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We study the Kondo effect in a single-electron transistor device realized in a single-wall carbon nanotube
�NT�. The K-K� double orbital degeneracy of a NT, which originates from the peculiar two-dimensional band
structure of graphene, plays the role of a pseudospin. Screening of this pseudospin, together with the real spin,
can result in an SU�4� Kondo effect at low temperatures. In order to have such an exotic Kondo effect it is
crucial that this orbital quantum number be conserved during tunneling. Experimentally, this conservation is
not obvious and some mixing in the orbital channel may occur. Here we investigate in detail the role of mixing
and asymmetry in the tunneling coupling and analyze how different Kondo effects, from an SU�4� symmetry
to a two-level SU�2� Kondo effect, emerge depending on the mixing and/or asymmetry. We use four different
theoretical approaches to address both the linear and nonlinear conductance for different values of external
magnetic field. Our results point out clearly the experimental conditions to observe exclusively SU�4� Kondo
physics. Although we focus on NT quantum dots �QDs� our results also apply to vertical quantum dots. We also
mention that a finite amount of orbital mixing corresponds, in pseudospin language, to having noncollinear
leads with respect to the orbital “magnetization” axis which defines the two pseudospin orientations in the
carbon nanotube QD. In this sense, some of our results are also relevant to the problem of a Kondo QD coupled
to noncollinear ferromagnetic leads.
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I. INTRODUCTION

The first observations of Kondo effect in semiconductor
quantum dots �QDs�1–3 spurred a great deal of experimental
and theoretical activity over the last few years. Since these
experimental breakthroughs, remarkable achievements have
been reported, including the observation of the unitary limit,4

the singlet-triplet Kondo effect,5 Kondo effect in molecular
conductors,6 and the Kondo effect in QDs connected to
ferromagnetic7 and superconducting reservoirs,8 just to men-
tion a few.

Recently, Jarillo-Herrero et al. reported perhaps the most
sophisticated example, namely, the observation of an orbital
Kondo effect in a carbon nanotube �CNT� quantum dot
�QD�.9 In these experiments it was shown that the delocal-
ized electrons of the reservoirs can screen both the orbital
pseudospin degree of freedom in the CNT QD �the K-K�
double orbital degeneracy of the two-dimensional band
structure of graphene,� and the usual spin degree of freedom
resulting in an SU�4� Kondo effect at low temperatures. In a
recent paper,10 we showed that quantum fluctuations between
the orbital and spin degrees of freedom may indeed dominate

transport at low temperatures and lead to this highly symmet-
ric SU�4� Kondo effect. More recently, Sakano and
Kawakami11 have studied using the Bethe ansatz method at
zero temperature and the noncrossing approximation �NCA�
at finite temperatures the more general case where the quan-
tum numbers of N degenerate orbital levels are conserved,
and found new interesting features of SU�2N�-symmetric
Kondo effect. Importantly, an SU�4� Kondo effect is possible
provided that both the orbital and spin indexes are conserved
during tunneling. This poses an interesting question about
the nature of the nanotube-lead contact because, in principle,
there is no special reason why the orbital degree of freedom
in the CNT should be conserved during tunneling.

As we mentioned, this orbital pseudospin originates from
the peculiar electronic structure of the nanotube.9,12,13 The
electronic states of a NT form one-dimensional electron and
hole subbands as a result of the quantization of the electron
wavenumber perpendicular to the nanotube axis k�, which
arises when graphene is wrapped into a cylinder to create a
NT. By symmetry, for a given subband at k�=k0 there is a
second degenerate subband at k�=−k0. Semiclassically, this
orbital degeneracy corresponds to the clockwise ��� or coun-
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terclockwise ��� symmetry of the wrapping modes. A plau-
sible explanation of why this degree of freedom is preserved
during tunneling could be that the QD is likely coupled to
NT electrodes �the metal electrodes are deposited on top of
the NT so maybe the electrons tunneling out of the QD enter
the NT section underneath the contacts� but this issue clearly
deserves a thorough microscopic analysis about the nature of
the contacts. The conservation of the orbital quantum num-
ber seems more likely in the vertical quantum dots �VQD�,14

where the orbital quanutm number is the magnetic quantum
number of the angular momentum.

Here, we take a different route and, assuming some de-
gree of mixing in the orbital channel, ask ourselves about the
robustness of the SU�4� Kondo effect against asymmetry in
the couplings and/or mixing. The rest of the paper is orga-
nized as follows. In Sec. II we introduce the relevant model
Hamiltonian and classify different schemes of lead-dot cou-
plings. These different coupling schemes result in different
symmetries and hence affect significantly the underlying
Kondo physics. These effects are analyzed in the subsequent
sections. We start our analysis with two renomalization
group approaches in Sec. III. In Sec. IV two slave-boson
approaches complement the previous results. Section V con-
cludes the paper.

II. MODEL

A. Nearly degenerate localized orbitals

We consider a QD with two �nearly� degenerate localized
orbitals which is coupled to reservoirs. As we mentioned
before, we have in mind the experimental setup of Ref. 9
where a highly symmetric Kondo effect was demonstrated in
a CNT QD. However, our description could well apply to
vertical quantum dot �VQD�,14 where the orbitals correspond
to two degenerate Fock-Darwin states with different values
of the angular momentum quantum number. Hereafter we
will denote this orbital quantum number by m=1,2. The dot
is then described by the Hamiltonian

HD = �
m=1,2

�
�=↑,↓

�m�dm�
† dm� + �

�m,����m�,���

Umm�nm�nm���,

�1a�

where �m� is the single-particle energy level of the localized
state with orbital m and spin �, dm�

† �dm�� the fermion cre-
ation �annihilation� operator of the state, nm�=dm�

† dm� the
occupation, Umm �m=1,2� the intraorbital Coulomb interac-
tion, and U12 the interorbital Coulomb interaction. The effect
of the external magnetic field parallel to the symmetry axis
of the system is to lifting the orbital and spin degeneracy of
the single-particle energy levels. We will denote them by
�orb and �Z, respectively, so that the single-particle energy
levels �m� have the form

�m� = �0 + �orb��m,1 − �m,2� + ��Z/2����,↑ − ��,↓� . �1b�

The precise values of the Coulomb interactions Umm� depend
on the details of the system, but should be of the order of the
charging energy EC=e2 /2C with C being the total capaci-
tance of the dot. In this work we focus on the regime where

the system of the localized levels is occupied by a single
electron ��m��nm���1, quarter filling15� and the Coulomb
interaction energy �Umm��EC� is much bigger than other
energy scales. In this regime the Hamiltonian in Eq. �1a�
suffices to describe all relevant physics of our concern.

B. Coupling schemes

Kondo physics arises as a result of the interplay between
the strong correlation in the dot and the coupling of the lo-
calized electrons with the itinerant electrons in conduction
bands. Naturally, different Kondo effects are observed de-
pending on the way the dot is coupled to the electrodes and
whether the orbital quantum number m is conserved or not.
Nevertheless, it turns out highly nontrivial experimentally to
distinguish those different Kondo effects. In subsequent sec-
tions we will consider different coupling shemes between the
dot and the electrodes, show how different physics emerges,
and propose how to distinguish them umambiguously in ex-
periments.

The two leads �=L and R are treated as noninteracting
gases of fermions

H� = �
k

�
�=1,2

�
�

��k�a�k��
† a�k��, �1c�

where � denotes the channels in the leads. Without loss of
generality, we assume that there are two distinguished
�groups of� channels �=1 and 2 in each lead. When the leads
bears the same symmetry as the dot, this channel quantum
number � in the leads is identical to the orbital quantum
number m in the dot and will be preserved over the tunneling
of electrons from the dot to leads and vice versa; see Fig.
1�a�. Otherwise, the orbital channels become mixed; see Fig.
1�a�. The most general situation is described by the tunneling
Hamiltonian

HT = �
�k��

�V�k�m�a�k��
† dm� + H.c.� . �1d�

The total Hamiltonian is then given by H=HL+HR+HT
+HD.

For the sake of simplicity, we will assume identical elec-
trodes ��Lk�=�Rk��, symmetric tunneling juctions �VLk�m�

=VRk�m��. For simplicity, we ignore their k- and
�-dependence of the tunneling amplitudes. Therefore, we
consider a simplified model with V�k�m�=V�,m /�2 which de-
fines the widths

�m 	 �mm, �mm� = �	0Vm
* Vm�, �2�

where 	0 is the density of states in the reservoirs. Then in
equilibrium the Hamiltonian H in Eq. �1� is equivalent to
H=HC+HT+HD with

HC = �
k��


k�ck��
† ck��, �3a�

HT = �
k�,m,�

�V�mck��
† dm� + H.c.� , �3b�

where we have made the canonical transformation
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ck�� =
�aLk�� + aRk���

�2
,

bk�� =
�aLk�� − aRk���

�2
, �4�

and discarded the decoupled term �k�bk��
† bk��.

In the following sections we investigate the physics de-
scribed by the Hamiltonian in Eq. �3� and, in particular,
clarify the role of index conservation in the symmetry of the
underlying Kondo regime at low temperatures. In order to do
this analysis we use four different approaches, the scaling
theory �perturbative renormalization group approach�, the
renormalization group method �NRG�, the slave-boson
mean-field �SBMF� theory, and the noncrossing approxima-
tion �NCA�.

III. RENORMALIZATION GROUP APPROACHES

The renormalization group theory provides a convenient
and powerful method to study low-energy properties of
strongly correlated electron systems. Here we will take two
RG approaches, the scaling theory16–18 and the NRG
method.19–22 While the scaling theory is useful for a qualita-
tive understanding of the model, a more precise quantitative
analysis requires the use of more sophisticated methods like
the NRG method. This method is known to be one of the

most accurate and powerful theoretical tools to study quan-
tum impurity problems �see Appendix A�.

A. SU(4) Kondo effect

We now turn to the case where tunneling processes con-
serve the orbital quantum number; see Fig. 2. In this case,
the Hamiltonian reads

H = �
�=L,R

�
m=1,2

�
k�


�ka�km�
† a�km�

+ �
�km�

Vm�a�km�
† dm� + dm�

† a�km�� + HD �5�

or 
see Eqs. �3a� and �3b��

H = �
km�

�kck�
† ckm� + �

km�

Vm�ckm�
† dm� + dm�

† ckm�� + HD, �6�

Vm 	 Vm,m.

From the RG point of view, starting initially with nearly
degenerate levels, all the localized levels are relevant for the
spin and orbital fluctuations, and, as we will see below, con-
tribute to the Kondo effect. To investigate the low-energy
properties of the orbital and spin fluctuations of the model,
we perform a Schrieffer-Wolf transformation and obtain an
effective Kondo-type Hamiltonian

H = �
km�

�kckm�
† ckm� + Heff

SU�4� − �ZSz − 2�orbT
z

−
��J1 − �J2�2

2
�1 + 4s · S��txTx + tyTy�

+ �J1 − J2��s · S��tz + Tz� , �7�

where

Heff
SU�4� =

J1 + J2

2
�s · S + t · T + 4�s · S��t · T�
 . �8�

The exchange coupling constants Jm �m=1,2� are given by

Jm = Vm
2 � 1

E+
+

1

E−
� . �9�

We note that the Kondo-type effective Hamiltonian in Eq. �7�
is reduced to the SU�4�-symmetric Kondo model when V1

FIG. 1. �Color online� Schematic of a representative mesoscopic
system in question. In �a� each of the two leads L and R has two
conduction bands �or “modes”� 1 and 2. The model with two leads
in �a� is equivalent in equilibrium to the model in �b� with only one
lead. The operators ck�� ��=1,2 and �= ↑ ,↓� are related to aLk��

and aRk�� by the canonical tranformation in Eq. �4�. The wiggly
lines indicate the interorbital Coulomb interaction U12 
the intraor-
bital itneraction Umm �m=1,2� is not shown�.

FIG. 2. �Color online� Schematics of the SU�4�-symmetric
Anderson model.
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=V2 and �1�=�2�. In this case, the orbitals play exactly the
same role as the spins; orbitals are not distinguished from the
spins.

Under the RG transformations reducing subsequently the
conduction band width D by �D, the Kondo-type effective
Hamiltonian evolves into a generic form

Heff = Hleads − �ZSz − 2�orbT
z + 2J1�s · S��1

2
+ tz��1

2
+ Tz�

+ 2J2�s · S��1

2
− tz��1

2
− Tz�

+
1

2

J4 + 4J3�s · S���t+T− + t−T+� + J5tzTz. �10�

The level splitting �orb and �Z remain constant under the RG
transformation

d�Z

d ln D
=

d�orb

d ln D
= 0. �11�

The exchange coupling constants Ji �i=1, . . . ,5� are initially
given by Eq. �9� and by

J3 = J4 = �J1J2, J5 = �J1 + J2�/2. �12�

Under the RG transformations, they scale as

dJ1

	0d ln D
= − 2J1

2 − J3�J3 + J4� , �13a�

dJ2

	0d ln D
= − 2J2

2 − J3�J3 + J4� , �13b�

dJ3

	0d ln D
= − J3�J1 + J2 + J5� − J4�J1 + J2�/2, �13c�

dJ4

	0d ln D
= − 3J3�J1 + J2�/2 − J4J5, �13d�

dJ5

	0d ln D
= − 3J3

2 − J4
2 �13e�

for D��orb��Z. For D
�orb, it is clear from Eq. �10� that
the orbital fluctuations are frozen and only J1 is relevant,
which scales as

dJ1

	0d ln D
= − 2J1

2. �14�

It implies that we recover the single-level Anderson model
for D
�orb. Therefore in the remainder of this section, we
will focus on the case D��orb.

It is convenient to define the reduced variables ji	Ji /J1
�i=2, . . . ,5� and rewrite the RG equations �13� as

dj2

dx
= − j2 +

2j2
2 + j3�j3 + j4�

2 + j3�j3 + j4�
, �15a�

dj3

dx
= − j3 +

j3�1 + j2 + j5� + j4�1 + j2�/2
2 + j3�j3 + j4�

, �15b�

dj4

dx
= − j4 +

3j3�1 + j2�/2 + j4j5

2 + j3�j3 + j4�
, �15c�

dj5

dx
= − j5 +

3j3
2 + j4

2

2 + j3�j3 + j4�
�15d�

with x=ln�	0J1�. J1 obeys the scaling equation

1

�	0J1�2

d�	0J1�
d ln D

= − 2 − j3�j3 + j4� . �16�

The RG equations �15� have two fixed points: one describing
the SU�4� Kondo physics

j2 = j3 = j4 = j5 = 1 �17�

and the other describing the usual SU�2� Kondo physics

j2 = j3 = j4 = j5 = 0, �18�

both with J1=� as indicated in Fig. 3. Linearizing the RG
equations �15� around the fixed points, one can easily show
that both the SU�2� and SU�4� Kondo fixed points are stable
fixed points 
there is one marginal parameter at the SU�4�
fixed point�. However, as indicated as a dashed semicircle in
Fig. 3�b� the radius of convergence is finite while the fixed
point itself is located at infinity. This implies that in prin-
ciple, the SU�4� Kondo fixed point cannot be reached for
arbitrarily small values of 1−�2 /�1. However, as illustrated
in Fig. 3�a�, in the region of physical interest for sufficiently
small values of 1−�2 /�1, the scaling behavior is essentially
governed by the SU�4� Kondo fixed point �see also Fig. 5�.

FIG. 3. �Color online� RG
flows for different values of �2 /�1

with �1 fixed.
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More importantly, for sufficiently small values of 1−�2 /�1,
the SU�2� fixed point governs the physics only at extremely
low energies. This suggests that the SU�4� Kondo signature
can be observed exclusively at relatively higher energy
scales �of order of the Kondo temperature�, as in the recently
reported experiment.9

At B� =0 and �1=�2	�0, the RG equations �13� reduce
to a single equation

dJ1

	0d ln D
= − 4J1

2. �19�

Comparing this with the corresponding equation Eq. �14� for
the usual single-level Anderson model, we note that the
Kondo temperature is enhanced exponentially:

TK
SU�4� � exp�− 1/4	0J1� , �20�

with respect to the SU�2� Kondo temperature

TK
SU�2� � exp�− 1/2	0J1� . �21�

The perturbative RG analysis discussed above, whose valid-
ity is guaranteed only for 	0Ji
1, turns out to be qualita-
tively correct in a wide region of the parameter space and
provides a clear interpretation of the model. To confirm the
perturbative RG analysis and make quantitative analysis we
used the NRG method �see the Appendix�. Our NRG results
are summarized in Figs. 4 and 5 where the total spectral
density

Ad�E� = �
�

�
mm�

��mm�Am�m;��E� , �22�

which gives a direct information of the linear conductance,23

is plotted.
The spectral density shows a peak near the Fermi energy,

corresponding to the formation of the SU�4� Kondo state; see
Fig. 4. The peak width, which is much broader than that for
the SU�2� Kondo model �dotted line�, demonstrates the ex-
ponential enhancement of the Kondo temperature mentioned
above. Another remarkable effect is that the SU�4� Kondo
peak shifts away from �=EF=0 and is pinned at ��TK

SU�4�.
This can be understood from the Friedel sum rule24 which, in
this case, gives �=� /4 for the scattering phase shift at EF.
Accordingly, the linear conductance at zero temperature is
given by G0=4�e2 /h�sin2 �=2e2 /h. It is interesting to recall

that the Friedel sum rule gives the same linear conductance
also for the two-level SU�2� Kondo model. Thus, neither the
enhancement of the Kondo temperature nor the linear con-
ductance, can distinguish between the SU�4� and the two-
level SU�2� Kondo effects. This can only be achieved by
studying the influence of a parallel magnetic field in the non-
linear conductance, as shown in Ref. 9

B. Effects of mixing of orbital quantum numbers

To examine the stability of the SU�4� Kondo phenomena
against orbital mixing, we consider the model �see Fig. 6�:

H = �
k�


kck�
† ck� + �

km�

V0�ckm�
† dm� + dm�

† ckm��

+ �
km�

VX�ckm̄�
† dm� + dm�

† ckm̄�� + HD, �23�

FIG. 4. �Color online� Comparison of the SU�2� and SU�4�
Kondo model.

FIG. 5. �Color online� NRG results of the total spectral density
Ad�E� for different values of coupling asymmetry �2 /�1. We took
�0=−0.8D, �1=0.1D, Umm�=8D, and �orb=�Z=0.

FIG. 6. �Color online� A model with finite mixing between or-
bital quantum numbers.

KONDO EFFECTS IN CARBON NANOTUBES: FROM… PHYSICAL REVIEW B 74, 205119 �2006�

205119-5



where the indexes in the Hamiltonian imply 1̄=2 and 2̄=1
and V0	V1,1=V2,2 and VX	V1,2=V2,1. If we rewrite the
Hamiltonian as

H = �
k�


kck�
† ck� + �

km�

�V0ckm�
† + VXckm̄�

† 
dm�

+ dm�
† �V0ckm� + VXckm̄�
 + HD, �24�

it now becomes clear that, in a pseudospin language, a finite
amount of orbital mixing corresponds to having noncollinear
leads with respect to the orbital “magnetization” axis which
defines the pseudospin orientations m=1 and m=2 in the dot.
In other words, each confined electron �with defined pseu-
dospin� couples to a linear combination of pseudospin and,
as a result, becomes rotated in pseudospin space by an angle
defined by tan �=VX /V0. Note that for the maximal mixing
VX=V0, the tunneling electrons loose completely information
about their pseudospin orientation. In this limit, one recovers
the spin Kondo physics 
SU�2� symmetry� of a two-level
Anderson model 
see next subsection, Eq. �36��. For zero
mixing VX=0, the model reduces to the SU�4�-symmetric
model of Eq. �6� �with tunnel amplitudes that do not depend
on the orbital index�.

After the RG transformation of the Anderson-type model
in Eq. �23� until the single-particle energy levels are compa-
rable with the conduction band width �when the charge fluc-
tuations are suppressed�, the SW transformation gives

Heff = �1 −
JX

J0
�Heff

SU�4� +
JX

J0
Heff

SU�2� + J0�JX

J0

��1 −�JX

J0
��1 + 4s · S��tx + Tx� + 2JX�txTx� ,

�25�

where

Heff
SU�4� = J0�s · S + t · T + 4�s · S��t · T�
 �26�

is the SU�4� Kondo model and

Heff
SU�2� = 2J0s · S�1 + 2tx��1 + 2Tx� + J0�tx + Tx� �27�

is the SU�2� Kondo model. The exchange coupling constants
J0 and JX, respectively, are given by

J0 = �V0�2� 1

E+
+

1

E−
�, JX = �VX�2� 1

E+
+

1

E−
� . �28�

One can already grasp an idea about the effects of the mixing
JX �i.e., �X� of the orbital quantum numbers by considering
the two limiting cases, JX=0 �no mixing� and JX=J0 �maxi-
mal mixing�, of the effective Hamiltonian �25�. In the case of

no mixing �JX=0�, the effective Hamiltonian �25� is reduced
to the SU�4�-symmetric Kondo model Eq. �26�, which was
already discussed in the previous section. The Kondo tem-
perature is TK�D exp�−1/4J0�. When the mixing is maxi-
mal �JX=J0�, on the other hand, the effective Hamiltonian
becomes Heff

SU�2� in Eq. �27�.
Under the RG procedures, the effective Hamiltonian �25�

transforms in the general form

Heff = J1s · S + �J3�tzTz� + 4J2�s · S��tzTz�
 + �J4�txTx + tyTy�

+ 4J6�s · S��txTx + tyTy�
 + �J5�txTx − tyTy� + 4J7�s · S�

��txTx − tyTy�
 + �J9 + 4J8�s · S��tx + Tx�
 . �29�

The exchange coupling constants are initially given by

J1 = J0 + JX, J2 = J3 = J0 − Jx, J4 = J6 = J0,

J5 = J7 = JX, J9 = J8 = �J0JX. �30�

With the RG transformations, they scale as

dJ1

	0d ln D
= − J1

2 − J2
2 − 2J6

2 − 2J7
2 − 8J8

2, �31a�

dJ2

	0d ln D
= − 2J1J2 − 2J4J6 + 2J5J7, �31b�

dJ3

	0d ln D
= − J4

2 + J5
2 − 3J6

2 + 3J7
2, �31c�

dJ4

	0d ln D
= − J3J4 − 3J2J6, �31d�

dJ5

	0d ln D
= J3J5 + 3J2J7, �31e�

dJ6

	0d ln D
= − J2J4 − 2J1J6 − J3J6 − 4J8

2, �31f�

dJ7

	0d ln D
= J2J5 − 2J1J7 + J3J7 − 4J8

2, �31g�

dJ8

	0d ln D
= − 2J1J8 − 2J6J8 − 2J7J8, �31h�

and

dJ9

d ln D
= 0. �32�

As before 
see Eq. �15��, it is convenient to work with the
reduced coupling constants ji	Ji /J1. In terms of the reduced
exchange coupling constants, the RG equations read
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dj2

dx
= − j2 +

2j2 + 2j4j6 − 2j5j7

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 , �33a�

dj3

dx
= − j3 +

j4
2 − j5

2 + 3j6
2 − 3j7

2

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 , �33b�

dj4

dx
= − j4 +

j3j4 + 3j2j6

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 , �33c�

dj5

dx
= − j5 −

j3j5 + 3j2j7

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 , �33d�

dj6

dx
= − j6 +

j2j4 + 2j6 + j3j6 + 4j8
2

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 , �33e�

dj7

dx
= − j7 −

j2j5 − 2j7 + j3j7 − 4j8
2

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 , �33f�

dj8

dx
= − j8 +

2j8 + 2j6j8 + 2j7j8

1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2 �33g�

together with

1

�	0J1�2

d�	0J1�
d ln D

= − �1 + j2
2 + 2j6

2 + 2j7
2 + 8j8

2� . �34�

The RG equations �33� again have two fixed points, one
associated with the SU�2� Kondo effects and the other with
the SU�4� Kondo effects; see Fig. 7. The RG flow diagram in

Fig. 7 is reminiscent of that in Fig. 3. Both fixed points are
stable. However, since the radius of convergence of the
SU�4� Kondo fixed point is finite, the SU�4� Kondo fixed
point cannot be reachable even for arbitrarily small mixing
VX; Fig. 7�b�. However, in the region of physical interest, the
physics is essentially governed by the SU�4� Kondo fixed
point for sufficiently small VX; Fig. 7�a�. Therefore, the
SU�4� Kondo physics is in principle unstable against both the
orbital quantum number anisotropy 1−�2 /�1 and the orbital
mixing �X. For sufficiently small values of those, however,
the SU�4� Kondo physics still determines the transport prop-
erties except at extremely low energy scales. As we men-
tioned earlier, this suggests that to observe the indications of
the SU�4� Kondo physics exclusively one has to investigate
the properties at relatively higher energies �order of Kondo
temperature�. This is confirmed and demonstrated in the
NRG results summarized in Fig. 8. We will also see below
that there is no way to distinguish the two-level SU�2�
Kondo physics and the SU�4� Kondo physics experimentally
by means of linear conductance.

C. Two-level SU(2) Kondo effect

As we have mentioned in the previous subsection, at
maximum mixing V0=VX the physics becomes that of a two-
level SU�2� Anderson model �see Fig. 9�. In this case, the
only degree of freedom that is conserved during tunneling is
spin and the total Hamiltonian reads

H = �
�=L,R

�
k�


�ka�k�
† a�k� + �

�km�

Vm�a�k�
† dm� + dm�

† a�k�� + HD

�35�

or, equivalently 
see Eq. �4��,

FIG. 7. �Color online� The RG flow in the case where there is a
finite mixing of the orbital quantum numbers m.

FIG. 8. �Color online� NRG results on the effects of the finite
mixing of the orbital quantum number m. We took �0=−0.8D, �0

=0.08D, Umm�=8D, �orb=32TK
SU�4�, and �Z=2TK

SU�4�.
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H = �
k�


kck�
† ck� + �

km�

Vm�ck�
† dm� + dm�

† ck�� + HD. �36�

As the scaling theory of the Kondo-type Hamiltonian ob-
tained from the two-level Anderson model has been devel-
oped in detail in Refs. 25 and 26, here we will focus on the
first stage, which highlights the difference between the two-
level SU�2�-symmetric Anderson model and the SU�4�-
symmetric Anderson model. Finally, the physical arguments
based on the perturbative RG theory will be examined quan-
titatively by means of the NRG method.

As we integrate out the electronic states in the ranges

−D ,−�D−�D�� and 
D−�D ,D� of the conduction band, the
dot Hamiltonian �1a� evolves as

HD = �
m�

�m�dm�
† dm� − t�

�

�d1�
† d2� + d2�

† d1��

+ �
�m,����m�,���

Umm�nm�nm��� �37�

with other terms in the total Hamiltonian �36� kept un-
changed. Notice here the appearance of the new term in t,
i.e., a direct transition between the two orbitals m=1 and 2.
The scaling of the parameters �m� and t are governed by the
RG equations

d�m�

d ln D
= −

2

�
�m �38�

and

dt

d ln D
= −

2

�
��1�2, �39�

respectively.
The RG equation �38� for the single-particle energy levels

�m� is the same as in the usual single-level Anderson
model17,18 �the corresponding RG flow diagram is shown in
Fig. 10�. However, due to the direct transition t emerging
from the RG equation �39�, �m� are not relevant to the Kondo
effect 
they are not the eigenvalues of HD in Eq. �37��. To
find the relevant energy level�s� that is �are� directly involved
in the Kondo effect, one can diagonalize HD in Eq. �37� by
means of the canonical tranformation

�d+,�

d−,�
� = � cos��/2� sin��/2�

− sin��/2� cos��/2� ��d1�

d2�
� , �40�

where the angle � is defined by the relation

tan � 	
t

�2 − �1
. �41�

The dot Hamiltonian in Eq. �37� is then rewritten as

HD = �
�=±

�
�

��d��
† d�� + �

�m,����m�,���

Umm�nm�nm���,

�42�

with

��=± =
1

2
��1 + �2� �

1

2
���1 − �2�2 + t2. �43�

At the same time, the canonical transformation in Eq. �40�
also changes the coupling term in the total Hamiltonian �36�
to

HT = �
�=±

�
k�

V��ck�
† d�� + d��

† ck�� �44�

with V± defined by

�V+

V−
� = � cos��/2� sin��/2�

− sin��/2� cos��/2� ��V1

V2
� . �45�

Accordingly, the tunneling rates �±	�	0�V±�2 of the effec-
tive orbital levels �±,� are given by

�± =
1

2
��1 + �2� ± ��1�2 sin � +

1

2
��1 − �2�cos � . �46�

Figure 11 shows the scaling of �± �the arrowed lines� and
�± �the widths of the shadowed regions around �±� governed
by Eqs. �38�, �39�, �43�, and �46�. Note that the effective

FIG. 9. �Color online� Schematic of the two-level SU�2�-
symmetric Anderson model.

FIG. 10. �Color online� Scaling of the single-particle energy
level �d, to be compared with �m� in Eq. �38�, of the single-level
Anderson model. �d

*=�d�D=�� is the scale-invariant quantity.
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single-particle energy levels �± always repel each other,27

and the hybridization �+ ��−� of the lower �upper� level �+

��−� always increases �decreases�. Essential in this scaling
property of the two-level Anderson model is the direct tran-
sition t between the orbitals m=1 and 2 mediated by the
conduction band.

The scaling of �± and �± stops when the lower level �+
becomes comparable with D ��+�D�; see Fig. 11. Then the
charge fluctuations are highly suppressed and the occupation
of the lower level is close to unity ��n+��1�. Therefore, only
the lower level �+ gets involved in the Kondo physics, and
hence the resulting Kondo effect is identical to the usual
SU�2� Kondo effect. To be more specific, let us consider the
two limiting cases, ��1−�2���0 and ��1−�2�
�0, assuming

��1 − �2� 
 �0 	 ��1 + �2�/2. �47�

Since t��0, one has

� ���/2, ��1 − �2� 
 �0,

0, ��1 − �2� � �0
� �48�

or, equivalently,

�+ ��2�0, ��1 − �2� 
 �0,

�0, ��1 − �2� � �0.
� �49�

This implies that when the two orbital levels are nearly de-
generate ���1−�2�
�0� the Kondo temperature17,18 is en-
hanced exponentially,

TK �
1

2
�2�0D exp�+

��0

2�0
� , �50�


with �0	��1+�2� /2� compared with the single-level case
�i.e., ��1−�2���0� with

TK
0 �

1

2
��0D exp�+

��0

�0
� . �51�

In the limit of nearly degenerate levels ���1−�2�
�0�, the
upper level �− is located at distance smaller than �+ from the
lower level �+ 
��−−�+���+ �see Fig. 11�� and the transition
from �+ to �− is allowed in general. Indeed, this effect can be
taken into account by a proper SW transformation including

both levels and the scaling of the resulting Kondo-like
Hamiltonian,25,26 and gives rise to a bump structure at �
=�eff above the Fermi energy EF of the leads, with �eff given
by27 �with �1�=�2� initially�

�eff �
2�0

�
ln

D

�0
, �52�

in the single-particle excitation spectrum Ad��� in Fig. 12;
see below.

Again, all the interpretations made above based on the
perturbative RG are confirmed with the NRG method. Figure
12 shows the total spectral density Ad�E�. One can see that as
�orb increases with �Z=0, the Kondo peak gets sharper, i.e.,
the enhancement of the Kondo temperature TK in Eq. �50�
diminishes for �orb��0; see Fig. 12�a�. Notice that the bump
above the Fermi energy originates from the excitation via the
transition from the lower level �+ to the higher level �−, and
thus is located at E=�eff; see Eq. �52�. When we allows �Z
finite as well, then the Kondo peak now splits into two be-
cause of the Zeeman splitting.28,29

IV. SLAVE-BOSON TREATMENT

In order to confirm our previous results and obtain ana-
lytical expressions for intermediate mixing, we also use slave
boson techniques. In particular, the SBMF approach, which
is a good approximation in the strong coupling limit T
TK,
allows us to obtain analytical expressions for the Kondo tem-

FIG. 11. �Color online� Scaling of the two-level SU�2�-
symmetric Anderson model. The arrowed lines indicate the RG flow
of the effective single-particle energy levels �± 
see Eq. �43�� and
the widths of the shadowed regions around �± the RG flow of �±


see Eq. �46��. We have defined �0	��1+�2� /2.

FIG. 12. �Color online� Total single-particle excitation spectrum
Ad��� �a� with only the orbital degeneracy lifted ��orb�0, �Z=0�
and �b� both the orbital and spin degeneracies lifted ��orb ,�Z�0�.
The short vertical arrows indicate the transition from �+ to �−,
whose excitation energy is given by �eff 
see Eq. �52��. We took
�0=−0.8D, �0=0.1D, and Umm�=8D.
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perature and the Kondo peak position for arbitrary mixing.
Our SBMFT results are complemented with a NCA, which
takes into account both thermal and charge fluctuations in a
self-consistent manner.

At equilibrium it is convenient to change to a representa-
tion in terms of the symmetric �even� and antisymmetric
�odd� combinations of the localized and delocalized orbital
channels.30 Thus, the even-odd transformation consists of
ak,1�2�,�= �cke�± icko���2 and d1�2��= �de�± ido�� /�2. The
Hamiltonian 
Eq. �3�� in this basis reads

H = �
�,�=e,o

�k�
ck�,�

† ck�,� + �
�,�=e,o


��d�,�
† d�,�

+ �
�=e,o

Un�↓n�↑ + Uneno + Ve�
ke,�

�cke,�
† de� + H.c.�

+ Vo�
ko,�

�cko,�
† do� + H.c.� , �53�

where, again, we have considered V0=V1,1=V2,2, VX=V1,2
=V2,1, Um,m�=U, and 
�,�=
0,�. The occupation per channel
and spin is given by n��=d��

† d�� and the total occupation per
channel is n�=��n��. In Eq. �53� the tunneling amplitudes
for each channel are: Ve	V0+VX and Vo	V0−VX. In order
to normalize the total tunneling rate we take for the diagonal
and off-diagonal tunneling amplitude V0=V cos � and VX
=V sin �, namely, Ve=V�cos �+sin �� and Vo=V�cos �
−sin ��. Notice that �� 
0,� /4� in order to always have Vo

positively defined. There are two very different situations,
namely, �i� when �=0, where there are only tunneling pro-
cesses that conserve the orbital index and �ii� when �=� /4
where the mixing and no mixing tunneling amplitudes are
the same.

Now we write the physical fermionic operator as a com-
bination of a pseudofermion and a boson operator as follows:
d��=b†f��, where f�,� is the pseudofermion that annihilates
one “occupied state” in the �th localized orbital and b† is a
boson operator that creates an “empty state.” Quite generally
the intra�inter� Coulomb interaction is very large and we can
safely take the limit of U→�. This fact enforces the con-
straint ���f��

† f��+b†b=1, that prevents the accomodation of
two electrons at the same time in either the same orbital or
different orbitals. This constraint is treated with a Lagrange
multiplier:

HSB = �
�,�=e,o

�k�
ck�,�

† ck�,� + �
�,�=e,o


0,�f�,�
† f�,�

+
V̄�

�N
�

k,�,�=e,o
�ck�,�

† b†f�,� + H.c.�

+ ���
�,�

f�,�
† f�,� + b†b − 1� . �54�

Notice that we have rescaled the tunneling amplitudes Ve�o�

→ V̄e�o��N according to the spirit of a 1 /N expansion �N is
the total degeneracy of the localized orbital�.

Our next task is to solve this Hamiltonian, which is rather
complicated due to the presence of the three operators in the
tunneling part and the constraint. In order to do this we em-

ploy two approaches that describe two different physical re-
gimes. The first one is the SBMFT approach, which de-
scribes properly the low-temperature strong coupling regime.
This SBMFT is a good approximation in the deep Kondo
limit, namely only spin fluctuations are taken into account.
The NCA, on the other hand, takes into account both thermal
and charge fluctuations in a self-consistent manner. It is well
known that the NCA fails in describing the low-energy
strong coupling regime. Nevertheless, the NCA has proven
to give reliable results for temperatures down to a fraction of
TK.

A. Slave-boson mean-field theory

We start discussing the mean-field approximation of Eq.
�54�. The merit of this approach is its simplicity while cap-
turing the main physics of the pure Kondo regime. It has
been successfully applied to investigate the out-of-
equilibrium Kondo effect31–34 and double quantum dots,35–39

just to mention a few. This approach corresponds to the low-
est order in the 1/N expansion, O�1� where the boson opera-
tor b�t� is replaced by its classical �nonfluctuating� average,

namely, b�t� /�N→ �b� /�N	 b̃, thereby neglecting charge
fluctuations. In the limit N→� this approximation is exact.
Then the mean-field Hamiltonian is given by

HMF = �
�,�=e,o

�k�
ck�,�

† ck�,� + �
�,�


̃0,�f�,�
† f�,�

+ �
�,k,�

�Ṽ�c�,k,�
† f�,� + H.c.�

+ ���
�,�

f�,�
† f�,� + N�b̃�2 − 1� , �55�

where Ṽ�= V̄�b̃=V��b� and 
̃0,�=
0,�+� are the renormalized
tunneling amplitude and renormalized orbital level. The two

mean field parameters b̃ and � have to be determined through
the mean-field equations. These equations are the constraint

�
�,�

�f�,�
† �t�f�,��t�� + N�b̃�2 = 1, �56�

and the equation of motion �EOM� of the boson field

�
�,k,�

Ṽ��ck�,�
† �t�f�,��t�� + �N�b̃�2 = 0. �57�

Now we write these two equations in terms of nonequilib-
rium Green functions. The Green function for the � localized
orbital ���e ,o� G�,�

� �t− t��=−i�f�,�
† �t��f�,��t��, and the

corresponding lesser lead-orbital Green function is
G�,�,k�,�

� �t− t��=−i�ck�,�
† �t��f�,��t��. Expressing the mean-field

equations in terms of these nonequilibrium Green functions,
�56� and �57� become

�
�

G�,�
� �t,t� + N�b̃�2 = 1, �58a�
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�
�,k,�

Ṽ�G�,�;k�,�
� �t,t� + �N�b̃�2 = 0. �58b�

In order to solve the set of mean field equations, we proceed
as follows. First, we employ the analytic continuation
rules to the EOM of the time-ordered Green’s functions
G�,�

t �t− t��=−i�TC�f��
† �t��f���t�
� and G�,�;k�,�

t �t− t��
=−i�TC�ck�,�

† �t��f�,��t�
� �where TC is the time-ordering op-
erator along a complex time contour�.40 Second, we use the
EOM technique to relate the lead-orbital Green function with
the orbital Green function. And finally we rewrite the mean-
field equations in the frequency domain �we take 
0,�=
0�

�b̃2� −
1

N
�
�,�
� d�

2�i
G��

� ��� =
1

N
, �59a�

��b̃�2 +
1

N
�
�,�
� d�

2�i
G��

� ����
0 − 
̃0� = 0. �59b�

The integrals appearing in Eq. �59� can be performed ana-
lytically by using a Lorentzian cutoff 	���=D / ��2+D2� for
the DOS in the leads and the lesser orbital Green function

G�
����=2i�̃�f��� / 
��− 
̃0�2+ �̃�

2� 
f��� is the Fermi distribu-
tion function�

2

�N
Im�ln� 
̃0 + i�̃e

D
�� +

2

�N
Im�ln� 
̃0 + i�̃o

D
��

=
1

N
− �b̃�2, �60a�

2�̃e

�N
Re�ln� 
̃0 + i�̃e

D
�� +

2�̃o

�N
Re�ln� 
̃0 + i�̃o

D
�� = − ��b̃�2,

�60b�

where �̃e�o�= �̄e�o��b̃�2. In the deep Kondo limit, namely, 1
N

− �b̃�2� 1
N and −��
0, these equations can be written as

Im�ln� 
̃0 + i�̃e

D
�� + Im�ln� 
̃0 + i�̃o

D
�� =

�

2
, �61a�

�e Re�ln� 
̃0 + i�̃e

D
�� + �o Re�ln� 
̃0 + i�̃o

D
�� =

�
0

2
,

�61b�

where �e�o�= �̄e�o� /N are the original rates. Using the param-
etrization Ve=V�cos �+sin �� and Vo=V�cos �−sin ��, the
tunneling rates read �e=�V2	�1+sin 2��=��1+sin 2�� and
�o=	=�V2	�1−sin 2��=��1−sin 2��. Taking sin 2�=�,
with �� 
0,1� �notice that 0�sin 2��1 for �� 
0,� /4��
we parametrize the even and odd rates as �e= �1+���, and
�o= �1−���, respectively. Thus, ��0 accounts for pro-
cesses where the even and odd channels are not coupled
equally to the lead electrons or, equivalently, to processes
where the orbital index is not conserved. Using the new no-

tation, the mean field equations can be written in a compact
way

ln� �
̃0 + i�̃e�
D

� + ln� �
̃0 + i�̃o�
D

� + ln� 
̃0
2 + �̃e

2


̃0
2 + �̃o

2��/2

= i
�

2
+

�
0

��e + �o�
�62�

or, equivalently,



̃0 + i�̃e�

̃0 + i�̃o�� 
̃0
2 + �̃e

2


̃0
2 + �̃o

2��/2

= iD2e�
0/��e+�o�.

�63�

Its real and imaginary parts are



̃0
2 − �̃e�̃o�� 
̃0

2 + �̃e
2


̃0
2 + �̃o

2��/2

= 0, �64a�


̃0��̃e + �̃o�� 
̃0
2 + �̃e

2


̃0
2 + �̃o

2��/2

= D2e�
0/��e+�o�. �64b�

Equation �64a� has solution when 
̃0= ±��̃e�̃o. Notice that
only the positive root satisfies Eq. �64b�. By sustituting this
result in Eq. �64b� we arrive after some algebra at

�b̃�2 =
D
�2

1

N�

�1 − ����−1�/4

�1 + ����+1�/4e�
0/2��e+�o�. �65�

Using the previous result, we can define Kondo temperatures
for each channel as41

TK
e 	 �
̃0

2 + �̃e
2 =

�1 − ����−1�/4

�1 + ����−1�/4De�
0/2��e+�o�,

TK
o 	 �
̃0

2 + �̃o
2 =

�1 − ����+1�/4

�1 + ����+1�/4De�
0/2��e+�o�. �66�

Using the above result we obtain the renormalized level po-
sition


̃0 =
D
�2

exp�
0/
2��e+�o�� �1 − ����+1�/4

�1 + ����−1�/4 . �67�

Equations �66� and �67�, which are the main results of this
section, give the Kondo temperatures and level position for
arbitrary mixing �. Note that �e+�o=2� does not depend on
� and therefore the Kondo temperature depends on orbital
mixing only through the prefactor. TK

e changes very little as �
increases whereas TK

o decreases down to zero as �→1

�maximum mixing�. Similarly, 
̃0 goes from TK	N��b̃�2��
=0�= D

�2
exp�
0/4� to zero, in agreement with the Friedel sum

rule. From the above results, we conclude that the odd orbital
becomes decoupled at maximum mixing where we are left
with SU�2� Kondo physics arising from spin fluctuations in
the even orbital channel. This SU�4�→SU�2� transition as
mixing increases is illustrated in Fig. 2 where we plot the
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SBMFT parameters as a function of � �see Fig. 13�.
Now we are in position to calculate transport properties.

For this purpose it is now more convenient to write SBMFT
equations in matrix form as �here we are back to the original
basis�

�b̃2� −
1

N
� d�

2�i
TrĜ���� =

1

N
, �68a�

��b̃�2 +
1

N
� d�

2�i
Tr��̂rĜ���� + �̂�Ĝa���
 = 0. �68b�

The trace includes also the sum over spin indices. Here, Ĝ�

is the lesser matrix orbital Green function which is related to

the advanced Ĝa and retarded Ĝr matrix Green functions
through the expression

Ĝ� = Ĝa�̂�Ĝr, �69�

where �̂� is the lesser matrix self-energy. The explicit ex-
pressions for these matrices are

Ĝa��� =
1

�� − 
̃0 − iTK�2 + �2TK
2

� �� − 
̃0 − iTK i�TK

i�TK � − 
̃0 − iTK
� . �70�

�Ĝr is obtained by direct complex conjugation of Ĝa.� The
lesser matrix self-energy reads

�̂� = − 2i
fL��� + fR����� TK �TK

�TK TK
� . �71�

In the same way the retarded matrix self-energy is

�̂r = − i�̂ = − i� TK �TK

�TK TK
� . �72�

Inserting Eqs. �70� and �71� in Eq. �69� we obtain for the
lesser orbital Green function

Ĝ� =
− iTK

�� − 
̃0�4 + 2�1 + �2�TK
2 �� − 
̃0�2 + ��2 − 1�2TK

4 � �� − 
̃0�2 + TK�1 − �2� �
�� − 
̃0�2 − TK�1 − �2��
�
�� − 
̃0�2 − TK�1 − �2�� �� − 
̃0�2 + TK�1 − �2�

� . �73�

Using the explict expressions of the self-energies and the
nonequilibrium Green functions we simplify Eq. �68b� as
follows:

��b̃�2 +
1

N
� d�

2�i
TrĜ������ − 
̃0� = 0. �74�

By solving in a self-consistent way Eqs. �68a� and �74� for
each dc bias Vdc, one gets the behavior of the two renormal-
ized parameters at nonequilibrium conditions.36

The electrical current has in appearence the same form as
the conventional Landauer-Büttiker current expression for
noninteracting electrons

I =
2e

�
� d�

2�
T��,Vdc�
fL��� − fR���� . �75�

Caution is needed in order to make a correct interpretation of
Eq. �75�, since it contains “many-body” effects via the renor-
malized parameters that have to be determined for each Vdc

in a self-consistent way. As a result, T�� ,Vdc� has a nontrivial
behavior with voltage in contrast with the noninteracting
case. The nonlinear conductance is calculated by direct deri-
vation of Eq. �75� with respect to the bias voltage: G
	dI /dVdc. In the limit of Vdc→0 �at equilibrium� the linear
conductance G0 is given by the well-known expression

G0 =
2e2

h
T�0� , �76�

where the transmission is

T��� = Tr�Ĝa�̂Ĝr�̂
 . �77�

Finally, inserting Eqs. �70� and �72� in Eq. �77� one arrives at
the explicit formula for the transmission

FIG. 13. Transition from SU�4� to SU�2� Kondo physics as ob-
tainded from SBMFT: As the orbital mixing increases, the SU�4�
Kondo effect reduces to an SU�2� spin Kondo effect. This is re-
flected in both the position of the Kondo resonance 
Fig. 2�a�� as
well as the reduction of the odd Kondo temperature down to zero

Fig. 2�b��, see main text.
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T��� =
2TK

2 
�1 + �2��� − 
̃0�2 + TK
2 ��2 − 1�2�

�� − 
̃0�4 + 2�1 + �2�TK
2 �� − 
̃0�2 + ��2 − 1�2TK

4 ,

�78�

which is the main result of this part. Remarkably, the linear
conductance G0 does not depend on �. In particular, for the
SU�4� Kondo model ��=0�, the transmission takes the
simple form

T��� =
2TK

2


�� − 
̃0�2 + TK
2 �

. �79�

In this case the resonance is pinned at �= 
̃0=TK with a width
given by TK; this leads to T�0�=1 and in consequence G0

=2e2 /h. For �=1 
two-level SU�2� Kondo model� Eq. �78�
reduces to

T��� =
4TK

2


�� − 
̃0�2 + 4TK
2 �

. �80�

In this case the resonance occurs at �= 
̃0=0 and again
T�0�=1⇒G0=2e2 /h. As we pointed out, this fact makes
both Kondo effects indistinguishable through linear conduc-
tance measurements.

All these features are clearly seen in Fig. 14 where the
transmission for different amount of mixing, i.e., different �,
is plotted. Thus, for �=0 the transmission peak is located at
TK as expected whereas for �=1 this moves towards �=0.
During the transition from the SU�4� to the two-level SU�2�
Kondo model, the transmission gets narrower and develops a
“cusp” signaling the competition between even and odd
channels. This is clearly seen if we rewrite the transmission
as follows:

T��� =
�1 + ��2TK

2


�� − 
̃0�2 + TK
2 �1 + ��2�

+
�1 − ��2TK

2


�� − 
̃0�2 + TK
2 �1 − ��2�

.

�81�

Note that both channels are resonant at the same energy 
̃0

but have different widths ��̃e and �̃o�, which explains the
“cusp” behavior. Here, we speculate that a finite splitting �

originated from charge fluctuations42 �not included at the SB-
MFT level� would give rise to two split resonances for �

�0, namely, 
̃0→ 
̃0
±=�
±��̃e�̃o. This is confirmed in the

next section where we present results obtained from a full
NCA calculation including fluctuations. Eventually, for �
=1 the competition cannot occur and the transmission does
not show the cusp.

B. Noncrossing approximation method

The SBMFT suffers from two drawbacks: �1� it leads al-
ways to local Fermi liquid behavior and �2� The SBMFT has
a phase transition �originating from the breakdown of the
local gauge symmetry of the problem� that separates the low
temperature state from the high temperature local moment
regime. This later problem may be corrected by including
1/N corrections around the mean-field solution. The non-
crossing approximation �NCA�43–45 is the lowest order self-
consistent, fully conserving and � derivable theory in the
Baym sense46 which includes such corrections. Without en-
tering into much detail of the theory, we just mention that the
boson fields in Eq. �54�, which were treated as averages in

the previous subsection 
b�t� /�N→ �b� /�N	 b̃�, are treated
now as fluctuating quantum objects. In particular, one has to
derive self-consistent equations-of-motion for the time-
ordered double-time Green’s function �subindexes are omit-
ted here�

iG�t,t�� 	 �Tcf�t�f†�t��� ,

iB�t,t�� 	 �Tcb�t�b†�t��� �82�

or in terms of their analytic pieces

iG�t,t�� = G��t,t����t − t�� − G��t,t����t� − t� ,

iB�t,t�� = B��t,t����t − t�� + B��t,t����t� − t� . �83�

A rigorous and well established way to derive these
equations-of-motion was first introduced by Kadanoff and
Baym,47 and has been related to other nonequilibrium meth-
ods �like the Keldysh method� by Langreth, see Ref. 40 for a
review. Here, we just show numerical results of the NCA
equations for our problem and refer the interested reader to
Refs. 38 and 43–45 for details.

In particular, the density of states is given by

	�
� = −
1

�
�

�=e,o,�
Im
A��

r �
�� , �84�

where A��
r �
� is the Fourier transform of the retarded Green

function

A��
r �t� = G�,�

r �t�B��− t� − G��
� �t�Ba�− t� . �85�

The density of states for different values of �, and different
temperatures, is plotted in Fig. 15. Interestingly, the cusp
behavior of Fig. 14 in the previous subsection now becomes
a splitting for the even and odd channels. This is illustrated
in the inset where the curve corresponding to �=0.5 is plot-
ted together with the individual even and odd channel con-
tributions. As we anticipated, the presence of charge fluctua-
tions yields the splitting of 
0 s due to the different

FIG. 14. �Color online� Equilibrium SBMFT result: Transmis-
sion, T��� as a function of the frequency for several values of �.
Left inset corresponds to the Kondo temperature vs �.
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renormalization arising from different couplings for the even
and odd channels ��e�o�� 
see Eqs. �38� and �39��.

V. CONCLUSION

We have considered the single-electron transistor �SET�
device with the CNT QD or VQD as the central island in the
Kondo regime. We studied the case where the CNT QD or
VQD has a high symmetry so that the orbital quantum num-
bers are conserved through the system. We investigated in
detail how different Kondo physics, the SU�4� Kondo effect
or the two-level SU�2� Kondo effect, emerges depending on
the extent to which the symmetry is broken in realistic situ-
ations. We used four different theoretical approaches, the
scaling theory, the NRG method, the SBMFT, and the NCA
method to address both the linear and nonlinear conductance
for different values of external magnetic field. Our results
show that there is no way to distinguish experimentally by
means of the linear conductance �low-energy property�
alone. The SU�4� Kondo physics, which arises with higher
symmetry, can be observed exclusively only by the nonlinear
conductance �higher-energy property� in the presence of fi-
nite mangetic field, as in the recent experiment.9,48 The sym-
metry breaking �either the orbital anisotropy 1−�2 /�1 or the
orbital mixing �X� drives the system from the SU�4� Kondo
fixed point to the SU�2� Kondo fixed point. At finite yet
sufficiently small symmetry breaking, the SU�4� Kondo
phyiscs governs the transport in the system at relatively high
energies �order of the Kondo temperature� while the two-
level SU�2� Kondo effect takes it over at extremely low en-
ergies. This gives another reason why the indications of the
SU�4� Kondo physics should be investigated by means of the
nonlinear conductance in the presence of external magnetic
field.
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APPENDIX: NUMERICAL RENORMALIZATION
GROUP

The Hamiltonian �3� allows both the charge fluctuations
and spin fluctuations. The charge fluctuations �accompanied
by the particle-hole excitations� occur at high energies while
the spin fluctuations prevail at low energies. Therefore in
order to understand the low-energy properties of the system,
it is useful to take a renormalization group �RG� approach
and to obtain an effective Hamiltonian allowing only the spin
fluctuations. One can take three-state perturbative RG proce-
dures �scaling theory�: one first renormalizes the Anderson-
type Hamiltonian �3� until the charge fluctuations are com-
pletely suppressed17,18 �see also Ref. 27�, perform the
Schrieffer-Wolf �SW� transformation49 to obtain a Kondo-
type Hamiltonian where the spin fluctuations are described
by the spin operators, and renormalize further the resulting
Kondo-type Hamiltonian.16 The RG equations of the coup-
lilng constants in the Hamiltonian allow us to identify the
physically interesting fixed points and associated scaling
properties.

We follow the standard procedures to implement the NRG
calculations.19–21 We evaluate the various physical quantities
from the recursion relation �N�0�

H̃N+1 = �� H̃N + �N+1�
��

�f�,N,�
† f�,N+1,� + H.c.� , �A1�

with the initial Hamiltonian given by

H̃0 =
1

���H̃D + �
�m

�
�

Ṽ�,m�f�,0,�
† dm� + H.c.�� . �A2�

Here the fermion operators f�,N,� have been introduced as a
result of the logarithmic discretization and the accompanying
canonical transformation, � is the logarithmic discretization
parameter �we choose �=2�,

�N 	
1 − �−N

�
1 − �−�2N−1��
1 − �−�2N+1��
, �A3�

and

H̃D 	  
HD

D
�A4�

with  =2/1+1/�. The coupling constants Ṽ�,m have been
defined by

Ṽ�,m 	�2	0�V�,m�2

�D
, �A5�

where 	0 is the density of states of the leads at the Fermi

energy. The Hamiltonians H̃N in Eq. �A1� have been rescaled

FIG. 15. NCA results: Density of states around 
=0 for T
=0.25TK �left� and T=TK �right� and different values of �. The inset
shows a close-up for the �=0.5 curve �thick dashed� together with
the individual even and odd channel contributions �thin dashed�.
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for numerical accuracy. The original Hamiltonian is recov-
ered by

H

D
= lim

N→�

H̃N

SN
, �A6�

with SN	 ��N−1�/2. At each iteration of the NRG procedures,
we calculate the local spectral density,50 which determines
the transport properties through the dot

Amm���� = Amm�
� ��� − Amm�

� ��� �A7�

with

Amm�;�
� �E� = + �

�

�0�dm�������dm��
† �0���E − E� + E0� ,

�A8a�

Amm�;�
� �E� = − �

�

�0�dm��
† ������dm��0���E + E� − E0� ,

�A8b�

where �0� ����� is the many-body ground �excited� state of
the system and E0 �E�� the corresponding energy.
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