �dashed lines� and the magnetization
M �solid lines� for H rotated in the �110� plane of the �001�
�Ga,Mn�As sample at 0.1 T. The resistivity and anisotropy param-
eters used in the calculation were derived from a fit to the angle-
dependent resistivities shown in Fig. 5.
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the �001� plane �Fig. 5�a��, the linear and quadratic �n ·m�
terms in Eqs. �19� vanish and we obtain the well-known
cos2  j and cos  j sin  j dependences of �long and �trans, re-
spectively. At 0.7 T the dashed curves coincide with the solid
curves, meaning that for H rotated within the layer plane the
magnetization almost perfectly follows the motion of the
magnetic field. For lower fields, M remains in the layer plane
since �001� is a hard axis, but it increasingly deviates from H
toward the easy �100� and �010� axes. At 0.1 T it abruptly
switches whenever H approaches the somewhat harder �110�
and �1̄10� axes, leading to the kinks observed for �long.

The rotation of H within a plane perpendicular to the
layer is accompanied by significant differences in the orien-
tations of H and M, even for 0.7 T. This is clearly demon-
strated in Figs. 5�b� and 5�c�, where the dashed curves rep-
resent the �n ·m�2=cos2 n and �n ·m�=cos n dependences
of �long and �trans in Eqs. �19�, respectively, with n denoting
the angle between m and n. At 0.7 T, H and M coincide
whenever H is orientated parallel or perpendicular to the
layer plane. At lower fields this is no longer true and M
avoids the perpendicular direction by tending toward the
easy �100� and �010� axes �see Fig. 6�. Accordingly, the dif-
ferences between the minimum and maximum values of �long
and �trans are drastically reduced at 0.25 and 0.1 T.

It should be emphasized that the magnetotransport mea-
surements give clear evidence for the tetragonal distortion of
the �Ga,Mn�As layer. First, the parameters Bc
 and Bc�, rep-
resenting the in-plane and out-of-plane contributions to the
cubic-anisotropy term in GM

001, significantly differ. Second,
Eqs. �8�, which have been derived for the case of perfect
cubic symmetry, correctly reproduce the measured ampli-
tudes of �long for the in-plane configuration in Fig. 5�a�, but
do not so for the two out-of-plane configurations in Figs.
5�b� and 5�c�. Moreover, it is worth noting that the fits pre-
sented in Fig. 5 could be improved even further by taking
into account higher-order terms in the series expansion of the
resistivity tensor in Eq. �2�. However, since the agreement
achieved in second order is more than satisfactory and since
the mathematical expressions for the resistivities would be-
come much more complicated, higher-order terms have not
been considered in the present study.

The results of FMR measurements are presented in Fig. 7.
It shows the measured and simulated angular dependences of

the resonance field Hres for H rotated within the �001�, �1̄10�,
and �110� planes. The dashed lines, reproducing only roughly
the experimental curves, were numerically calculated using
Eq. �21�, Eq. �24�, g=2.0, and the anisotropy parameters
derived from the magnetotransport measurements. The
agreement between experiment and theory is significantly
improved using g=1.9 and the slightly higher values Bc
 =
−0.02 T, Bc�=0 T, B001=0.24 T, and B1̄10=0.002 T, which
were obtained by a least-squares fit based on Eqs. �21� and
�24�. The values agree within 30% with the anisotropy pa-
rameters determined from magnetotransport. The reason for
the remaining difference between the two sets of parameters
is not yet clear. Inevitable sample heating up to 150 °C for
less than 30 min during the Hall-bar preparation as well as
the different lateral sizes of our samples �shape anisotropy�
are not expected to account for the observed variation.

Angular dependences of Hres almost identical to those
shown in Fig. 7 have been reported by Liu et al. in Refs. 12
and 31 for a 300-nm-thick �Ga,Mn�As layer with 3% Mn.
They obtained an optimal fit to the experimental data by
using values for the anisotropy fields Hi which are, written in
terms of the anisotropy parameters Bi, very close to the val-
ues found in the present study, namely, Bc
 =−0.025 T, Bc�

=0 T, B001=0.17 T, and B1̄10=0.02 T.

B. „113…A orientation

As already mentioned in Sec. III B, our experimental data
suggest the existence of a lattice distortion along �001� even
in the �Ga,Mn�As film grown on GaAs�113�A substrate.
This is demonstrated in Fig. 8, which shows the measured
and simulated angular dependences of the FMR field Hres for

H rotated within the �332̄�, �11̄0�, and �113� planes. The
solid and dashed lines depict the results of least-squares fits
using Eqs. �23� and �24� with and without considering the
uniaxial term B001mz

2, respectively. Even though no perfect
simulation of the measured curves could be achieved, the
solid curve is much closer to the experimental data than the
dashed one. Optimal agreement is obtained for g=2.0 and
the values Bc
 =Bc�=−0.046 T, B113=0.032 T, and B001
=0.053 T of the anisotropy parameters �solid line in Fig. 8�.
Similar to the case of the �001� layer, the uniaxial in-plane
contribution is almost negligible with B1̄10=−0.005 T.

The magnetotransport data, measured with the current di-

rection along �332̄�, are depicted in Fig. 9. The figure shows

FIG. 7. Angle-dependent FMR fields of the �001� �Ga,Mn�As

sample at 5 K for H rotated in the �001�, �1̄10�, and �110� planes.
The solid lines represent the result of a least-squares fit; the dashed
lines were calculated using g=2.0 and the anisotropy parameters
estimated from the magnetotransport data.
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the experimental and simulated angular dependences of �long

and �trans for H rotated within the �113�, �332̄�, and �1̄10�
planes. Using the fit procedure described in Sec. IV A, the
values of the resistivity parameters in Eqs. �20� are obtained
as B=−8.1�10−4 � cm, C=−8.7�10−4 � cm, b=7.2
�10−3 � cm, c=5.1�10−4 � cm, D=−2.1�10−3 � cm,
and d=2.1�10−4 � cm. The sum A+2a /11 decreases from
21.61�10−3 � cm at 0.1 T to 20.79�10−3 � cm at 0.7 T.
For the anisotropy parameters we obtained the values Bc
 =
−0.046 T, Bc�=−0.03 T, B113=0.018 T, B001=0.02 T, and
B1̄10=−0.008 T. As for the �001� sample, they are smaller
than the values determined by the FMR study; however, the
discrepancy is less than a factor of about 2. The calculated
curves, represented by the solid lines in Fig. 9, are in excel-
lent agreement with the measured data. Again, the dashed
curves simulate the case of a magnetization that perfectly
aligns with H. A comparison between the dashed and solid
curves reveals that the magnetization at 0.7 T almost per-
fectly follows the motion of the magnetic field in the two
out-of-plane configurations �Figs. 9�b� and 9�c��, whereas for
H rotated within the layer plane �Fig. 9�a�� M significantly
deviates from H. According to the model calculations, the
latter behavior arises from the cubic terms and the uniaxial
�001� contribution in GM

113, resulting in a deflection of M
toward the �001� plane. The asymmetry of �trans in Fig. 9�a�
partly results from this deflection and partly from the last
term in Eqs. �20� which originates from the tetragonal dis-
tortion. A similar asymmetry has been observed by Muduli et

FIG. 8. Angle-dependent FMR fields of the �113�A �Ga,Mn�As

sample at 5 K for H rotated in the �332̄�, �11̄0�, and �113�A planes.
The solid and dashed lines represent the results of least-squares fits
with and without considering a uniaxial term along �001� in GM

113,
respectively.

FIG. 9. Angle-dependent resistivities �long �circles� and �trans �dots� of the �113�A �Ga,Mn�As sample at 4.2 K. The measurements were

carried out at fixed field strengths of �0H=0.1, 0.25, and 0.7 T with H rotated in �a� the �113�, �b� the �332̄�, and �c� the �1̄10� plane. The
solid lines represent fits to the experimental data using Eqs. �20� and one set of resistivity and anisotropy parameters. The dashed lines at
0.7 T simulate the limiting case where M perfectly aligns along H.
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al.24 in Fe3Si films grown on GaAs�113�A substrates. There,
the asymmetry has been explained by third-order terms in
�trans. We cannot rule out that in the �113�A �Ga,Mn�As
sample under study higher-order terms contribute to the
asymmetry, too. However, since the present model, including
terms up to second order, fully accounts for the observed
angular dependence of �long and �trans, it has not been con-
sidered as mandatory to include them.

Using the anisotropy parameters obtained from the curve
fits, the orientations of the easy axes were determined by
minimizing GM

113 with respect to m at zero magnetic field. We
find the easy axes in the �113�A layer at the angles �see Fig.
1� �1=92°, 	1=−3.4°, and �2=92°, 	2=93.4°, i.e., very
close to the �100� and �010� axes, in qualitative agreement
with the results presented in Refs. 16 and 21.

V. SUMMARY

A series expansion of the resistivity tensor with respect to
the magnetization components yields general expressions for

the longitudinal and transverse resistivities in single-
crystalline ferromagnets with cubic and tetragonal symmetry.
The expressions, applicable to �Ga,Mn�As layers with arbi-
trary surface index, were used to quantitatively model the
angular dependences of the resistivities, measured in �001�
and �113�A �Ga,Mn�As films as a function of magnetic field
orientation. Whereas the curves at 0.7 T largely reflect the
anisotropy of the resistivity tensor, the curves at 0.25 and
0.1 T are strongly affected by magnetic anisotropy, allowing
access to anisotropy parameters. The magnetotransport data
and comparative ferromagnetic resonance studies reveal
an inclined uniaxial anisotropy along �001� in the
�113�A-oriented �Ga,Mn�As layers in addition to the usual
in- and out-of-plane contributions known from �001� layers.
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