
Spectral density of the Hubbard model by the continued fraction method

R. Hayn,1 P. Lombardo,1 and K. Matho2

1Laboratoire Matériaux et Microélectronique de Provence, Faculté St. Jérôme, Case 142, F-13397 Marseille Cedex 20, France
2Centre de Recherches sur les Très Basses Températures, Laboratoire associé à l’Université Joseph Fourier, CNRS, Boîte Postale 166,

F-38042 Grenoble Cedex 9, France
�Received 27 April 2006; revised manuscript received 27 July 2006; published 30 November 2006�

We present the continued fraction method �CFM� as a microscopic approximation to the spectral density of
the Hubbard model in the correlated metal phase away from half filling. The quantity expanded as a continued
fraction is the single-particle Green’s function. Leading spectral moments are taken into account through a set
of real expansion coefficients, as known from the projection technique. Further stages are added to the con-
tinued fraction, with complex coefficients, thus defining a terminator function. This enables us to treat the
entire spectral range of the Green’s function on equal footing and determine the energy scale of the Fermi
liquid quasiparticles by minimizing the total energy. The solution is free of phenomenological parameters and
remains well defined in the strong-coupling limit, near the doping-controlled metal-insulator transition. Our
results for the density of states agree reasonably with those from several variants of the dynamical mean-field
theory. The CFM requires minimal numerical effort and can be generalized in several ways that are interesting
for applications to real materials.
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I. INTRODUCTION

The Hubbard Hamiltonian1 is certainly the most important
model in the field of strongly correlated electrons. The spec-
tral function for the addition or removal of a single electron
near half filling serves as a paradigm for the excitation spec-
trum of highly correlated electrons in the vicinity of a Mott
transition. It was a great success of the dynamical mean-field
theory2 �DMFT� to connect the high- and low-energy parts of
the spectral function in a nonperturbative solution for arbi-
trary interaction strength. In particular, it was confirmed that
the coherent low-energy excitations in the metallic phase fol-
low the same dynamics as the Kondo resonance in the
Anderson impurity model, the other generic Hamiltonian for
correlated electrons that is much better understood.3

The analog to the Kondo resonance in the impurity model
is a quasiparticle �QP� band in the lattice model. Both
straddle the chemical potential �, i.e., the lowest excitations
are gapless. In the strong-coupling limit, the spectral weight
Z of the QP band is small, relative to two sidebands, further
removed from �. These sidebands are called the Hubbard
bands because they are roughly reminiscent of the Hubbard I
solution.1 In the doping-controlled regime,4 one sideband
always overlaps with the QPs; the other represents true
high-energy excitations across the correlation gap.

Hubbard I is an approximation close to the atomic limit,
but nevertheless taking exact spectral moments of the itiner-
ant propagator up to the second order into account. It can be
considered the ancestor of the projection technique5 which
systematically incorporates spectral moments of higher or-
der. These approximations have severe deficiencies in the
low-energy sector, unless the moment series can be effec-
tively summed up. In particular, generating a third pole in the
spectral function from the high-energy side alone leads to
uncontrolled results.

When the density of states, as obtained within the DMFT,
is resolved with respect to the wave number k, more details

about the coexistence of this Kondo resonance with atomic-
like features in a lattice system are revealed. The lowest
excitations are true Fermi liquid QPs. �i� The finite density of
states at �=� corresponds to long-lived excitations. �ii�
These are located in k space on a Fermi surface that satisfies
Luttinger’s theorem.6 �iii� As a function of the distance k
−kF from the Fermi surface, the excitation energy has a lin-
ear, strongly reduced dispersion. �iv� The damping is qua-
dratic in k−kF but strongly enhanced, meaning that the linear
and quadratic terms are of the same order at a very small
energy scale, the coherence energy �*. The two atomiclike
excitations turn out to be strongly damped, even when k is on
the Fermi surface. Their peaks disperse with k but spectral
tails spread over the entire bandwidth.

The DMFT thus unites atomic and itinerant features in a
nonperturbative approximation. It is exact only in dimension
d=�. As a generic scenario, it is expected to hold down to
d=2, albeit with the caveat that the DMFT suppresses addi-
tional structure due to bosonic couplings. Earlier approxima-
tions at finite d already yielded7,8 QPs and established a con-
nection to the Kondo effect.3 The high prestige of the DMFT
is due to its ability to produce a self-consistent, numerically
manageable approximation to the spectral function for all
energies, in particular to the parameter Z that governs the
low-energy sector. This has opened a path to realistic mod-
eling of correlated materials beyond the Hubbard model in
such methods as the local density approximation
�LDA�+DMFT.9

It is nevertheless desirable for several reasons to pursue
alternative methods in parallel. First, a k-independent self-
energy, which is the proper result at d=�, does not allow one
to explain phenomena that depend on the different symmetry
directions in the Brillouin zone, especially in high-
temperature superconductors and other low-dimensional sys-
tems. Cluster extensions of the DMFT go in the direction of
lifting this restriction,10 but these generalizations are numeri-
cally even more demanding than the DMFT itself. The
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precise solution of a many-body Kondo problem is required
at each iteration step toward self-consistency. In practice,
when designing the “impurity solver,” a trade-off exists be-
tween improving the low-energy, low-temperature solution
and exactly satisfying global sum rules. Such numerical
problems are presently a bottleneck for extensions of the
DMFT to larger clusters or to LDA+DMFT with charge
transfer into ligand bands. A variational aspect was recently
found, which may allow circumvention of some of the
numerical problems.11

In this paper, we present a continued fraction method
�CFM� and implement it for the doping-controlled metallic
regime near the Mott transition. Similar to other recent
attempts,12–16 we start from the projection technique, applied
to the k-resolved single-particle Green’s function. The nota-
tions are introduced in Sec. II. In Sec. III, the connections
between the moment and continued fraction expansions as
well as the Padé approximant are established. In the Padé
approximant, qualitatively important features of the macro-
scopic system, such as damping, are missing. They can only
be captured by resummation of the continued fraction to in-
finite order. The concept of a terminating function, by which
an approximate resummation is achieved, is common to
many methods based on the continued fraction. As a general
scheme, we define our CFM by allowing only such terminat-
ing functions that preserve the structure of a truncated con-
tinued fraction, but with complex coefficients. Useful recur-
sion relations, that are properties of Padé approximants, can
thus be carried over and the solution for the Green’s function
can be constrained by high- as well as low-energy sum
rules.

Previous solutions obtained with this ansatz13 were partly
phenomenological, because the strong-coupling renormaliza-
tion Z needed to be inferred from a separate Gutzwiller ap-
proximation, or else was left open for fitting to
experiments.17,18 A closed solution is now achieved by mini-
mizing the total energy in the presence of sum rules, for
which the necessary self-consistency loops are introduced.
The self-consistent Z falls below the Gutzwiller value and
has a doping dependence close to that for the exact Kondo
scale.19 This is now a true microscopic approximation,
depending only on the parameters in the Hamiltonian.

In Secs. IV,V, and VI we have investigated the terminating
functions that correspond to adding one or two stages with
complex coefficients to the continued fraction. We show how
the Fermi surface singularity, the enclosed Luttinger volume
in k space, and the Fermi liquid damping can be modeled
rigorously. We assess the quality of our approximations
by comparing the density of states with DMFT results
for two variants of the impurity solver, namely, the numerical
renormalization group20 �NRG� and the noncrossing
approximation �NCA�.21

The success of the CFM with respect to the Hubbard
model allows us to draw some optimistic conclusions
about possible generalizations toward more realistic models,
describing correlation effects in a multiband electronic
environment. This will be outlined as part of the conclusions.

II. HAMILTONIAN, GREEN’S FUNCTION, AND
GENERALITIES ABOUT CONTINUED FRACTIONS

The Hubbard model for a grand canonical ensemble of
electrons on a lattice of N sites �N→�� is written in the
usual notation

Ĥ = H − �N̂ = �
k,�

�Ek − ��ck�
† ck� + U�

i

ni↑ni↓. �1�

The kinetic energy consists of itinerant Bloch states with
energies Ek and wave number k, running through one Bril-
louin zone. The bandwidth is 2D and, when not specified
otherwise, D is used as unit of both energy and frequency
��=1�. We formulate the method for an arbitrary density of
Bloch states. Numerical examples later on will be calculated
for a semielliptic density.

The chemical potential � is self-consistently determined
to satisfy the condition

n = �N̂�/N = 2m = �
�

�ck�
† ck�� , �2�

where the filling factor n �0�n�2� is part of the input. The
chemical potential for the U=0 limit is designated as �0. For
U�0, the right hand side is calculated with our method. The
overbar and the angular brackets signify the Brillouin zone
average and ensemble average, respectively. The filling
factor per spin direction in the spin-degenerate phase is
m=n /2.

We approximate the advanced single-particle Green’s
function

G�k,�� = i�
−�

0

ei�t��ck��t�,ck�
† �0��� , �3�

from which the momentum distribution �ck�
† ck�� and other

observables are calculated. The spin index is dropped in the
unpolarized phase. The time-dependent fermionic destruction

operator ck��t� is in the Heisenberg representation with Ĥ
and the square brackets indicate the anticommutator. The
complex frequency � has � as origin. Asymptotically, for
large �, we have G�k ,��	1/�. The coefficient 1 reflects the
moment M0=1 or spectral norm, as required by the Pauli
principle. For this relation between the leading coefficient
and the norm to remain valid in an approximation, it is nec-
essary and sufficient to conserve the Herglotz property. In the
case of the advanced Green’s function, it means that the re-
lation Im G�k ,��	0 must be obeyed throughout the entire
half plane Im �
0. The physical meaning of the Herglotz
property is causality and it automatically entails the exis-
tence of Kramers-Kronig relations between the real and
imaginary parts. A great advantage of our method is the pos-
sibility to make straightforward evaluations along the real
axis. Since this limit has to be approached from within the
domain of analyticity, the notation �=�− i0+ with real en-
ergy �=E−� is introduced. The k-resolved spectral function
is
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A�k,�� =
1

�
Im G�k,� − i0+� . �4�

At U=0 it has a single sharp peak at the excitation energy

�k = Ek − �0  �k − kF� , �5�

which also serves to measure distance in k space, at least in
the vicinity of the Fermi surface.

The continued fraction expansion, on which our method is
based in a crucial way, has already a long tradition in solid
state physics, in the one-electron problem with disorder,23 as
well as in the many-electron problem.24 The continued frac-
tion is generated by various procedures like tridiagonaliza-
tion, recursion, or Lanczos methods. The Hubbard I Green’s
function is the simplest example of a continued fraction that
has been truncated at low order. The exact Green’s function
for the Hubbard model on finite clusters is a continued frac-
tion which naturally ends at very high order. The continued
fraction for the infinite system does not end. Properties of the
thermodynamic limit, such as damping due to electron-
electron scattering, emerge only after resummation of the
continued fraction. Approximate resummation is achieved by
the terminating function, an analytic function which also has
the Herglotz property.

A well-chosen terminator is thus expected to bring two
improvements to the approximation for the Green’s function
in dimensions d�2. �i� From a set of discrete, more or less
intense, and more or less densely spaced Dirac peaks the
final shape of the continuous spectral density emerges �see
Ref. 25 for tight-binding-like models and Ref. 26 for
strongly correlated electrons�. �ii� A Fermi surface disconti-
nuity emerges in the momentum distribution �ck�

† ck�� at tem-
peratures below the strong-coupling energy scale �*. The
Fermi liquid discontinuity and the correct Fermi surface vol-
ume will be incorporated in our ansatz. This means that we
take the Luttinger theorem for granted and use it as a prin-
ciple, even for strong coupling where there is no rigorous
proof. The energy �* then comes out as part of the
self-consistent solution.

III. HIGH-ENERGY PART

The first moment or center of gravity of G�k ,�� is

�1 = Ek + mU − � . �6�

It disperses like the unrenormalized Bloch energy Ek.
In models with a more general interaction, a k-dependent
Hartree-Fock shift is also present which, for on-site repul-
sion, reduces to a constant Hartree shift mU. The
self-consistent � is the only unknown.

The high-energy expansion about the center of gravity is

G�k,�� =
1

� − �1
+

M2

�� − �1�3 +
M3

�� − �1�4 + ¯ . �7�

Its coefficients

M� = �
−�

�

d��� − �1��A�k,��, � = 2,3 . . . , �8�

are called the central moments �M1=0, by definition�. They
can be related to correlation functions which occur in the
short time, or Liouville expansion of the operator ck��t� and
are evaluated in the limit t=0.

It is remarkable that the variance s2 of A�k ,��, defined by
the second central moment

M2 = s2
2 = m�1 − m�U2 �9�

is k independent in any dimension d, not only d=�. All the
terms in the high-energy expansion are sensitive to the low-
energy sector, be it only via the self-consistent �.

We now turn to the continued fraction expansion which is
closely related to the moment expansion. Formally, it is
initiated by using �1 and s2 to write the Green’s function as

G�k,��−1 = � − �1 − s2
2G1��� . �10�

In this identity, G1��� is again a Herglotz function with as-
ymptotics G1���	1/�. Iterations, pushing the continued
fraction further down step by step, require knowledge of the
center of gravity �2l−1 and the variance s2l of Gl−1���, to
write

Gl−1���−1 = � − �2l−1 − s2l
2 Gl���, l = 2,3 . . . . �11�

The two new expansion coefficients depend only on the cen-
tral moments M� up to the order �=2l−1 and �=2l of their
respective indices.

By truncating the continued fraction, i.e., by setting
Gl���
0, an approximation to the Green’s function is ob-
tained that is the quotient of two polynomials, one with
l−1 real zeros in the numerator and another with l real zeros
in the denominator. The Green’s function thus has l poles on
the real axis, alternating with l−1 zeros. This object is de-
fined as the Padé approximant �l−1 � l�.27 It represents the
optimal use one can make of a set of known spectral mo-
ments up to M2l−1. Constructing the Padé approximant to a
Green’s function is essentially more difficult, because the
moments themselves are not yet known. Numerical values,
found for them by self-consistency conditions within a fixed
order, turn out to be quite inexact. This fact is often ignored
when it is claimed that a certain high-energy approximation
obeys a set of “exact” sum rules.

We now discuss some well-known results concerning ap-
proximations at the second stage of the continued fraction.
As a still exact representation of the Green’s function we
have

G�k,�� =
1

� − �1 −
s2

2

� − �3 − s4
2G2���

. �12�

The relations between the first few terms are

s2
2 = M2,

�3 = �1 + M3/M2,

SPECTRAL DENSITY OF THE HUBBARD MODEL BY… PHYSICAL REVIEW B 74, 205124 �2006�

205124-3



s4
2 = M4/M2 − M2 − �M3/M2�2. �13�

Besides the variance, quantities used to further characterize
the internal shape of a spectrum are the skewness
�=M3 /M2

3/2 and the kurtosis �=M4 /M2
2−3. In terms of

these, we have �3=�1+�s2 and s4
2=s2

2��+2−�2�. From the
third moment one finds the coefficient

�3 = �1 − m�U + B3 − � . �14�

This continued fraction coefficient is the first quantity in the
expansion with a nontrivial k dependence. The full correla-
tion function appearing in the third moment was first derived
in Ref. 28 and determined self-consistently for a short linear
chain in Ref. 29. The shift in the spectral skewness, caused
by B3, regulates the dynamical weight transfer between the
Hubbard peaks at finite U.30 One can decompose

B3 = W0 + W3�k� �15�

in such a way that the term W3�k� vanishes in high dimen-
sions. For making contact with the DMFT we will presently
neglect it and adopt the expression28

B3 =
�2m − 1�

2m�1 − m�
�T̂� , �16�

by which it is linked self-consistently to the expectation

value of the kinetic energy �T̂�.
Concerning the behavior of the fourth moment, not even

the correlation functions involved in its self-consistency loop
have as yet been evaluated. Again, the actual numerical value
of s4

2 is also expected to be sensitive to the low-energy sector
and, in low-dimensional systems, k dependent.

Given this situation, approximations on the level of Eq.
�12� are at present inevitable. Straightforward truncation,
G2���=0, leads to the Padé approximant �1�2�. This solution
with two Dirac peaks goes beyond Hubbard I, because the
dynamical weight transfer is taken into account. The first
example of an approximate resummation of the continued
fraction is the alloy analogy, developed in the paper called
Hubbard III.31 Following Hubbard’s notation, we approxi-
mate s4

2G2��� by a k-independent terminating function
�H���, which has to be a Herglotz function.

The alloy analogy satisfies at least the task �i� of a termi-
nating function, namely, to generate finite damping. Far
away from �, where the excitations are incoherent, it actu-
ally represents a physically correct picture. We therefore
keep the result �H���→ iD for large � from Hubbard III.
The physical reason why the damping is of the order of the
bare bandwidth D is that the mean free path is as short as one
lattice constant. In practice, we incorporate the high-energy
damping in an effective �3,

�̄3 = �3 + iD , �17�

and henceforth deal with a terminator that decays as 1/�.
This way, we conserve the sum rules, encapsuled in the cen-
tral moments M0 to M3. Since Hubbard III is unrealistic at
low energies, we do not pursue it any further. Nevertheless, it
should be noted that Hubbard III generates a branch cut in
�H���, causing the imaginary part to drop back to zero and

a correlation gap with sharp edges to appear, at least in the
zero-temperature limit. This property of Hubbard III is also
not expected to survive in improved approximations for the
metallic phase. We will address the consequences that the
absence of a branch cut has for the shape of the density of
states, both in the CFM and in the DMFT.

To sum up, our approximation to the Green’s function is
formally similar to that of Hubbard III,

G�k,�� =
1

� − �1 −
s2

2

� − �̄3 − ����

, �18�

but with a terminating function, �H���=����+ iD that re-
tains the strong damping of the alloy analogy only at high
energy. Two successive implementations of the terminating
function with appropriate Fermi liquid properties at low
energy are the subject of the following sections.

IV. LOW-ENERGY PART

A Fermi surface discontinuity is strictly realized only in
the zero-temperature limit and in a system with no residual
disorder. Since T=0 solutions are hardest to obtain with
DMFT and, on the contrary, easily implemented with our
method, we concentrate in the following on this limit. We
write the standard microscopic definition of a self-energy as
a complex correction to the bare excitation �k:

G�k,��−1 = � − �k − ��k,�� �19�

and compare with the inverse of Eq. �18�. The high-energy
limit ��k ,�� is the difference between two dispersive quan-
tities. In the present case, Eqs. �5� and �6� have identical
dispersion and

p1 = �k − �1 = � − �0 − mU �20�

is, in fact, constant. Within the other approximations,
discussed in the preceding section, we then obtain the
k-independent self-energy

���� = − p1 +
s2

2

� − �̄3 − ����
. �21�

In this case, as in the DMFT, the Fermi surface has the exact
shape of the uncorrelated system. It is given by all k points
where �k=0 in Eq. �5�. The QP peak of weight Z at the
Fermi level and the step of amplitude Z in the momentum
distribution are fixed by the conditions

��0� = 0 �22�

and

d�

d�
�0� = � = 1 − 1/Z 
 0. �23�

At finite T or in the presence of a residual diffusive mean
free path, Im ��0� remains finite.

Guided by the insight that the strong-coupling peak
is distinct from the Hubbard peaks, we can formulate a
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minimal ansatz for the terminating function13 as

���� =
�s̄4�2

� − �̄5

. �24�

Adding a new stage to the continued fraction is the proper
way to “add” a pole to the Green’s function. When this ter-
minator is inserted in Eq. �18�, it generates a Green’s func-
tion with three complex zeros in the denominator and two
zeros in the numerator, i.e., the same structure as the Padé
approximant �2�3�. The connection of the parameters s̄4

2 and
�̄5 to central moments M4 and M5 is lost. In fact, the very
existence of moments beyond M3 has been sacrificed by ad-
mitting �̄3, s̄4, and �̄5 as complex quantities. They now have
to be determined from conditions �22� and �23�.

For the Herglotz property one finds

�Im s̄4�2/Im �̄5 � Im �̄3 = D �25�

as a necessary and sufficient condition. This causes all three
poles to lie in the upper half plane. Further, it guarantees a
normalized, positive semidefinite A�k ,��, which also implies
quite intricate relations between the complex residues.

Now, the important point is the following: This simple
ansatz is so heavily constrained by sum rules that it offers a
self-consistent solution of the problem, without any free pa-
rameters. It remains to substantiate this claim and then to
discuss the quality of the solution.

After inserting Eq. �24� in Eq. �21�, the conditions �22�
and �23� can be brought into a system of two linear equations
for the unknowns s̄4

2 and �̄5. The determinant of this system
is

det2 = − p1
2 − �s2

2, �26�

and the Herglotz property requires det2	0. This is a con-
straint on the QP weight Z: Instead of Z�1 �Pauli principle�
we have Z
s2

2 / �s2
2+ p1

2�. Closer inspection reveals that it
means the QP cannot take more spectral weight than the peak
in the Padé approximant �1�2� that is nearest to �. Since
around half filling this weight stays above 1/2, it is indeed
only a weak constraint.

The solution

s̄4
2 =

p2
2

det2
�27�

and

�̄5 = −
p1p2

det2
�28�

is expressed in terms of the complex quantity

p2 = − �p1�̄3 + s2
2� . �29�

It satisfies the Herglotz condition �25� with the equality sign.
This is a consequence of our strong T=0 constraint ��0�
=0, concerning both the real and imaginary parts. The self-
energy is now parametrized, up to Z, which remains free
within a restrained interval and will be determined by
minimizing the total energy.

We note, before closing this section, that Ref. 13
allows us to define one-pole terminations for the more gen-
eral case of a truncated Green’s function that is expressed as
a higher-order Padé approximant. The general algorithm is
given by which Eqs. �22� and �23� can be satisfied.

V. NUMERICAL PROCEDURE

The uncorrelated chemical potential as function of the fill-
ing, �0�n�, depends only on the kinetic energy part and is
determined once for all. The density of states per lattice site
in the U=0 limit

�0��� =
2

�
Im F0�� − i0+� �30�

is obtained from the on-site Green’s function

F0��� =
1

N
�

k

1

� + �0 − Ek
. �31�

The factor of 2 comes from summing over spin directions.
The density of states of the correlated system

���� =
2

�
Im F�� − i0+� �32�

is obtained from F���=G�k ,��, the on-site Green’s function
in real space, which is independent of the site index. For a
k-independent self-energy such as Eq. �21�, the on-site
Green’s functions F��� and F0��� are related to each other
by

F��� = F0�� − ����� . �33�

The k summations can then be carried out by using the ana-
lytic function that represents the solution for F0��� in the
limit N→�.

We now turn to the discussion of the self-consistency
loops. The condition for � is implemented at T=0 by the
integral

�
−�

0

d ����� = n . �34�

According to Eq. �16�, the term B3 from the third moment
requires the self-consistent determination of the kinetic

energy, �T̂�=2�−�
0 d� A�k ,��Ek. One finds

�T̂� =
2

�
�

−�

0

d� Im�̃F0�� − ����� − 1� ,

�̃ = � − i0+ + �0 − ��� − i0+� . �35�

Finally, the total energy is

Etot =
1

2��T̂� + �
−�

0

d� ������ . �36�

The integrals in Eqs. �34�–�36� are carried out numerically.
For the calculations in this paper we took the on-site Green’s
function
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F0��� =
2

�� + �0��1 +�1 −
1

�� + �0�2�
. �37�

In the context of d=�, it is the Green’s function for a
Bethe lattice. A half-width D=1 is now used as energy
unit. For the Herglotz property, it is important to choose the
square root with a positive real part. The model density of
states belonging to this Green’s function,

�0��� =
4

�
�1 − �� + �0�2, �38�

is the semielliptic function which was also used by Hubbard.

While searching for the self-consistent � and �T̂� at a
given input n and U, the renormalization Z is still kept as a
parameter, only limited by the condition det2	0. With these
constrained solutions for the Green’s function, we calculate
the total energy Etot. As shown in the example of Fig. 1, Etot
has a well-defined minimum as a function of Z. Taking the
value which minimizes Etot fixes the last parameter Z and
defines our solution for the Green’s function.

The density of states obtained for the same input as in Fig.
1 is shown in Fig. 2, together with the U=0 limit. The QP

band has the same intensity at the Fermi level as the uncor-
related band, ��0�=�0�0�. This invariance signals the unitary
limit for the Kondo resonance in the limit T=0. Thus, the
reduction of the QP weight does not show up in ��0� but in
the bandwidth, which is scaled down by Z. In a lattice sys-
tem, this one-to-one relationship between QP weight and
bandwidth only holds when the self-energy is local �k
independent�.

On the k-resolved level, near the Fermi surface, the
QP pole in the complex plane has a parabolic trajectory
parametrized by �k, Eq. �5�:

�*�k� = Z�k + i�k, �39�

with a scattering rate

�k = �Z�k�2/�*. �40�

The half-width for coherent states within the QP band is

�* =
Zs2

2�p2�2

D��1 − Z�s2
2 − Zp1

2�2 . �41�

This formula is well behaved also in the weak-coupling
limit, in fact for all possible metallic, unpolarized regimes of
the Hubbard model. In the strongly correlated regime, the
energy scale �* is always small, due to the explicit factor Z
in the numerator. Since we have modeled the ballistic limit
�residual diffusive scattering rate �d=0� the QP resonance in
A�k ,�� is a Dirac peak for k=kF and, for k�kF, it has the so
called Breit-Wigner line shape �see Hedin and Lundquist32

for a generic plot�. This shape is due to an interference be-
tween the QP residue and the other residues. The line shape
becomes approximately Lorentzian whenever a �d	�k is
present.

Returning to the density of states, we note that the global
shape of the valence spectrum for a hole-doped Mott insula-
tor, i.e., QP band and lower Hubbard band, is well rendered
by our present approximation. The sum rules up to M3 are
exactly satisfied and their interplay regulates the overall
skewness and the relative weight of all three features.

The one-pole terminating function has the drawback of
being unable to reproduce a sharp gap formation. The high
level of intensity between the QP band and the upper Hub-
bard band shows that the dynamical spectral transfer30 is not
realized completely, at least for U /D=4. The intensity at the
minimum decays like �U /D�−2, so that this spurious effect
disappears for larger U. We shall discuss the presence of
residual intensity in the gap region in more detail when we
compare with our second ansatz and with the DMFT.

Two remarks conclude this section. �i� The limit U=�
describes spin and charge excitations in the subspace of sin-
gly occupied sites. It is equivalent to the t-J model with J
=0. The one-pole terminating function thus allows one to
project out a quantitatively valid Green’s function for the
valence sector near this limit, up to terms of order �U /D�−2.
�ii� Ratios U /D�4 are relevant for the doping-controlled
Mott transition in real materials close to criticality. Our main
motivation to pursue the CFM was to investigate whether by
simply adding a second complex stage to the terminator we
could handle this regime in a semiquantitative way. The

FIG. 1. Energy minimum Etot�Z� for U=4, D=1, and
�0=−0.166 corresponding to n=0.79. The choice of D=1 means
that all energies are measured in units of the half-width D of the
uncorrelated band.

FIG. 2. Spectral density; comparison of �0��� �dashed line� and
���� �full line� for the same parameters as in Fig. 1.
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derivation of the two-pole terminating function and its appli-
cation to U /D=4 are presented in the next section.

VI. IMPROVING THE DYNAMICAL WEIGHT TRANSFER

To generalize our ansatz, we introduce algebraic expres-
sions for ����, such that Eq. �18� can be cast into the form
of a truncated continued fraction with complex coefficients.
This defines the general framework of the CFM, provided
the Herglotz condition is satisfied. The k-resolved Green’s
function has then the structure of a generalized higher order
Padé approximant. We label the approximations CFM1,
CFM2,… according to the number of complex stages or
number of “added” poles. By terminating the Padé approxi-
mant �1�2�, we still retain the important sum rules that govern
the dynamical weight transfer. Spectral moments beyond M3
are then not exploitable, but this may not be a great sacrifice,
given the difficulties known from the projection method to
obtain correct values for higher moments.

What can be gained by using complex coefficients is the
possibility to model constructive and destructive interference
phenomena in the Green’s function at intermediate energies.
A single feature in the spectral function can be built up by
the contributions of several poles, resulting in uncommon
line shapes. An ansatz frequently employed in the phenom-
enological interpretation of spectra is the superposition of
complex poles with real residues �superposition of Lorentz-
ians in the spectrum�. Although this allows several peaks to
coalesce, it still eliminates interference. One striking ex-
ample is the Fano-like interference of QP amplitude and
background, described in the preceding section. This is
already included in CFM1.

Likewise, the dynamical weight transfer and the forma-
tion of the Mott gap can be interpreted as a destructive in-
terference in the intermediate energy range between the Hub-
bard bands. When the interference is complete the function
G2��� in Eq. �12� should acquire a branchcut and a gap
interval with zero density of states and sharp edges should
result. This may be possible only on the insulating side of the
Mott transition and strictly at T=0. When the system is me-
tallic and the chemical potential falls in a region of high
density of states, it is satisfactory to model the correlation
gap by one deep minimum at some point x0 on the energy
axis. This corresponds to the doping-controlled regime,
where the parameter �p1�, Eq. �20�, is of order U. Studying
the Mott gap within the Hubbard III model shows that the
minimum always occurs near

x0 = Re �̄3. �42�

Consequently, the position x0 is related to M3 and to the
skewness. We adopt this approximation in order to reduce
the number of free parameters.

We demonstrate here that the strong-coupling regime, in-
cluding the Mott gap and a quantitative treatment of dynami-
cal weight transfer, is captured by the CFM2. The two-pole
terminating function is of the form

���� =
s̄4

2

� − �̄5 −
s̄6

2

� − �̄7

. �43�

The new degrees of freedom are given by s̄4
2 and �̄5. These

will all be fixed due to some further qualitative arguments,
restricting the ansatz from the start. Then, s̄6

2 and �̄7 can
again be eliminated by the Fermi liquid conditions of Eqs.
�22� and �23�, using the next iteration of the algorithm in
Ref. 13.

The Green’s function now has four poles and the Herglotz
condition becomes a crucially important issue. To formulate
it, for arbitrary complex values of �̄3 to �̄7, seems at
first sight rather difficult. The Green’s function on the Fermi
surface �Eq. �19� with �k=0� has additive coherent and
incoherent contributions,

1

� − ����
=

Z

�
+ Gb��� . �44�

This decomposition, which is only possible because one pole
lies infinitesimally close to the real axis, enables us to man-
age the Herglotz condition for ���� more easily: from Eq.
�43� we obtain a background function Gb��� with three poles
that can be written

Gb��� =
1 − Z

� − �1 −
�2

2

� − �3 −
�4

2

� − �5

. �45�

The new coefficients are designated by capital greek
letters. Systematically, they depend on Z and, at order �, on
all coefficients in Eqs. �18� and �43� with index ����.
Explicitly, the first three are

�1 = −
p1

1 − Z
,

�2
2 =

Z det2
�1 − Z�2 ,

�3 =
1

p1
��p2s2

2

det2
+

det2
�

� , �46�

in terms of the previously defined quantities Eqs. �9�, �20�,
�26�, and �29�.

The high-energy damping in the background function is

Im �3 = �1 +
p1

2

det2
�Im �̄3 	 Im �̄3 = D . �47�

Between the coherence energy �* in Eq. �40� and the back-
ground function at the Fermi edge there is the relation

�* Im Gb�0� = Z . �48�

For �4=�5=0, we recover the one-pole terminating function
and Eq. �41� for �*. Since �1 and �2

2 are real, there are now
only three complex quantities and the Herglotz condition can
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be specified exhaustively, analogous to Eq. �25�:

�Im �4�2/Im �5 � Im �3. �49�

The foregoing analysis suggests that �4 and �5 are more
useful than s̄4 and �̄5 as control parameters. To obtain the
self-energy, one can then use Eqs. �44� and �45�. For further
discussion we parametrize

�3 = X3 + iY3,

�4 = X4 + iY4,

�5 = X5 + iY5. �50�

Our requirement for properly defining the dynamical weight
transfer is vanishing Im ���− i0+� in the point x0. This is
satisfied if �and only if� the equality sign applies in �49�,
leading to the joint conditions Y4

2=Y3Y5 and

X5 −
Y5

Y4
X4 = x0. �51�

The Herglotz property now guarantees that it is in fact a
minimum. The influence of this interference on the shape of
the valence spectrum is weakest for X5=0. For simplicity, we
also need to set Y5=Y4=Y3, where Y3 is already defined in
Eq. �47�. The last parameter X4=−x0 is then fixed by the
point with lowest intensity inside the correlation gap.

Before continuing with this ansatz, it is important to real-
ize that it cannot apply exactly at half filling. There, the
metallic phase is obtained by driving U /D below the critical
ratio �so-called bandwidth-controlled transition�.4 The
particle-hole symmetric density of states has a quite different
morphology than what is shown in Fig. 2: the QP’s are in the
center and the correlation gap is split in two symmetric gaps
of order U /2.2 Within the CFM, it can be envisaged to use a
CFM3 ansatz to model two symmetric destructive interfer-
ences. A big challenge, left for later studies, is to describe the
rapid movement of the QP band as function of doping, when
one is near the critical U.

Returning to the doping controlled regime at strong cou-
pling, the remaining free parameter Z is determined again by
minimizing the total energy. The numerical procedure is as
described before. In Fig. 3, results with the one- and two-
pole terminating functions �CFM1 and CFM2� are compared
to the Gutzwiller approximation �GA� at constant U, for a
wide range of fillings. The upper curve is the well known
lower bound for the GA, Z= �1−n� / �1−m�, obtained by ex-
cluding double occupancy. By projecting out the back-
ground, the GA is known to systematically overestimate the
coherent weight. The behavior that results from the CFM,
i.e., lowering of Z and upward curvature at the approach of
zero doping �1−n→0�, is close to that of the exact Kondo
scale in the Bethe ansatz solution for the Anderson
impurity.19

Figure 4 shows the results for Z as function of intermedi-
ate to strong coupling. The CFM1 shows good qualitative
behavior even for zero doping, although Z does not

rigorously vanish at a critical U. The CFM2, applicable only
for U	Uc and finite doping, yields reasonable values for Z,
even at small U.

VII. COMPARISON WITH OTHER METHODS

With the two-pole terminating function, realistic results
for the density of states in the doping controlled regime can
be obtained, even close to the critical U. To illustrate this, we
compare our CFM with the DMFT for two different impurity
solvers. The impurity solvers perform the crucial step in
mapping the Hubbard lattice model onto an Anderson impu-
rity model. The effective medium surrounding a given site is
determined self-consistently, still a formidable many body
problem. The NRG,20 used to solve it at the lowest tempera-
tures and energies, requires a heavy amount of computer
time. The NCA is an alternative,21,22 more analytic method,
less reliable for �����*, but obeying high-energy sum rules
well. Therefore, the NRG and NCA are expected to be
complementary.

A comparison for the same parameters as before, i.e. U
=4 and n=0.79, is shown in Fig. 5. The NRG data are taken
from Ref. 18, the NCA is our own unpublished calculation,

FIG. 3. Spectral weight Z of QP pole as function of electron
density n for U=4. Comparison of the Gutzwiller approximation
�GA� to our result with the one- and two-pole terminating functions
�CFM1 and CFM2�.

FIG. 4. Spectral weight Z of QP pole as function of electron
correlation U. Comparison of the one- and two-pole terminating
function’s �CFM1 and CFM2� in the doped �n=0.898� and undoped
�n=1, only CFM1� cases.
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CFM1 is again the density of states from Fig. 2, and CFM2
the result with Eq. �43�. All four solutions obey the
��0�=�0�0� condition. This confirms that temperatures in the
DMFT solutions are sufficiently low to warrant a comparison
with our T=0 results. As manifest in the width of the QP
band, the self-consistent Z obtained for CFM2 coincides with
both versions of the DMFT. Since the NRG is expected to
determine essentially the exact low energy scale, this is a
good point for both the NCA and the CFM2 results.

The solutions start to differ somewhat in the gap region.
Neither DMFT version shows a gap with sharp edges that
would correspond to a branch cut in the self-energy. A real
benchmark for low-T impurity solvers in the doping-
controlled regime does not yet exist. From the NCA, we can
confirm that some very low residual density inside the gap
seems to be the generic situation.

In the ansatz for CFM2, the existence of a point with zero
density of states is postulated. Determining its position ac-
cording to Eq. �42� involves the self-consistency conditions
for � and B3. The quantitative agreement with the DMFT in
the QP band and good overall agreement in the entire va-
lence sector are due to this built in interference. In compar-
ing CFM1 and CFM2, one notices a feedback of the im-
proved gap region on the QP band: The sum rules up to M3
are satisfied for both approximations, but the dynamical
weight transfer is more complete within CFM2. Removing
the spurious intensity inside the gap slightly raises the QP
weight �compare Fig. 3�, bringing it into agreement with the
NRG result.

The rather large variation among the different solutions in
the region of the upper Hubbard band is remarkable and still
deserves more detailed investigations. At higher tempera-
tures T��*, where quantum Monte Carlo results are avail-
able as benchmark, the NCA was found to be satisfactory.21

In the present comparison, the NCA comes closer to obeying
the sum rules than the NRG. As far as numerical effort is
concerned, the NRG is the most demanding, followed by the
NCA. The CFM2 stands up quite honorably in this compari-
son, especially when considering that the sum rules are rig-
orously incorporated, no “technical” broadening needs to be
introduced, and the required computer time to achieve
self-consistency is in fact negligible.

VIII. DISCUSSION AND OUTLOOK

We have introduced the CFM as a nonperturbative
method to calculate the self-energy of the Hubbard model in
metallic regions of the phase diagram. The two variants that
are implemented in this paper, CFM1 and CFM2, are labeled
by the number of complex poles that appear in the ansatz for
the terminating function. The ansatz itself is essentially an
educated guess that incorporates Fermi liquid behavior in the
low-energy sector of the self-energy. The simple algebraic
structure, together with the use of the Luttinger sum rule as
an input, is essential for circumventing heavy many-body
calculations, such as, e.g., required for the impurity solvers
within the DMFT. On the other hand, this simple structure
prevents one from capturing critical phenomena very close to
the metal-insulator transition, e.g., power law behavior in the
position ��n� of the chemical potential, right at the critical
U=Uc, as the filling n→1.

The variant CFM1 can be used everywhere outside the
line n=1, U	Uc. It covers also the weak-coupling regime,
for arbitrary n, yielding limiting behaviors such as 1−Z
 �U /D�2 for the QP weight and �k�k

2U2 /D3 for the QP
scattering rate. The real advantage of the CFM appears for
intermediate and strong coupling, where perturbation theory
breaks down. A typical numerical result for the density of
states in CFM1 is discussed in Sec. IV, around Fig. 2. Results
for Z over wide ranges of doping and coupling strength are
discussed in Sec. VI, around Figs. 3 and 4.

In the variant CFM2, a second pole is used to improve the
dynamical weight transfer that manifests itself by a well-
pronounced Mott gap in the strong-coupling spectra. By the
nature of this ansatz, it is restricted to U	Uc and n�1. In
the weak-coupling regime, CFM2 still yields a reasonable
result for Z �see Fig. 4�, but to impose a Mott gap in the
density of states is unphysical in this case. The CFM2 result
for the strong-coupling density of states compares favorably
with the best DMFT results at very low temperature, as
shown in Fig. 5.

The high- and intermediate-energy behavior of the self-
energy can be given by a sequence of stages with real coef-
ficients in the continued fraction expansion, going as far as
moment sum rules are exploitable. The extension to mo-
ments of high order becomes possible due to the close rela-
tionship of the CFM with the numerical Lanczos procedure.
Approximate coefficients can be generated by applying the
Lanczos procedure to a finite cluster. A proper Fermi liquid
termination of the continued fraction is then obtained from
the general algorithm in Ref. 13.

The algebraic terminating function was already intro-
duced earlier, in a phenomenological context, leaving Z as a
free parameter. The possibilities for fitting photoemission
spectra have been demonstrated.13,17,18 The cornerstone of
the CFM as a microscopic method is now the minimization
of the total energy to obtain Z. Given G�k ,�� for variable Z,
we calculate the total energy from the exact many-body ex-
pression, actually another sum rule, first established by Gal-
itski. Notwithstanding the convincing numerical results, the
deeper reason for the success of this procedure should be
discussed some more. Without an explicit wave function, we
are lacking a rigorous variational principle. The situation is

FIG. 5. Spectral density. Comparison of the continued fraction
method using the one- and two-pole terminating functions �CFM1
and CFM2� with NCA and NRG �data taken from Ref. 18�.
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similar to the Gutzwiller method, which starts from the
Rayleigh-Ritz variational principle for a projected wave
function, but then needs to abandon this principle, because
the kinetic part of the energy is calculated within a further,
quite rough approximation.

For the case of hole doping, which we have studied, the
lower Hubbard peak corresponds to a lowering of kinetic
energy by incoherent hopping over short distances. Including
these processes in the energy balance, the QP weight Z is
also lowered. These processes are projected out in a
Gutzwiller approximation, Thus, by including this back-
ground and constraining it via the sum rules, we arrive at a
more realistic balance between the competing kinetic and
Coulomb energies.

That a lower Z, relative to the Gutzwiller result, is an
improvement in the right direction, and that including the
incoherent part is the clue to this effect, is fully confirmed by
the DMFT. Here, the impurity solvers mimic the impurity
Kondo effect and ZD is a measure for the Kondo tempera-
ture. A simple, quantitative picture arises in the limit of large
degeneracy Nf.

3,19 The Kondo scale in the impurity Anderson
model can be obtained exactly, as function of n and m
=n /Nf, by the Bethe ansatz. Concerning the total spectrum,
coherent weight is of order zero in 1/Nf, the leading back-
ground contribution starts at first order. Neglecting back-
ground, as for instance in the slave boson method at mean-
field level, yields Z= �1−n� / �1−m� for the renormalization.
This is also the equivalent of the Gutzwiller approximation,
as plotted for Nf =2 in Fig. 3. The influence of the back-
ground is strikingly illustrated by solving for the Kondo tem-
perature only to the first order in 1/Nf.

19 It causes indeed a
substantial decrease, bringing the result for Z close to the
exact Bethe ansatz value. The doping dependence with the
upward curvature, as seen in our approximations CFM1 and
CFM2, is also a feature of the exact result. Finally, the small
correction from CFM1 to CFM2 shows a delicate interplay
between the result for the low-energy scale and the chosen
approximation for the dynamical weight transfer, related to
the double occupancy.

The CFM is generalizable in many directions. The varia-
tional procedure renders it independent of the limit d=�. It is
straightforward and, for low-dimensional systems, poten-
tially very important to incorporate the k dependence in the
moment M3. The term W3�k� in Eq. �15� was already identi-
fied in the exact diagonalization of a short linear chain,29 as
causing a coupling of the QP to antiferromagnetic fluctua-
tions. This can be generalized to fluctuations above other

possible groundstates and the self-consistent determination
of W3�k� thus offers a path to describing the feedback of
bosonic fluctuations on the low-energy sector. Up to now, the
treatment of low-energy effects within the projection method
was based more on physical intuition, or guesswork for the
more critical observer, than on an objective procedure.

As an outlook, we enumerate other possibilities that are
inherent in the CFM, beyond the results of this paper. They
are listed roughly according to increasing effort that will be
required to implement them. �i� A more detailed exploitation
of spectral functions on the k-resolved level is immediately
possible with the self-energy given in this paper. The ideal
k-resolved spectrum A�k ,�� is not directly observable. Inter-
pretation of Raman, angle-resolved photoemission, or tun-
neling data requires its partial summation over selected spots
in the Brillouin zone, weighted by matrix elements. �ii� All
equations are formulated for an arbitrary density of Bloch
states. Hubbard lattice models with a more realistic kinetic
energy part, including van Hove singularities, can be imple-
mented. �iii� The method can be applied to the generalized
periodic Anderson model �PAM�: These are lattice models
with Hubbard repulsion among transition orbitals but, in ad-
dition, hybridization with ligand orbitals. Here, the simplest
case is one transition orbital, such as x2−y2 in the cuprates,
or a Kramers doublet for Ce compounds, coupled with any
number of ligand orbitals. The exact Dyson equation for this
case requires only a scalar self-energy function. Its imple-
mentation within the CFM was described in Ref. 13. Orbital
degeneracy within the transition shell requires first a gener-
alization of the terminating function to the case of matrix
continued fractions. �iv� Implementation of LDA+CFM: The
algebraic simplicity of the CFM allows to calculate the
charge transfer effects, present in model Hamiltonians of the
PAM type, on an ab initio level. These effects, important for
many real materials, could not yet be handled successfully
by LDA+DMFT. As in the PAM or in recent developments
of-LDA+DMFT, the orbitally degenerate transition shell re-
quires to deal with a matrix self-energy. �v� Not difficult to
implement, but leaving the strict framework of the CFM as
an algebraic method, is the inclusion of non-Fermi-liquid
effects on a phenomenological level into the terminating
function.13

In conclusion, we have attempted to demonstrate by
means of the Hubbard model that the CFM is a powerful
method. Numerically simple, due to its algebraic structure, it
is still sufficiently rigorous to deal with strongly correlated
electrons in mesoscopic and macroscopic samples of
condensed matter.
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