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Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet
travels differently in a lattice than in the continuum. We describe quantum scattering in a one-dimensional
lattice and illustrate characteristics of quantum transport such as resonant transmission. In particular we ex-
amine the transport characteristics of a random trimer model. We demonstrate the real-time propagation of a
wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in
a spin-chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction
between an incoming electron and a spin chain.
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I. INTRODUCTION

In the last few decades the advent of pump-probe optical
methods 1–3 and similar measurement techniques has stimu-
lated interest in time-dependent phenomena in physical
systems.4 For example, questions concerning the details of
magnetization reversal in ferromagnetic thin films can be
addressed experimentally5 and theoretically.6 Another ex-
ample is polaron formation in a semiconductor, where both
experimental and theoretical work are just starting.7 While
much of the work on magnetization reversal has utilized a
classical or at most semiclassical description,8–13 more recent
work has focused on a fully quantum mechanical
description.14 Such a microscopic description is expected to
be necessary and insightful for small �i.e., quantum dot� sys-
tems.

Insofar as many of these phenomena occur in the solid
state, the underlying lattice structure may play an important
role. Concerning the theoretical description of magnetization
reversal, calculations to date either have focused on simple
models,8–11,15 or have tried to utilize realistic transport equa-
tions with band structures relevant to the materials of
interest.16 In this work we wish to solve simple scattering
models based on tight-binding band structures. While we
will consider mainly scalar potential scattering, the formal-
ism is extendable to spin-flip scattering, which will be dis-
cussed. In particular, an incoming electron can scatter off a
ferromagnetic thin film modeled by a Heisenberg Hamil-
tonian, and we can monitor the real-time reaction of the mag-
netization to the onslaught of electrons with a completely
quantum mechanical description. We also want to utilize a
framework that is amenable to numerical calculation. By this
we mean the following: as interactions are introduced, prob-
lems will become formidable by analytical means and large-
scale computation will be required. Most often this means
Monte Carlo methods �at least this is so in equilibrium and
linear response calculations so far� which are often well
suited to simple lattices. For these reasons we believe it is
beneficial to have a lattice-based framework to tackle non-
equilibrium phenomena in solid state systems.

We begin with a description of the noninteracting elec-
tron, where already a different property emerges due to the

lattice: the degree of spreading of a propagating wave packet
can be controlled by judicious choice of the electron energy.
This is always true in one dimension and has more limited
validity in higher dimensions. We outline the methodology to
solve the problem numerically, and use some illustrative ex-
amples to demonstrate the accuracy and efficiency of these
calculations. Finally, we discuss spin-flip scattering in a spin
chain.

This paper is organized as follows. In Sec. II, we describe
wave packet transport in a lattice, and a possible solitonic
behavior which is impossible in the continuum limit. Using
an example, we also demonstrate the equivalence between
the wave packet approach and the usual plane wave ap-
proach. In Sec. III, we examine the robustness of the reso-
nance for randomly distributed trimers as their number in-
creases. A direct diagonalization of the Hamiltonian will
illustrate the time evolution of a wave packet in a lattice with
embedded impurities in Sec. IV. In Sec. V, we briefly explain
a procedure to study spin-flip scattering on a lattice. In Sec.
VI we summarize our results and outline possible future di-
rections.

II. WAVE PACKET TRANSPORT

In order to understand the differences between calcula-
tions of quantum mechanical phenomena in a lattice with
their counterpart in the continuum limit, it is appropriate to
begin with transport of a free wave packet. As is normally
done in textbooks,17 one can introduce a free Gaussian wave
packet in the continuum limit:

��x,0� =
1

�2��2�1/4e−�1/4��x − x0�2/�2+ik0�x−x0� �1�

where x0 and k0 are the mean position and momentum, re-
spectively, of the wave packet, and � is the position uncer-
tainty associated with the wave packet. To see the time evo-
lution of the wave packet we expand ��x ,0� in terms of the
momentum eigenstates �k�. They are the known solutions to
the Schrödinger equation in free space; hence the time-
dependent Schrödinger equation is readily solved in this ba-
sis. The result is17
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��x,t� = � �2

2�
�1/4 ei�k0x−E0t�

��2 + it/2m
e−�1/4��x − v0t�2/��2+it/2m� �2�

where E0=k0
2 /2m and v0=k0 /m are the average energy and

particle velocity, respectively. Since �x�=v0t and �x2�
= �v0t�2+ 	�2+ �t /2m��2
, the position uncertainty �x defined
as ��x�2= �x2�− �x�2 becomes �x=��2+ t2 / �2m��2. Simi-
larly, we obtain the momentum uncertainty �k=1/ �2��. The
uncertainty relation is therefore

�x�k =
1

2
�1 + � t

2m�2�2

. �3�

This means that the uncertainty relation increases as a func-
tion of time. Also note that the relation does not depend on
the mean momentum of the wave packet; as we will see, this
is true only for a parabolic energy dispersion.

In a one-dimensional lattice described by a nearest neigh-
bor tight-binding model, Ek=−2t0cos�ka�, where t0 is the
hopping amplitude to the nearest neighbor site and a is the
lattice constant. Hereafter we set a=1 and use it as the unit
of length. The position is now discrete and represented by xi,
with i the lattice site label. Upon expanding in terms of the
momentum eigenstates in a box with periodic boundary con-
ditions, one obtains

��xi,t� = � �2

2�3�1/4�
−�

�

dk eikxi−�2�k − k0�2−iEkt. �4�

Note that the integration is over the Brillouin zone, due to
the discreteness of the lattice; nonetheless, if � is large
enough, the integration range can be extended from −� to �
without altering the integral. In the same way, using a large-
� expansion for the exponent in Eq. �4�, and keeping terms
up to O�1/�2�, one can convert the integral into a Gaussian
integral, as in the continuum limit. Performing the integra-
tion, we obtain

��xi,t� = � �2

2�3�1/4 ��

��2 + itEk0
� /2

�eik0xi−iEk0
te−�1/4��xi − tEk0

� �2/��2+itEk0
� /2�, �5�

where we restored more generality 	than in Eq. �4�
 by using
Ek0

� and Ek0
� to refer to the first and second derivatives of the

dispersion Ek with respect to momentum k, and evaluated at
k0. For a quadratic dispersion one readily obtains the result
Eq. �2�. On the other hand, for the nearest neighbor model,
Ek0

� �vk0
=2t0sin�k0� and Ek0

� �vk0
� =2t0cos�k0�, where vk0

is
the group velocity and vk0

� is the group velocity dispersion.
The expansion is valid as long as t� �� /k0�3 / t0. For k0

=� /2, the validity length l is l=vk0
t�3. If � is on a na-

nometer scale, l is of order 1 �m.
We are now able to calculate the uncertainty relation for

the lattice case with nearest neighbor hopping only, at any
time t: �x�=2t0sin�k0�t and �x2�= 	2t0sin�k0�t
2+�2

+ 	t0cos�k0�t /�
2. The uncertainty in position is then �x
=��2+ t0

2cos2�k0�t2 /�2. The uncertainty in the momentum is
the same as in the continuum limit; namely, �k=1/2�. Con-

sequently, the uncertainty relation for this case on a lattice is

�x�k =
1

2
�1 +

t0
2cos2�k0�t2

�4 . �6�

As one can see from this expression, in general the uncer-
tainty never decreases as a function of time; the degree of
increase depends on the mean momentum. However, if k0
=� /2, the uncertainty remains unchanged. In other words,
the wave packet possesses a solitonic behavior without
showing the seemingly inevitable quantum spreading. We
will demonstrate this fact numerically later. This possibility
is actually well known in optics, where one seeks a medium
with zero group velocity dispersion to minimize loss.18 Nev-
ertheless, this appears to be less appreciated in quantum me-
chanics.

This result persists in one dimension for any dispersion.
That is, one can show that some wave vector always exists
for which the group velocity dispersion is zero. In higher
dimensions the situation is not quite as simple. The result
remains for nearest neighbor hopping only. For example in
three dimensions we have Ek=−2t0	cos�kxa�+cos�kya�
+cos�kza�
, and one readily obtains a similar result as in one
dimension. However, when next nearest neighbor hopping is
included, a little algebra shows that in general one cannot
achieve conditions for zero group velocity dispersion.

To obtain this result numerically, one diagonalizes the
tight-binding Hamiltonian H0=−t0�i�Ci

†Ci+1+Ci+1
† Ci� to ob-

tain eigenvalues and the corresponding eigenstates. Then one
can construct a wave packet, and evolve it in time according
to the time-dependent Schrödinger equation �this procedure
is described in more detail in Sec. IV�. The result is plotted
in Fig. 1 for three different times with k0=� /2 �k0=� /4� in
the top �bottom� panel, respectively. A wave packet initially
centered at xi=100 moves to xi�300 in each panel. The
uncertainty parameter � is set to be 10. The total time

FIG. 1. �Color online� Time evolution of the wave packet with
k0=� /2 �top� and � /4 �bottom�. The wave packet with k0=� /2
does not spread while the wave packet k0=� /2 broadens as it
moves.
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elapsed is different in the two panels because of the k0 dif-
ference �in consistent dimensionless time units, 100 for the
top, and 140 for the bottom panel�. As one can see, the wave
packet with k0=� /2 does not spread and the peak height
remains unchanged while the wave packet with k0=� /4
spreads and the height becomes considerably smaller as it
moves.

As shown earlier, the momentum uncertainty �k is in-
versely proportional to � of a wave packet. It is worth check-
ing to see how the plane wave result �for which �k=0� is
achieved, as � increases. We examine the case with static
impurity scattering. For this we add, to H0, impurity potential
terms �i�IUiCi

†Ci, where Ui is a scalar potential at site i and
I represents a set of impurities. Figure 2 illustrates the trans-
mission probability as a function of the mean momentum k0
of a wave packet for various �. We consider two impurities,
each with a potential U=1, separated by 10 sites; thus, the

impurity system spans 12 lattice sites. The red solid curve is
for a plane wave ��= � � while the blue dashed curve and the
green dot-dashed curve are for a wave packet with �=60 and
6, respectively. As Fig. 2 demonstrates, the wave packet ap-
proach will reproduce the plane wave results when � is much
larger than the size of the impurity system. The same behav-
ior holds in various other cases.

III. RESONANCE WIDTH FOR RANDOM TRIMERS

It is well known20–23 now that correlated impurities allow
extended electronic states for particular energy levels; thus,
perfect transmission or resonance occurs. In this section we
examine the width of the resonance for randomly distributed
trimers as the number of trimers increases. The resonance
width depicts the robustness of resonance for a change in the
energy level.

Giri et al.24 classified the parameter values for a trimer
into five cases, for which perfect transmission can be ob-
tained. The first is the dimer case, and the second only ap-
plies if the hopping parameters in the impurity region are
different. We consider only the remaining three cases. Let us
briefly describe the three cases using our notation. In case III,
U0=U1=U2 and perfect transmission occurs when E
=U0±1. This is the straightforward extension of the symmet-
ric dimer case to a symmetric trimer, but note that now two
solutions exist. In case IV, if U0+U2=U1 then resonance is
obtained at the energy, E=U1 �we set the hopping parameter
t0=1�, regardless of the values of U0 and U2. We will note an
example below. In case V, U0=U2 and U1 is arbitrary. The
resonance is obtained for energies

E = U1 +
1

2
	U1 − U0 ± ��U1 − U0�2 − 4�U1/U0 − 2�
 , �7�

provided that �U1−U0�2	4�U1 /U0−2� and of course −2

E
2.

For a trimer with U0, U1, and U2 at sites i=0, 1 and 2,
respectively, either the quantum mechanical approach �re-
viewed in Appendix A� or the transfer matrix formalism �see
Appendix B� can be used to obtain the transmission ampli-
tude as follows:

T =
− 2i sin�k�

�U1 − Ek� + eik	�U0 + U2��U1 − Ek� − 2
 + e2ik	U0U2�U1 − Ek� − �U0 + U2�

. �8�

We plot �T�2 vs E for random trimers in Fig. 3. These results
are obtained for a single trimer �smooth solid red curve� 50
trimers �blue curve, showing the most noise, and with inter-
mediate width�, and 500 trimers �green curve, with narrowest
width in the four frames�. In the latter two cases the trimers
were randomly distributed in a one dimensional lattice, and
an ensemble average over 50 different configurations was
sampled. Figure 3�a� corresponds to case III with U0=U1

=U2=0.5. Figures 3�b� and 3�c� are for case �IV� 	U0+U2
=U1
 with U0=0.6 and U2=0.4 and U0=0.9 and U2=0.1,
respectively. Case V is illustrated in Fig. 3�d� with U0=U2
=0.6 and U1=1. As shown clearly in Fig. 3, the resonance
width decreases considerably as the number of trimers in-
creases for all three cases. For example, the resonance range
around E=0.5±1 in Fig. 3�a� and around E=1 in Fig. 3�b�
decreases significantly as the number of trimers increases up

FIG. 2. �Color online� Transmission probability �T�2 as a func-
tion of the mean momentum k0 for �=6,60,�. Two impurities with
a potential U=1 are separated by ten lattice sites. The red solid
curve is for a plane wave ��= � �. The blue dashed �green dot-
dashed� curve is for a wave packet with �=60�6�.
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to 500. Another interesting feature can be found in case
IV.Even if the resonance occurs at E=U0+U2, a detailed
characteristic of the resonance depends on values of �U0
−U2�. For a given number of trimers, the resonance width
decreases with increasing �U0−U2�. One can see this by com-
paring the results in Figs. 3�b� and 3�c�.

IV. NUMERICAL DIAGONALIZATION AND PHASE SHIFT
OF WAVE PACKETS

We have already alluded to the numerical approach for a
free wave packet transfer in Sec. II. Since the operator Ci

†

creates an electron at site i, the initial wave packet can be
written as ���0��=�i��xi ,0�Ci

† �0�, where

��xi,0� =
1

�2�a2�1/4eik0�xi−x0�e−�1/4��xi − x0�2/�2
. �9�

As mentioned in Sec. II, x0 is the mean position, k0 is the
mean momentum, and � is the initial uncertainty associated
with the position. If � is much larger than the size of the
potential region, say I, the wave packet acts like a plane
wave when it is scattered off the potential. To see the real
time propagation of a wave packet in a lattice with N0 sites in
total, one needs to diagonalize the Hamiltonian Eq. �A1�,
which is an �N0�N0� matrix. Since the impurity potentials
are real, the Hamiltonian matrix is real and symmetric. The
numerical diagonalization is done using the expert driver
DSYEVX contained in the LAPACK package, which provides
either selected eigenvalues and eigenvectors or the entire
spectrum. Using the eigenstates �n� and eigenvalues �n ob-
tained from the diagonalization, one can express the wave
packet at time t as follows:

���t�� = �
n=1

N0

�n��n���0��e−i�nt. �10�

The wave packet initially at x0 moves towards the potentials
and scatters off impurities. In general, the wave packet is
partially reflected and partially transmitted. The mathemati-
cal definitions of the reflection and transmission probabilities
are �R�2=�i0 ���xi , t��2 and �T�2=�i�I ���xi , t��2, respectively,
as t→�.

Let us consider the two-impurity case again to illustrate
the time evolution of a wave packet in the presence of im-
purities in a lattice. The impurity potentials are set to be
U0=1 and U1=3 in units of the hopping constant t0. We
consider wave packets with average momentum that varies
from k0=0.3� to 0.9�. The time elapsed for the scattering
processes to “finish” depends on k0; for example, for k0
=0.6� it is 160 in our dimensionless time unit, while for
k0=0.8�, it would be 240. We consider two impurity con-
figurations, I and II. For I, we have �U0 ,U1� and for II,
�U1 ,U0�. As we discussed earlier, the reflection amplitude
will differ correspondingly; namely, R for I while R� for II.
Since T=T�, there is no phase shift for the transmitted wave
packet as shown in Ref. 20. On the other hand, the phase
difference � induces the phase shift for the reflected wave
packets. This can be explained as follows. Consider a wave
packet ��x ,0� moving with k0 to an impurity region

��x,0� =� dk g�k�eik0�x−x0� �11�

where g�k�e−��k−k0�2
. After the wave packet scatters com-

pletely off the impurities at time ts, the wave function at t
after ts would be

�	I
�x,t� =� dk gR�k�e−ik0�x−xR�e−iEkt

+� dk gT�k�eik0�x−xT�e−iEkt, �12�

where an elastic scattering is assumed, gRR�k�g�k� while
gTT�k�g�k�, and xR�xT� is the mean position of the reflected
�transmitted� wave packet at ts. For the reverse configuration
II,

�II�x,t� =� dk gR��k�e−ik0�x−xR�e−iEkt

+� dk gT��k�eik0�x−xT�e−iEkt. �13�

Since R�=Rei�, the reflected part of �II�x , t� becomes

�II,R�x,t�  � dk R�k�e−��k − k0�2
e−ik0�x−xR�−iEkt+i�. �14�

In order to see the phase shift of the reflected wave packets,
one needs to calculate ��II,R�2. Expanding E�k� and ��k�
around k0 and some algebra yields

FIG. 3. �Color online� �T�2 as a function of E for randomly
distributed 50 impurity dimers �blue� and 500 dimers �green� in
comparison with a single dimer �red�. �a� corresponds to case III
while �b� and �c� are for case IV, and �d� for case V.
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��II,R�2  exp�−
�x − xR + v0t − �k�0�2

2��2 + t2��k
2E0 − �k

2�0�2/4�� , �15�

where v0=�kE0. Rigorously speaking, this approximation is
valid when R�k��R�k0�. Note that the term with E0 and �0

disappears when ��II,R�2 is calculated and the position of the
scattered wave is xR−v0t. Equation �15� indicates that the
phase shift of the reflected wave packets is determined by
�k�0, and the spreading depends not only on �k

2E0 but also on
�k

2�0. To be specific we define a phase shift as the difference
between the two reflected wave packets for configurations I
and II at their half-width as in Ref. 20.

In Fig. 4, we plot the reflected wave packets for I �solid
curves� and II �dashed curves� in the case of two impurities
with U0=1 and U1=3. The average momenta for the three
wave packets shown are k0=0.6�, 0.7�, and 0.8�. As one
can see clearly, the phase shift between ��I,R�2 �solid curves�
and ��II,R�2 �dashed curves� depends on k0. The phase shift
for k0=0.6� is not significant while it becomes bigger as k0
increases to 0.8�. We also plot the phase difference, its de-
rivative, and the phase shift of the reflected wave packets in
Fig. 5. As shown in the plot, the derivative of � and the phase
shift obtained numerically are in excellent agreement.

V. SPIN-FLIP SCATTERING

So far we have discussed scalar potential scattering on a
lattice. In this section we describe how to study spin-flip
scattering on a lattice. Let us consider the Hamiltonian

H = − t0 �
�i,j��

Ci�
† Cj� − 2J0�

l

�l · Sl − 2J1�
l

Sl · Sl+1

�16�

where Ci�
† creates an electron with a spin � at a site i, Sl is a

spin operator located at site l, t0 is the hopping amplitude
between the nearest neighbor sites, and J0 is the coupling

between an electron and a local spin. The electron-spin cou-
pling is assumed here to be a purely local �i.e., on-site� in-
teraction between the electron spin �l at site l, and the local
spin at site l, denoted by Sl. J1 is the �Heisenberg exchange�
coupling between two neighboring spins. This model can be
used to understand the spin transfer dynamics between an
itinerant electron and a ferromagnetic spin chain with Ns
local spins �S=1/2� arranged in a one-dimensional lattice.
To study the spin chain, one can extend the quantum me-
chanical approach as in Ref. 14, or one can extend the trans-
fer matrix formalism.27 Here we follow the diagonalization
method to see the time evolution of the spins.

Suppose we send a wave packet representing an electron
with spin aligned in the +Z direction toward a ferromagnetic
spin chain where all spins are aligned in the −Z direction.
Such a state of the chain will be denoted by �G�. The incom-
ing wave packet can be constructed as follows:

���0�� = �
i

��xi,0�Ci↑
† �0� . �17�

Then, the initial wave function of the total system including
the incoming electron and the chain is ���0��= ���0�� �G�. We
introduce the total spin operator J=�+�lSl. The Z compo-
nent Jz of the total spin is conserved. Hereafter we assume
spin 1/2 for both the electron and the spins, for simplicity.
Since the initial value of Jz is �1−Ns� /2, the possible spin
bases would be �+ � �G� and �−�Sl+ �G�, where Sl+ flips the
local spin at l in the chain. Alternative spin bases could be
used by utilizing the total spin and its Z component. Includ-
ing the location of the incoming electron, the basis states we
use are Ci↑

† �0� �G� and Ci↓
† �0�Sl+ �G�. Now, the Hamiltonian

becomes an N0�Ns+1��N0�Ns+1� matrix. Note that the di-

FIG. 4. �Color online� Phase shift of the reflected wave packets
in a lattice with two impurities embedded side by side with U0=1
and U1=3 in units of the hopping constant. Initially, the wave
packet is at x0=150. The two impurities are at 300 and 301. The
uncertainty parameter � is set to be 20. For ��I,R�2 �solid curves�,
the impurity configuration is �U0 ,U1� while for ��II,R�2 �dashed
curves�, it is �U1 ,U0�.

FIG. 5. �Color online� Phase difference �blue dashed curve�, its
derivative �red solid curve�, and the phase shift obtained from the
wave packet simulations �green diamond symbols�. The phase shift
is measured by the difference between the reflected wave packets
�I,R� and �II,R� at their half-width. The impurity potentials are U0

=1 and U1=3. The phase shift and �� /�k agree with one another
very well.
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mension of the Hamiltonian depends only on N and Ns and
does not depend on the locations of the local spins. Even if
we include impurities, the dimension of the Hamiltonian re-
mains unchanged. To construct the Hamiltonian matrix, we
need to calculate each component of the matrix. For ex-
ample,

�G��0�Cj↑�− 2J0�l · Sl�Ci↑
† �0��G� =

J0

2
� j,l�i,l,

�G��0�Cj↑�− 2J1Sl · Sl+1�Ci↑
† �0��G� = −

J1

2
�i,j .

Other components for the Hamiltonian matrix are presented
in Appendix C.

We therefore solve the eigenvalue problem H �� j�
=Ej �� j�, where j=1, 2 , . . . ,N0�Ns+1�. Then, we represent
the time-dependent total state using eigenvalues and eigen-
states as follows: ���t��=� j �� j��� j ���0��e−iEjt. Alternatively,
the total state at t can be expressed as

���t�� = �
i=1

N0

�i�t�Ci↑
† �0��G� + �

l=1

Ns

�
i=1

N0

�l,i�t�Ci↓
† �0�Sl+�G� ,

�18�

where ��i�t��2 is the probability to find an electron with spin
up at site i while the local spins are all pointing down at time
t, and ��l,i�t��2 is the probability for the electron with spin
down at site i while the lth local spin is pointing up and the
others pointing down at time t. Using this expression we can
investigate the dynamics of a particular spin or the sum of all
spins in the chain. For example,

���t��Slz���t�� = −
1

2�
i�

��i��
2 +

1

2 �
l�,i�

��l�,i��
2�2�l,l� − 1� ,

�19�

and the total local spin is �l�Sl�t��. Since at t=0, �l,i=0 and
�i ��i�2=1, �Slz�0��=−1/2 is assumed. Thus, �Sz�0��
=�l�Slz�0��=−Ns /2 and �Jz�0��= �1−Ns� /2.

By way of an example, consider a chain of three spins,
ferromagnetically coupled with strength J1. As an electron
impinges on the three spin system, they interact with the
electronic spin and change their states. In Fig. 6, we first plot
the expectation value of Sz for Si �i=1,2 ,3�, and Stot

=�i=1
3 Si for the uncoupled spin case, i.e., with J1=0. The

electron is coupled to each spin with strength J0=2, in units
of t0. Since there is no coupling between two nearest spins in
this instance, each spin evolves independently as a function
of time. The spin transfer from the incoming electron to the
local spins occurs mostly for S1 while it is minimal for S3.

On the other hand, when the spins are Heisenberg coupled
with strength J1=1 all three spins participate in the spin-flip
scattering with the incoming electron almost to the same
degree, as shown in Fig. 7. Interestingly, even though there is
an obvious asymmetry �the electron strikes the first spin first�
the time evolutions of the first �S1� and the third �S3� spins
are almost identical.

VI. CONCLUSIONS

In this paper we have described scattering of a wave
packet in a lattice. One of its interesting natures is a possible
solitonic behavior of a wave packet which is impossible in
continuous media. We examined several examples of impu-
rity scattering. In particular, we explored the robustness of
the resonance for randomly distributed trimers as their num-
ber increases. We found that the resonance width decreases
as the number of trimers increases.

Numerical diagonalization has been used for solution of
completely general problems, including those involving spin-
flip scattering, as explored briefly in the last section. Using
the diagonalization, one can monitor the time dependence of
the wave function amplitudes throughout the scattering
event. This will be of interest as experimental methods

FIG. 6. �Color online� The spin expectation value �Sz� for three
spins Si �i=1,2 ,3� and the total spin Stot. The coupling parameters
are J0=2 and J1=0.

FIG. 7. �Color online� The spin expectation value �Sz� for three
spins Si �i=1,2 ,3� and the total spin Stot. The coupling parameters
are J0=2 and J1=1.
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evolve to allow more controlled temporally and spatially re-
solved measurements. We presented, by way of example the
case of a Heisenberg chain of spins, interacting with an itin-
erant electron �spin current�. A natural extension of this cal-
culation could be to include more spins, so as to model an
actual magnetized thin film. Generalizing to the case of a
spin current is straightforward, so long as we assume the
electrons in the current do not interact with one another. This
will allow us to address detailed questions about how the
spins in the chain reverse their magnetization when subjected
to a spin current. These and other questions will be the sub-
ject of future investigation.
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APPENDIX A: QUANTUM MECHANICAL APPROACH

Electronic transfer through impurities on a lattice can be
explored in one of three ways: either through a quantum
mechanical approach using matching conditions of wave
functions, or through the transfer matrix formalism, or
through direct diagonalization of the Hamiltonian. We pro-
vide summaries of the first two approaches in this appendix
and the next, respectively. Note that if there are N impurities
embedded in a lattice, one needs to deal with a �2N�2N�
matrix to determine all the relevant coefficients including R
and T in the quantum mechanical approach. On the other
hand, the transfer matrix formalism requires manipulation of
N �2�2� matrices.

In a lattice, a potential is represented by a series of “im-
purities” whose effect is to alter the on-site energy wherever
an impurity has substituted for the usual atom. This is repre-
sented by the Hamiltonian,

H = − t0�
i

	Ci
†Ci+1 + Ci+1

† Ci
 + �
i�I

UiCi
†Ci, �A1�

where t0 is the hopping amplitude as before, Ci
† creates an

electron at site i, and Ui is a scalar potential at site i; the set
of impurities spans a number I= �0,1 ,2 , . . . , I�. The wave
function defined only on the lattice sites can now be written
as a piecewise function over I+3 regions if the number of
impurities is I+1. That is, ���=� j��xj�Cj

† �0�, where

��xj� = ��L�xj� = eikxj + Re−ikxj for j  0,

� j�xj� = Aje
iqjxj + Bje

−iqjxj for j � I ,

�R�xj� = Teikxj for j � I ,

and �0� represents the vacuum, namely, the state with an
empty lattice. The coefficients R, Ai, Bi, and T are to be

determined by matching conditions at i�I. Note that qi will
be obtained within the same calculation even though we can
already guess that Ek=Eqi

+Ui. What are the matching con-
ditions? As in the continuum limit one first demands conti-
nuity of the wave function at each site. Therefore,
�0 �Cj+ ���= �0 �Cj− ���, where j+ �j− � means just to the right
�left� of site j. However, the second condition in the con-
tinuum limit requires continuity of the derivative of the wave
functions at each site. One can see this directly from the
Schrödinger equation through an integration of the second-
order differential equation. However, the second quantized
form of the Hamiltonian written in Eq. �A1� contains no
derivatives, so clearly this procedure is not an option. The
correct procedure is as follows.19 One first writes down the
Schrödinger equation projected onto each site, �0 �CjH ���
= �0 �CjE ��� for j=0,1 , . . . , I. Then the two conditions, ex-
pressed for each site, can be written

��j + 0+� = ��j + 0−� , �A2�

− t0	��j + 1� + ��j − 1�
 + Uj��j� = E��j� . �A3�

As mentioned before, Eq. �A2� implies that the wave func-
tion is continuous at each site. Equation �A3� is the
Schrödinger equation at each site; however, close inspection
shows that on the left-hand side the wave function is re-
quired from two different “pieces” in the domain �assuming
that Uj is nonzero�. But we would like the Schrödinger equa-
tion for noninteracting electrons to be satisfied, with the
same eigenvalue, by the wave function on any given piece
even when extended beyond the domain of validity of that
wave function. For example, for j=0 we demand that �L
satisfy the equation −t0	�L�+1�+�L�−1�
=E�L�0�. Note that
we have used the wave function �L at location +1, even
though it was originally defined only for sites 0 or below.
Moreover, we require that this equation be satisfied with the
same eigenvalue E. Hence, by judicious adding and subtract-
ing of a wave function to Eq. �A3� at each impurity site, we
arrive at, for j=0 and j= I,

− t0�1�1� + t0�L�1� + U0�L�0� = 0 for j = 0, �A4�

− t0�I�I − 1� + t0�R�I − 1� + UI�R�I� = 0 for j = I .

�A5�

Similar equations apply for the impurity sites in between.
These can now be solved for the unknown coefficients along
with the matching equations 	Eq. �A2�
.

Let us consider a two-impurity case as an example. As-
sume that two impurities with U0 and U1 are embedded at
j=0 and 1, respectively, in a lattice; one needs to introduce a
wave function as follows:

��xj� = �
�L�xj� = eikxj + Re−ikxj ,

�0�xj� = A0eiq0xj + B0e−iq0xj ,

�1�xj� = A1eiq1xj + B1e−iq1xj ,

�R�xj� = Teikxj .

The coefficients such as R and T and the momenta q0 and q1
can be determined by solving the continuity equations �L�
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−1�=�1�−1�, �L�0�=�1�0�, �1�0�=�2�0�, �1�1�=�2�1�,
�2�1�=�R�1�, �1�2�=�R�2�, and the Schrödinger equations

− �1�1� + �L�1� + U0�L�0� = 0,

− �1�0� + �R�0� + U1�R�1� = 0, �A6�

where we set the nearest neighbor hopping amplitude t0 to be
unity for simplicity. It is straightforward to show that

T =
2i sin�k�

2i sin�k� − �U0 + U1� − U0U1eik , �A7�

R =
U0 + U1e2ik + U0U1eik

2i sin�k� − �U0 + U1� − U0U1eik . �A8�

Using the Schrödinger equations, one can show that Ek
=Eqi

+Ui �i=1,2�. This result will be used to compare the
quantum mechanical approach and the transfer matrix for-
malism. The case of two impurities with the same potential
�U0=U1� has been well studied in the context of the random
dimer model.21–23

APPENDIX B: TRANSFER MATRIX FORMALISM

In the transfer matrix formalism,25 we write the
Schrödinger equation �A3� in the matrix form as follows:

�� j+1

� j
� = Mj� � j

� j−1
� �B1�

where Mj = � Uj−Ek

1
−1
0

�, which is a unimodular matrix and as-
sociated with an impurity at the site j. The wave functions �L
�for i1� and �R �for i�N� are �L=eikxi +Re−ikxi and �R
=Teikxi. Using the transfer matrix formalism, one can express
the coefficients R and T in terms of k, Ui, and E as follows:

� T
iT � = P� 1 + R

i�1 − R� � , �B2�

where P=S−1MS with S= � cos�k�
1

sin�k�
1

�, and M
=MNMN−1¯M1. Solving Eq. �B2�, one can obtain26

T =
2i

i�P11 + P22� + P12 − P21
, �B3�

R =
P12 + P21 − i�P11 − P22�
i�P11 + P22� + P12 − P21

. �B4�

It is instructive to compare the quantum mechanical ap-
proach and the transfer formalism using an example. Let us
again consider two impurities residing side by side. In this
instance we know that the transmission and reflection ampli-
tude are Eqs. �A7� and �A8�. In the transfer matrix formal-
ism, one needs to calculate P=S−1M1M0S to obtain the trans-
mission amplitude

T =
2i sin�k�

i sin�k�	�U0 − Ek��U1 − Ek� − 2
 + U0 + U1 − 2Ek − cos�k��U0 − Ek��U1 − Ek�
. �B5�

Note that T 	Eq. �A7�
 is not identical with T 	Eq. �B5�
.
However, while this is not obvious, they merely differ by a
phase factor and their magnitudes are the same: T=e2ikT.
Clearly the transfer matrix method “keeps track” of the two
lattice spacings traversed as the particle is transmitted to the
other side. A similar relation holds for the reflection ampli-
tude. Consequently, the transmission �reflection� probabili-
ties are identical; �T�2= �T�2 and �R�2= �R�2 in the two formal-
isms.

In previous work20 using the transfer matrix formalism,
we derived a relation between R and R�, where R� is the
reflection amplitude for the reverse impurity configuration. It
is

T*�R� − R�
T�R� − R�* = e2ik. �B6�

In the example of the two impurities, R� is given by R with
U0 and U1 exchanged. Using Eqs. �A7� and �A8�, one can
show that T and R also satisfy the same relation; namely,

T*�R� − R�
T�R� − R�* = e2ik. �B7�

Introducing a phase difference between R and R� such as
R�=e�R, we obtain

ei� = − e2ikR*T

RT* . �B8�

APPENDIX C: COMPONENTS OF THE HAMILTONIAN
MATRIX FOR A SPIN CHAIN

Other components one needs to construct the Hamiltonian
matrix are the following:
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�G��0�Cj↑�− t0�
i��

�Ci�+1,�
† Ci�� + H . c . ��Ci↑

† �0��G�

= − t0� j,i+1 − t0� j+1,i, �C1�

�G�Sl−�0�Cj↓�− t0�
i��

�Ci�+1,�
† Ci�� + H . c . ��Ci↓

† �0�Sl+�G�

= − t0� j,i+1 − t0� j+1,i, �C2�

�G��0�Cj↑�− 2J0�l · Sl�Ci↓
† �0�Sl�+�G� = − J0�l,l�� j,l�i,l, �C3�

�G�Sl�−�0�Cj↓�− 2J0�l · Sl�Ci↓
† �0�Sl�+�G� = J0��l,l� −

1

2
�� j,l�i,l,

�C4�

�G�Sl�−�0�Cj↓�− 2J1Sl · Sl+1�Ci↓
† �0�Sl�+�G�

=− J1�i,j�2��l+1,l� −
1

2
���l,l� −

1

2
��l�,l� + �l�,l�l+1,l�

+ �l�,l+1�l,l�� . �C5�
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