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The one-dimensional �1D� Hubbard model with partial filling ��1 and strong correlation U�4t is approxi-
mated by a t-J model with real transfers t between adjacent occupied and empty sites, and virtual transfers J
between adjacent spin-paired sites. Finite t-J models with ��1 preserve spin-charge separation in the atomic
limit �J=0� for open boundary conditions, but not for periodic boundary conditions. The absolute magnetic
susceptibility ��T� of finite systems is found exactly and shown to converge to the infinite chain when kBT
exceeds J. Strong orbital contributions to ��T� are demonstrated in systems with t, J, and � chosen to have
identical ��0� per electron, as known exactly for the 1D Hubbard model. Orbital contributions for ��1
preclude treating the spin susceptibility of partly filled bands in terms of �=1 systems such as Heisenberg spin
chains, as assumed previously. Orbital contributions at �=0.6 are used to model the spin susceptibility of
tetrathiafulvalene-tetracyanoquinodimethan above the metal-insulator transition, both at constant spacing along
the stack and with a linear t�T�. The parameters at T�100 K are t=0.15 eV and J=2t2 /U=0.053 eV, indica-
tive of strong correlation U�4t in this prototypical organic salt.
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I. INTRODUCTION

The organic conductor TTF-TCNQ �tetrathiafulvalene-
tetracyanoquinodimethan� has parallel segregated stacks of
donors with �=0.59 holes per TTF and acceptors with �
=0.59 electrons per TCNQ. The physical properties of TTF-
TCNQ single crystals have been intensively studied1,2 in
connection with its high metallic conductivity, its metal-
insulator transition at 54 K, and phase transitions at lower
temperature associated with TTF or TCNQ stacks. Electrical
conductivity has primarily been modeled in terms of one-
dimensional �1D� bands with electron-phonon coupling lead-
ing to a Peierls transition at 54 K. The electronic structure of
either stack can be approximated by a 1D Hubbard model
with on-site repulsion U�0 and density �=0.59. The rela-
tive magnitude of U and 4t, the width of the 1D band, de-
scribes electron-electron correlation, with U=0 for free elec-
trons, U�4t for weak correlation and U�4t for strong
correlation. Although TTF-TCNQ data taken separately
could often be treated in impressive detail, a consistent over-
all model of electrical, optical, magnetic, and structural prop-
erties has not been reached.

Torrance et al.3 championed the minority view of U�4t,
based initially on the molar magnetic susceptibility ��T� of
TTF-TCNQ shown in Fig. 1, and on neutron scattering data.
They noted that the magnitude of ��350 K� could be fit to a
1D band with U=0, to a band with Stoner enhancement for
U�4t, or to a spin-1 /2 Heisenberg antiferromagnetic �HAF�
chain with J=200 K for U�4t. The HAF curve in Fig. 1 has
J=360 K and matches experiment at the transition. Since
none of these models accounts for the temperature depen-
dence of ��T� for T�54 K, Torrance et al.3 could only ad-
vance qualitative arguments for U�4t in TTF-TCNQ.
Closely similar ��T� data were reported by others.4 Klotz et
al.5 subsequently measured ��T� under pressure up to
10 kbar in order to extract the susceptibility at constant spac-
ing along the stack. The pressure dependence suggested large

U, but the analysis remained qualitative. We present in this
paper ��T� calculations for partly filled bands with U�4t by
exact treatment of oligomers and demonstrate that, contrary
to previous expectations, ��T� for ��1 cannot be repre-
sented by a HAF chain with an effective J.

The t-J model6 is associated with partly filled bands in
high-Tc superconductors. It describes real and virtual elec-
tron transfer between neighbors in lattices such as square-
planar copper oxide layers. The t-J model in 1D is

H�t,J� = − t�
p�

P�ap�
+ ap+1� + h.c.�P

+ 2J�
p

�s�p · s�p+1 − npnp+1/4� , �1�

where P is the projector that excludes np=2 fermions at any
site, either two electrons at a TCNQ site or two holes at a
TTF site. The first term gives a tight-binding band of spinless
fermions whose remarkable properties have been discussed
by Lieb and Mattis7 and by Brinkman and Rice.8 These fer-

FIG. 1. Temperature dependence of the molar susceptibility of
TTF-TCNQ. The data are from Ref. 3 and include diamagnetic
corrections. The HAF curve is for a spin chain with exchange J
=360 K.
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mions govern the charge degrees of freedom. The second
term describes virtual transfers J at neighboring sites with
np=1. The J=0 limit corresponds to the atomic limit of the
Hubbard model and illustrates spin-charge separation. Klein
and Seitz9 obtained an effective Hamiltonian for small J that
coincides with �1� by projecting the Hubbard model onto the
subspace with np=0 or 1. They were perhaps the first to
study the t-J model under another name. Near the atomic
limit, the relation 2t /U=J / t connects the Hubbard and t-J
models, with U=4t at J= t /2.

Among exact results for the 1D Hubbard model at T=0,
Shiba10 obtained ��0� per electron for arbitrary density �� 1
and correlation U / t. To leading order in t /U�1, ��0,�� is
inversely proportional to the AF exchange constant J���
given by10

J��� = J��1 − sin 2��/2��� , �2�

with J=2t2 /U. Since the effective Hamiltonian of Klein and
Seitz9 leads to the same J���, it has been generally assumed
that ��T� of partly filled Hubbard models remains of the
HAF form. This is not the case, however. Correlated systems
with identical J��� and hence ��0,�� will be shown to differ
substantially at kBT�J��� due to charge degrees of freedom
in partly filled bands. Our results are restricted to systems
with negligible thermal population of doubly occupied sites,
or kBT	U, which follows from kBT�J��� and U�4t.

Many theoretical approaches have been applied to infinite
1D Hubbard, Heisenberg, or t-J models, including exact re-
sults at T=0, variational functions for the ground state �GS�,
and a variety of approximations including density matrix
renormalization group �DMRG� methods. Sirker and
Klumper11 have recently summarized results for the 1D t-J
model with J�=2J in �1�. Variational methods12–14 and nu-
merical extrapolations15 have focused on GS properties and
the 0 K phase diagram. The Bethe ansatz yields exact results
at the supersymmetric point, t=J, and there is phase separa-
tion at even larger J. Takahashi’s early proposal,16 a thermal
Bethe ansatz �TBA� for the 1D Hubbard model, has gener-
ated much theoretical interest, again motivated by high Tc,
first in connection with the string hypothesis17 and the
validity18 of TBA. TBA generates an infinite set of integral
equation whose approximate solution19 requires truncation.
Another approach to the thermodynamics was taken by Jütt-
ner et al.,20 who mapped the 1D Hubbard model to the 2D
Shastry model and reduced the problem to a finite number of
coupled nonlinear integral equations. Their quantum transfer
matrix �QTM� approach resembles DMRG in becoming
highly accurate as the Trotter number M is increased. Quan-
tum Monte Carlo is yet another general approach21 to the
thermodynamics of the 1D Hubbard model. In these
works,17,19–21 ��T ,�� in systems with U�4t has been of sec-
ondary interest with brief comments in support of HAF be-
havior that we argue against for ��1. Since our ��T ,��
curves at U=8t agree well with Refs. 20 and 19, orbital
contributions could have been previously inferred.

The physical regime relevant to TTF-TCNQ or organic
conductors has U�2t, or J� t. Bonner and Fisher22 obtained
��T� of HAF chains using direct solution of finite chains

with N�12 spins. We have recently extended ��T� to N
=18 spins in order to model a spin-Peierls transition.23

Johnston et al.24 have comprehensively discussed theoretical
results for the HAF, the special case of �1� with �=1. Ther-
modynamic quantities converge rapidly with N when there is
substantial population in excited states, but are limited by
finite-size gaps at low T. The exact10 ��0,�� is consequently
essential for our analysis.

In this paper, we apply H�t ,J� in �1� to partly filled bands
with strong correlations using the real-space basis of valence
bond �VB� diagrams.25 The t-J model approximates a Hub-
bard model with U�4t, but is computationally less demand-
ing because np=2 sites are excluded. The restriction to finite
systems has implications for the atomic limit, as shown in
Sec. II. Spin-charge separation fails for periodic boundary
conditions �PBC�, but is preserved for open boundary condi-
tions �OBC�. Sec. III presents the spin susceptibility as a
function of J / t, band filling, and size. The TTF-TCNQ sus-
ceptibility at T�100 K and constant spacing along the stack
is modeled with t=0.15 eV and J / t=0.35, in the range sug-
gested by Torrance et al.3 Thermal expansion is included via
a linear t�T� dependence to model ��T� at ambient pressure.
We discuss in Sec. IV the origin of orbital contributions to
��T�.

II. ATOMIC LIMIT OF FINITE 1D HUBBARD MODELS

We consider H�t ,0� with real transfers t in �1� and J=0 in
the atomic limit �U / t→
�. There are Ne=2R electrons or
holes on N sites at the density �=2R /N�1. The number of
ways to distribute 2R charges on N sites gives the orbital
degrees of freedom,

W�2R,N� =
N!

�2R�!�N − 2R�!
. �3�

Each orbital state has spin degeneracy of 22R. Spin-charge
separation has long been recognized at �=1, where
W�N ,N�=1 and a linear HAF describes the spin excitations
of the Hubbard model, and in extended 1D systems with �
�1, where Lieb and Mattis7 showed that the ground state
�GS� is a singlet for any spin-independent interaction be-
tween electrons. Spin-charge separation is retained in the
atomic limit of finite Hubbard models with open boundary
conditions �OBC�, but not with periodic boundary conditions
�PBC�. This has the important consequence of requiring
OBC for our primary goal of using finite systems to model
extended chains.

We summarize OBC results before turning to PBC. In the
ferromagnetic �FM� subspace with parallel spins and S=R,
the constraint np�2 is enforced by the Pauli exclusion prin-
ciple, independently of electron-electron interactions. We
have a Hückel chain for spinless fermions with single-
particle energies, in units of t=1,

��r,N� = − 2 cos��r/�N + 1��, r = 1,2, . . . ,N . �4�

The corresponding normalized eigenfunctions are linear
combinations of site functions
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�r� = �
p

cpr�p�, cpr = �2/�N + 1� sin��pr/�N + 1�	 . �5�

The band is filled to r=2R in the GS of the FM subspace.
The charge density at site p is

�p = �
r,filled

cpr
2 . �6�

Alternate symmetry relates the orbital r to the orbital r�=N
+1−r with �r�=−�r and cpr�

2=cpr
2 at all sites p. The quarter-

filled chain consequently has uniform �p=1/2.
In subspaces with S�R, the exclusion of np=2 is en-

forced by U / t→
. We use OBC to take advantage of the
fact that it is then possible to order7 fermions in 1D. If 2R
fermions are placed on a lattice such that p1� p2� ¯p2R,
the order is preserved under nearest-neighbor electron trans-
fer when np=2 sites are excluded. For each choice of occu-
pied sites, we construct eigenstates of S by forming linear
combinations of sites with spin � and . The number of
representation of a given S, each with 2S+1 values of Sz, is26

N�S,2R� =
�2S + 1��2R�!

�R − S�!�R + S + 1�!
, S = 0,1, . . . ,R . �7�

Valence bond �VB� diagrams �k� are many-electron functions
in real space with fixed S.25 Since OBC preserves the order
p1� p2� . . .p2R, the connectivity of VB diagrams is also con-
served. It follows that each N�S ,2R� representation of total S
in �7� leads to an identical matrix H�t ,0�, and that H�t ,0� is
the same for all S. The single-particle energies ��r ,N� in �4�
lead to 2R-fermion states on filling 2R different levels. Pre-
cisely the same 2R-fermion energies and charge distributions
are found for any S in the limit U / t→
. The OBC result is
general, since the matrix representation of H�t ,0� in the VB
basis is straightforward for any N and 2R=Ne.

For PBC, the single-particle energies in the FM subspace
are

��k,N� = − 2 cos k . �8�

Translational symmetry leads as usual to wave vectors k in
the first Brillouin zone,

k = 0, ± 2�/N, ± 4�/N, . . . ,� �9�

for even N. The GS for 2R spinless fermions is immediately
seen to be twofold degenerate, with kF= ±��, in contrast to
the nondegenerate GS under OBC. Transfer between sites 1
and N spoils the ordering of fermions. As a consequence, VB
diagrams with S�R and different pairing patterns are mixed
in the atomic limit, and the eigenvalues of H�t ,0� depend on
S in finite PBC systems.

Subspaces with S�R have one or more reversed spins.
The following analysis came out of direct VB solution of
finite PBC systems that were originally run to check pro-
grams for partly filled bands. 2R-fermion states with S�R
have expanded unit cells of 2RN in real space. We introduce
a common phase factor � for all fermions

� = 0, ± �/NR,… . ,�/N . �10�

The 2R values of � give a wave vector k when multiplied by
2R=Ne. The angular momentum problem is to construct
eigenstates of S and Sz. The function �2R ,2R−1� has Sz
=2R−1 and �=0. The 2R−1 functions with S=Sz=2R−1
have the remaining values of � and single-particle energies
−2 cos�k− ���� in �8�. The GS energy per site of 2R fermions
depends on �, and hence on S,

�0��,N,�� = −
2

N
�

k=R−1

R

cos
2�k

N
− ����

= −
2 sin����cos��/N − ����

N sin��/N�
. �11�

The band limit of −2 sin���� /� is recovered for spinless
fermions, independently of �, and the extended system has
spin-charge separation, but its wave functions are not acces-
sible. The S�R eigenstates are correlated 2R-electron func-
tions in terms of translational symmetry that nevertheless
have a single-particle spectrum on including the phase �.

The minimum of �0 is at �=� /N for finite N and ��1;
the 2R-fermion GS is nondegenerate with total k=0. The GS
with �=0 has higher energy by � sin����/N. In agreement
with the Lieb-Mattis theorem,7 the absolute GS is a nonde-
generate singlet for all the 2R ,N combinations that we
solved directly. Finite PBC systems have W�2R ,N� orbital
excitations, as expected. The unexpected result was that all
W�2R ,N� excitations are quantitatively related to the single-
particle energies, −2 cos�k− ����, in which each of the
N�S ,2R� representations in �7� has one of the phases � in
�10�. We did not know in general how many times a given �
appears for each S, aside from the S=R and R−1 cases. The
atomic limit still reduces to free spinless fermions, as
recognized7–9 in extended systems, but the single-particle en-
ergies of finite PBC systems with ��1 have a residual de-
pendence on S. There is no spin-charge separation in the
atomic limit of finite PBC systems. We have solved finite
systems whose orbital degeneracy W�2R ,N� and number of
representations N�S ,2R� are each �100. Table I lists values
of � in four- and six-electron systems with variable even N
up to 12. The single-particle energies of 2R-fermion states
depend on S through � in �10�, with the 22R spin states with
the lowest orbital energy distributed over the R+1 values of
�0�� ,N ,�� in �11�. The S dependence of � is entirely due to

TABLE I. Values of N� /� in Eq. �10� found by solving H�t ,0�
with periodic boundary conditions for 2R=4 or 6 electrons on N
=6, 8, 10, or 12 sites. The degeneracy of each � is given in
parenthesis.

S 4/N 6/N

0 0, 2 0, ±1, 3�2�
1 ±1, 2 0�2�, ±1, ±2�2�,
2 0 ±1, ±2, 3

3 — 0
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electron transfer between sites 1 and N. Since we are inter-
ested in extended t-J models, we use OBC for real transfers
in �1� from now on.

III. SPIN SUSCEPTIBILITY OF THE T-J MODEL

Virtual transfers J in �1� do not change the charge or spin
degrees of freedom. The eigenvalue problem for H�t ,J� in-
volves a series of matrices whose dimensions are
W�2R ,N�N�S ,2R� for S=0,1 , . . . ,R. To minimize end ef-
fects, we use both PBC and OBC for virtual transfers, but
only OBC for real transfers. Reflection symmetry about the
center reduces the dimensions by about a factor of 2. Matri-
ces up to 8,000 suffice for the finite systems discussed below.
All thermodynamic quantities are obtained from the partition
function,

Q�R,N,� = �
S=0

R

�
r=1

�2S + 1�exp�− ESr� , �12�

where =1/kBT and ESr is the excitation energy from the
singlet GS to the rth state with spin S. The absolute suscep-
tibility per mole of electrons or holes is

�M��,N,� =
NAg2�B

2

3�NQ
�
S=1

R

S�S + 1��2S + 1��
r=1

exp�− ESr� ,

�13�

where NA is Avogadro’s number, �B is the Bohr magneton,
and the g value of organic radicals is close to 2.00236, the
free-electron value.

The convergence of ��T� with N has been studied in detail
for HAF chains with �=1. Figure 2 presents similar ��T�
results as a function of kBT / t for density �=2/3 and small
J / t=0.15 close to the atomic limit �U / t=40/3�, where finite

t /U and J=2t2 /U in �2� give a 2.7% correction to ��0� at
�=1. To conserve total exchange we take J for PBC �shown
as solid lines� and J�=JN / �N−1� for OBC �shown as dashed
lines�. Good convergence is found even in small systems for
T above the ��T� peak. Near the peak the OBC and PBC
curves converge from above and below respectively to an
accuracy of about 5%. The exact10 ��0� of the infinite Hub-
bard model with J�2/3� / t=0.12 in �2� is shown as an open
circle. The HAF results in Fig. 2 are chosen to match at T
=0, as shown for the extended chain and to illustrate conver-
gence for eight spins with PBC or OBC at and above the
��T� peak. The temperature dependence of ��T� is clearly
greater at �=2/3 than at �=1. The susceptibilities become
equal for kBT�J���, merging as C / �T+����	; the Curie con-
stant C=NAg2�B

2 /4kB is the same for an equal number of
spins, while the Weiss constant ���� is related to J.

We note that while ��0,�� is exact to leading order in
t /U, linear interpolation to ��0,�� is convenient but not cor-
rect. For the HAF chain, the slope of d��T� /dT diverges27 at
T=0 and ��T� is about 10% higher27 at low T�J /10kB than
the linear interpolation of Bonner and Fisher.22 The 1D Hub-
bard model has a similar increase of about 10% between
��0,�� at U=8t and 0.5���1 in Fig. 2 of Ref. 10 and the
lowest T�0 points in Fig. 6 of Ref. 20. The T�0 regime is
of theoretical interest for Heisenberg, Hubbard, or t-J mod-
els, but is not accessible in TTF-TCNQ due to the metal-
insulator transition with larger unit cell and sharply reduced
��T� below Tc=54 K.

Larger J / t=0.35 �U / t�5.7� is shown in Fig. 3 for �
=2/3, again with both PBC and OBC for virtual transfers
and with ��0� fixed by J���. Increasing J reduces ��T� as
expected and shifts the maximum to higher T. Finite t /U
now gives a 13% correction to ��0,1� and the connection to
t /J and Hubbard models is approximate, since np=2 sites are
not excluded entirely at U / t�5.7. The trends seen in Fig. 2
persist for increased exchange, both in terms of convergence
and of orbital enhancement.

The � dependence of ��T� versus kBT / t is shown in Fig. 4
for six electrons on 6�N�12 sites and PBC for virtual
transfers. Equal ��0,�� follows on choosing J to give equal
J��� in �2�. Hence J doubles between �=1 and �=1/2. Simi-
lar results, not shown, are found at larger J� t /2. We did not

FIG. 2. Spin susceptibility per electron of t-J oligomers at den-
sity �=2/3 with open boundary conditions for t in Eq. �1�. Solid
and dashed lines have periodic and open boundary conditions for
small J / t=0.15 �U / t=40/3�. The open circle is the exact ��0� of
the infinite chain, from Ref. 10. The HAF curves are for the infinite
chain with J in Eq. �2� adjusted to give the same ��0�. The N=8
spin chains with periodic and open boundary conditions illustrate
size convergence.

FIG. 3. Same as Fig. 2 for larger J / t=0.35 that gives to U / t
�5.7.
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pursue the weak dependence on J / t. The 6/N curves also
merge as C / �T+����	 at high temperature.

Figures 2–4 show deviations from HAF behavior with
decreasing density that we attribute to orbital contributions.
Previous studies at U�4t found Heisenberg-like suscepti-
bilities. The quantum Monte Carlo study of Hirsch and
Scalapino21 took U=4t, �=1/2, and focused on 2kF, 4kF
instabilities. The ��T� results in Fig. 4�b� of Ref. 21 were fit
near the peak to an HAF with an effective J given by �2�,
after noting scatter in the data and additional approximations
at T=0. An HAF approximation to the �=1/2 curve in Fig. 4
would be about 20% too high at T=0 and 20% too low
around the peak. Such a fit was reasonable at the time and
consistent with expected HAF behavior. The thermal Bethe
ansatz �TBA� study of Ha17 focused on the string hypothesis
and on high-T expansions of various quantities at U=8t, in-
cluding ��T ,�� per site curves in Fig. 4�a� of Ref. 17. The
peak region is poorly approximated, as seen by comparing
�=1 to the HAF. Usuki et al.19 present improved TBA results
for ��T ,�� per site at U=8t and 12t in Figs. 1�b� and 1�c� of
Ref. 19 that are within a few percent of the QTM results of
Jüttner et al. at U=8t and 0.5���1 in Figs. 5 and 6 of Ref.
20. We performed N=10 calculations at U=8t and 12t for
the same densities. The ��T ,�� peaks have similar positions
and their magnitudes are about 10% above QTM, the most
accurate method. Since the N=8 HAF maximum at U / t
→
 and constant J=2t2 /U is almost quantitative in Fig. 2,
the 10% difference between t-J and Hubbard models around
the peak probably reflects finite U / t more than finite N. The
orbital enhancement per spin shown in Fig. 4 down to �
=1/2 is 15% greater than that inferred from Fig. 6 of Ref.
20.

The ��T� data for TTF-TCNQ in Fig. 5 are from Klotz et
al.,5 who note that the absence of a maximum below 400 K
is the only difference between their measurement and that of
Torrance et al.3 in Fig. 1. The estimated �smoothed� suscep-
tibility at constant spacing b along the stack is from Fig. 5 of
Ref. 5. Constant b is the best available approximation to
constant volume5 and hence to constant parameters. The cal-
culated curve in Fig. 5 is based on �13� for six electrons or

holes on ten sites with t=0.15 eV, J / t=0.35, and g=2.0023.
The linear interpolation shown by a dashed line is to ��0� for
the extended system with J�0.6� in �2�. The fit is approximate
but fairly demanding, since an absolute molar quantity is
found. We have not sought the best fit for constant b, where
pressure corrections are roughly approximated,5 in order to
treat accurate ��T� data at ambient pressure. Constant b then
refers to T�100 K at 1 atm.

The crystal structure of TTF-TCNQ at different
temperatures28 gives quantitative information about thermal
expansion and b�T�, but leaves open the variation of t�T�. A
linear dependence is a typical first approximation. Based pri-
marily on TTF-TCNQ conductivity data, Conwell29 esti-
mated a change in t of �10±5�% over a 200 K interval from
100 to 300 K. We take a 7% change in t per 100 K and note
that J / t=2t /U also changes by 7% per 100 K at constant U.
The resulting ��T�, calculated at 50 K intervals, is shown in
Fig. 5 by circles with arrows. They match the measured sus-
ceptibility at ambient pressure. The experimental procedure5

is just the reverse: accurate data at 1 atm are corrected at
three pressures to constant b in order to estimate the solid
line in Fig. 5. An assumed linear t�T� also implies increased
t and J / t below 100 K, with a 14% decrease in ��0�, but the
phase transition at 54 K requires a model with modulated
rather than uniform spacing.

The TTF-TCNQ fit in Fig. 5 captures the temperature de-
pendence of ��T�. It is not quantitative, however, in view of
the difficulty of constant-volume measurements, the limita-
tions to finite N seen in Figs. 2 and 3, and the approximation
of linear t�T�. Moreover, we have used the same 1D t-J
model for electrons on the TCNQ stack and holes on the TTF
stack, and we have not considered Coulomb interactions ei-
ther within or between stacks. The fit is not unique. Small
compensating changes in t and J / t lead to closely similar
curves. As seen from the constant b data5 and the present fit,
at least half of the observed ��T� increase between 100 and
400 K is due to thermal expansion. Orbital contributions ac-
count for most of the rest. Our ��T� analysis supports the
parameter values estimated by Torrance et al.3 The band
width of 4t=0.60 eV at 100 K is typical for �-� stacks in
organic conductors, while U=2t�J / t�=0.86 eV is indicative
of strong correlation.

FIG. 4. Spin susceptibility per electron for six electrons on N
sites and periodic boundary conditions for t �J� in Eq. �1�. The
choice of J��� in Eq. �2� yields identical ��0� in infinite chains,
shown as the open circle. Dashed lines are linear interpolations.

FIG. 5. Molar spin susceptibility, Eq. �13�, of six electrons on
ten sites with t=0.15 eV and J / t=0.35 in Eq. �1�. The dashed line is
a linear interpolation to ��0�, shown by the open circle. The data
and constant b curve are from Ref. 5. Circles at 50 K intervals are
calculated with linear t�T� that decreases by 7% per 100 K increase,
as discussed in the text.
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Numerical solutions of finite t-J models contain addi-
tional information that bears on the remarkable properties7–9

of spinless fermions at J=0 and on phase separation11–15 at
large J of the GS into regions of filled and empty sites.
Virtual transfers in �1� clearly amount to an attractive inter-
action between singlet-paired spins. Less obviously, the ex-
clusion of two electrons at any site leads to effectively repul-
sive interactions for real transfers, even though the J=0
spectrum is strictly given by the single-particle energies
��r ,N� in �4�. Electron transfer is limited to adjacent occu-
pied and empty sites. Hence, electron configurations with the
maximum number of neighboring empty and filled sites are
strongly favored at J=0. Electrons that are largely kept apart
at J=0 condense into a single cluster or island at large J.

More quantitatively, we consider sites 1 and N to be
neighbors in finite systems with OBC for t and PBC for J.
We solve H�t ,J�, find the GS and compute the weight
f�J / t ,2R /N� for having 2R adjacent electrons in the singlet
GS or, alternatively, N-2R adjacent empty sites. Figure 6
shows f�J / t ,2R /N� for �=2/3. Since there are W�N ,2R�
charge degrees of freedom and N ways to have a single clus-
ter, the statistical probability is N /W�N ,2R�, or 40% for the
4/6 and 11% for 6/9, as shown by dashed lines. The actual
weights are much smaller at J=0 and much larger at J� t.

The properties of t-J models with larger J are a separate
topic.11–15 The GS of the infinite chain separates with in-
creasing J into regions of filled and empty site. The energy
per site in the phase-separated regime is exactly −2J�ln2. To
treat small J, we partition the infinite chain into N-site seg-
ments with density � by deleting t and J in �1� between every
Nth neighbor. We find the GS of a segment with specified t
and J. The product of GS functions is a trial function for the
infinite chain with at most �N-spin clusters. The variational
energy is slightly lower than the segment GS because virtual
exchange between sites N and N+1 lead to first-order cor-
rections to the energy.30 The variational energy per site is less
than −2J�ln2 for small J. It becomes equal at Jc�2R /N�, as
shown by arrows in Fig. 6, and is above the spin chain for
larger J. The crossovers Jc�2R /N� correspond to phase sepa-

ration. They extrapolate30 smoothly to Jc / t=1.72 �dotted ar-
row� for the infinite chain when plotted against 1 /N. Since
the infinite cluster is unstable for J�Jc, its weight in Fig. 6
is a unit step function at Jc / t=1.72.

At �=2/3, the three variational functions in Refs. 12–14
and the numerical analysis in Ref. 15 all lead to phase sepa-
ration at 2J / t=3.4–3.5 within the accuracy of reading
graphs, in complete agreement with our result. The varia-
tional functions are entirely different approximations for in-
finite t-J models with arbitrary � and parameters that govern
attraction or repulsion between fermions. The most elaborate
trial function14 focuses on the spin-gap state at small � and
on regions of attractive and repulsive Tomonaga-Luttinger
liquids. The numerical analysis15 of phase separation is based
on compressibility, which is found as the curvature of the GS
energy with respect to N of N-site t-J models with PBC.
Although phase separation at �=2/3 is not demanding, the
consistency of Fig. 6 with other approaches is another check
of our finite-size treatment.

IV. DISCUSSION

As noted in the Introduction, the spin susceptibility
��0,�� at T=0 of partly filled Hubbard models is propor-
tional to 1/J��� to leading order in t /U. Orbital enhancement
of ��T ,�� for U�4t can be extracted from previous
studies,19–21 but was not pursued. Since an effective Hamil-
tonian for virtual exchange in the orbital GS leads9 to an
HAF chain with J���, the first question to consider is why the
calculated ��T ,�� of t-J models with U�4t in Figs. 2–5
deviates from HAF chains with the same ��0�. The reason is
that orbital degrees of freedom provide many additional ther-
mally accessible states around kBT�J���.

The simple system of four electrons and six sites is suffi-
cient to illustrate the general case. There are 15 orbital states
and the r=1–4 levels in �4� are filled in the atomic limit. The
24=16 spin states comprise one quintet, three triplets, and
two singlets. Figure 7 shows the lowest four orbital states at
J=0. For the general case, the smallest orbital gap is the
excitation from r=2R to 2R+1, which according to �4� is

E1�2R,N� = 4t sin���2R + 1/2�
N + 1

sin� �

2�N + 1� . �14�

As expected, E1 decreases as 1/N at constant �=2R /N. The
small gap between E2 and E3 is a general result, and �
=1/2 systems with 2R electrons have E2=E3 by symmetry.

The evolution of the PBC spectrum with increasing J / t is
shown in Fig. 7. Virtual transfers J split the spin degeneracy.
The S=2 state �dotted line� of parallel spins is not shifted in
this case, while the S=1 states �dashed lines� and S=0 states
�solid lines� are stabilized. The GS orbital spectrum is accu-
rately given by four spins with PBC, whose simple spectrum
has singlets at −2J, −6J and triplets at −2J, −2J, −4J. The
degeneracy and energy differences in E0 are immediately
apparent in Fig. 7. Similar patterns are discernible in E1, E2,
or E3 for J�0.05t, but deviations appear with increasing J
and there is extensive mixing of states by J= t /4. For sim-
plicity, we have omitted triplets and singlets that are derived

FIG. 6. As a function of J / t, the ground state weight
f2R�J / t ,2R /N� of having 2R adjacent electrons in N-site t-J models
at density �=2/3. Dashed lines are statistical at J=0 for 4 /6 and
6/9 as discussed in the text. Arrows at Jc�2R /N� / t�1 mark cross-
overs between the variational ground state energy of finite segments
and the exact ground state energy of the infinite spin chain. The
dashed arrow at Jc / t=1.72 is the extrapolated crossover of the in-
finite chain discussed in the text.
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from orbital energies greater than E3, but Fig. 7 includes
mixing with such states. The full density of states increases
with energy. Although the GS manifold is fully consistent
with the Klein-Seitz analysis,9 deviations from HAF behav-
ior are certain with increasing T as more excited states be-
come thermally accessible.

Orbital mixing increases sharply with N in systems with
��1 because the excitation energy �14� goes as 1/N while
the stabilization of spin states increases as �N. For example,
the �=8/12 version of Fig. 7 has almost half as large E1 at
J=0 and 64 spin states for each orbital energy. Remarkably,
Shiba’s exact10 ��0,�� for the infinite Hubbard model
matches to leading order in t /U the Klein-Seitz9 effective
J���. For any finite T, however, orbital contributions in sys-
tems with ��1 increase ��T� compared to an HAF. Orbital
contributions increase with decreasing density in Fig. 4 and
roughly double the maximum spin susceptibility at �=1/2.

We noted in connection with ��T� in Fig. 5 the difficulties
of comparing experiment and theory in systems with sub-
stantial thermal expansion. In contrast to evidence for orbital
contributions to the susceptibility, the ��T� analysis of TTF-
TCNQ is approximate. Quite aside from interchain interac-
tions whose role has been discussed in both conjugated poly-
mers and organic solids with stacked structures, Coulomb
interactions between sites cannot be neglected in partly filled
bands. A nearest-neighbor interaction V along the stack leads
to an extended Hubbard model, while long-range Coulomb
interactions correspond to a Pariser-Parr-Pople model.

Finite V�0 is an explicit repulsion between electrons on
adjacent sites. The generalization of the t-J model �1� to

finite V does not increase the difficulty of numerical solu-
tions. It adds an extra parameter, however, and spoils the
connection to the exact ��0� of Hubbard models with
U�4t that we have exploited above. At fixed t and J� t /2,
we find ��T� to increase systematically with V / t=1,2, and 4
for all � in Figs. 2–5. The modest increase for V / t=1, for
example, yields alternative 6/10 fits for the TTF-TCNQ sus-
ceptibility with slightly different t and J. We interpret the
small increase with V as another indication that t already
keeps the electrons apart when np=2 sites are excluded and J
is small. The AF exchange constant J also depends on V
through the energy of the virtual singlet state, which is
U-V at �=1. Such dependence is difficult to identify in the
t-J model, however, since t and J are independent param-
eters.

Although the intense scrutiny of TTF-TCNQ has abated,
it remains a prototypical organic conductor of current
interest.2,31,32 The TTF and TCNQ stacks have characteristic
transitions at low temperature. Hubbard or extended Hub-
bard models with different parameters for each stack are
likely. Indeed, photoelectron data of the surface has been
interpreted32 in terms of small U for one stack, large U for
the other. Similar ��T� is inferred above 60 K in crystals
from the average g-tensor of the exchange-narrowed electron
paramagnetic resonance line,33 but different ��T� and band-
widths are inferred from 13C NMR spectra.34 We have not
differentiated between TTF and TCNQ stacks aside from
checking that similar t-J parameters in two models lead to
similar total ��T� curves.

The proper extended Hubbard model and its parameter
values are still open for TTF-TCNQ. It is plausible in ��1
systems to associate transport as usual with t in partly filled
bands and magnetism with strong correlation U�4t. Such a
comprehensive analysis of magnetism, transport, and other
properties is not yet available. Conversely, now that the ��T�
fit in Fig. 5 has been obtained with parameters in the range
suggested by Torrance et al.,3 a comparably good fit must be
produced by small U models. More generally, direct solution
of finite systems is a promising approach to the susceptibility
of extended 1D systems with low-energy spin excitations.
We have shown that equal ��0,�� per electron given by J���
in �2� lead to different ��T ,�� around kBT�J��� for ��1.
Hence the spin susceptibility of partly filled bands with U
�4t cannot be modeled by a Heisenberg AF or a Hubbard
model with �=1.
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FIG. 7. Evolution with increasing J / t of the low-energy t-J
spectrum for four electrons on six sites. The atomic limit �J=0�
given by Eq. �4� has 16-fold spin degeneracy for each level. Solid,
dashed, and dotted lines represent S=0, 1, and 2, respectively. The
spin energies derived from E0 are given by a Heisenberg antiferro-
magnet, as discussed in the text. Spin energies of E1, E2, and E3

show deviations from HAF behavior and mixing with increasing
J / t.
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