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Nonlinear screening of charge impurities in graphene
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It is shown that a “vacuum polarization” induced by Coulomb potential in graphene leads to a strong
suppression of electric charges even for undoped case (no charge carriers). A standard linear response theory is
therefore not applicable to describe the screening of charge impurities in graphene. In particular, it overesti-
mates essentially the contributions of charge impurities into the resistivity of graphene.
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Graphene is a name given to an atomic layer of carbon
atoms packed into a hexagonal two-dimensional lattice. This
term is widely used to describe the crystal structure and
properties of graphite (which consists from graphene layers
relatively loosely stacked on top of each other), carbon na-
nutubes, and large fullerenes. Very recently, a way has been
found to prepare free-standing graphene,!? that is, real two-
dimensional crystal (in contrast with numerous quasi-two-
dimensional systems known before). The graphene turns out
to be a gapless semiconductor with a very high electron mo-
bility which makes it a perspective material, e.g., for ballistic
field-effect transistor.” It has been shown®* that the charge
carriers in graphene are massless Dirac fermions with effec-
tive “velocity of light” of order of 10° ms™'. Due to this
unusual electronic structure graphene demonstrates exotic
transport properties, such as a new kind of the integer quan-
tum Hall effect with half-integer quantization of the Hall
conductivity,>® or finite conductivity in the limit of zero
charge-carrier concentration.®%-!!

One of the peculiar transport properties of graphene, a
mobility which is almost independent on the charge carrier
concentration,’ was explained in Refs. 12 and 13 as a result
of electron scattering by charge impurities. However, a
linear-response theory was used to take into account screen-
ing effects. Rigorously speaking, this theory can be applied
only assuming that the impurity potential is small in com-
parison with the Fermi energy; however, even in semicon-
ductors where this condition can be, in general, broken this
theory can be normally used and gives reasonable results (for
the case of two-dimensional electron gas, see for review Ref.
14).

In this paper we calculate nonlinear screening of charge
impurities in graphene taking into account a “vacuum polar-
ization” effect in a region of strong potential. A general non-
linear theory of screening in the system of interacting par-
ticles can be formulated in a framework of the density
functional approach.'® In this theory a total potential V(r)
acting on electrons equals

V(r) = Vo(r) + Vipq(r), (1)
where V,(r) is an external potential and V;,4(r) is a potential

induced by a redistribution of electron density:

2 N _
Vi) = f dr'% VD), 2)

where the first term is the Hartree potential and the second
one is the exchange-correlation potential. We will consider
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here explicitly only a redistribution of charge carriers in the
external impurity potential

6‘2
V(r) = Ze—r 3)

taking into account contributions of crystal lattice potential
and of electrons in completely filled bands via dielectric con-
stant € and compensated homogeneous charge density —ern;
for the case of graphene on quartz one should choose'? e
=2.4-2.5. Here Z is the dimensionless impurity charge (to
be specific, we will assume Z>0; it can be easily demon-
strated that, actually, in our final expressions Z should be just
replaced by |Z|). This kind of approach is valid at a space
scale much larger than a lattice constant; in all other aspects,
it is formally exact until we specify the expressions for V.,
and n[V(r)].

A dimensionless coupling constant a=e?/ehvy (where
vp=10° ms~! is the Fermi velocity in graphene) determining
the strength of interelectron interactions is of order of 1
which means that it is probably hopeless to consider the
many-particle problem for graphene quite rigorously. We
will use the Thomas-Fermi theory'® which is, actually, the
simplest approximation in the density functional approach. It
is based on two assumptions: (i) we neglect the exchange-
correlation potential in comparison with the Hartree potential
in Eq. (2) and (ii) we put n(r')=n[u-V(r')], n(u) being a
density of homogeneous electron gas with chemical potential
. The former assumption means that we are interested in the
long-wavelength response of the electron system and thus
the long-range Coulomb forces dominate over the local
exchange-correlation effects. The latter one holds provided
that the external potential is smooth enough. A rigorous
statement is that an addition of constant potential is equiva-
lent to the shift of the chemical potential. In particular, the
Thomas-Fermi theory gives an exact expression for static
inhomogeneous dielectric function €(g) in the limit of small
wavevectors g— 0.!718 The Thomas-Fermi theory of atoms
is asymptotically exact in the limit of infinite nuclear
charge.'® Here we will use it just for semiquantitative analy-
sis of the problem.

In the Thomas-Fermi theory Eq. (2) reads

2 ’
e fdr,n[,u—V(r )]—n(,u). @

Vind(r) = ’
€ [r—r’|
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The function n(u) is expressed via the density of states
N(E):

o
n(M)=JdEf(E)N(E)=f dEN(E), ()

where f(E) is the Fermi function and the last equality is valid
for zero temperature (we will restrict ourselves here only by
this case). For the case of graphene with linear energy spec-
trum near the crossing points K and K’ one has

n )=1MIM|
H mhivy

(6)

where we have taken into account a factor 4 due to two
valleys and two spin projections.

Let us start first with the case of zero doping (u=0)
where, according to the linear response theory, there is no
screening at all. Substituting Egs. (4), (3), and (6) into Eq.
(1), introducing the notation

&2

V(r) F(r), (7)

€r

and integrating over the polar angle of vector r’, we obtain a
nonlinear integral equation for the function F(r):

20 (* dr’ 2rr!
F(r):Z——Q L r,K( : ,)Fz(r’), (®)

s 0 r r+r r+r

where
/2
d

mm=f — )

o VI—-k“sin” @

is the complete elliptic integral,

2 \2
Q=2<Ehv ) ; (10)
F

for the case of graphene on SiO, Q=2.

We will see below that, actually, the integral in the right-
hand side of Eq. (8) is divergent at r'=0; the reason is that
the expression (6) with the replacement of w by V(r) is not
applicable for a very small distances when the potential be-
comes comparable with the conduction bandwidth; thus we
should introduce a cutoff at r' =a where a is of order of a
lattice constant. An exact value of a is not relevant, with a
logarithmic accuracy.

To proceed further we replace variables in Eq. (8), 7'

=re', and introduce a notation F(In r)=F (r). As a result, Eq.
(8) takes the form
- 2 x
Fx)=Z- 0

w

dtF(f) - % J ’ diF*(x + 1) (1),

Ina
(11)

where
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FIG. 1. Graph of the function ¢(z) [Eq. (12)].

1
)
cosh t/2

1+¢€

$(1) == -1, (12)
'

#(x>0)=1,0(x<0)=0. The function ¢(z) decays exponen-
tially at — o0 and has a logarithmic divergence at 1=0 (see
Fig. 1). For large x the last term in the right-hand side of Eq.
(11) can be neglected. After that, Eq. (11) is transformed into
a differential equation which can be easily solved. As a re-

sult, we find the following solution for the screening function
F:

Fr) = —2—, (13)

1+201n =
a

r=a.

This logarithmic screening of the Coulomb potential re-
sults from a creation of electron-hole pairs in the vicinity of
the impurity, or, in terms of quantum electrodynamics
(QED), a “vacuum polarization.”'>? This effect can be
qualitatively described in QED by an approach which is very
similar to the Thomas-Fermi theory used here.?”

As a result, at distances much larger than the lattice con-
stant charge-impurity potential in undoped graphene equals

2
v =<1, (14)

€er r
QOln-—-
a

does not depend on the impurity charge Z, and is much
weaker than the bare potential V{(r). This follows from the
fact that the “effective fine-structure constant” for graphene,
« is close to 1, instead of 1/137 in QED.

Consider now a generic case of doped graphene. In this
case, Egs. (1), (3), (4), and (6), result in the following inte-
gral equation for the total impurity potential:
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2 ’
oy 5 2t fd V)

mehvy Ir—r'|
Ze? e’ , V2(r')
=—- ) dr .
€r 7T€ﬁ UF r'>a |I'—I' |

(15)

If one neglects the nonlinear term in the right-hand side of
Eq. (15) this equation can be easily solved by the Fourier
transform; the result for the Fourier component of the total

potential v(g) reads'>!?
2mZe?
=—, 16
v(q) g+ (16)
where
4e?|
K= 17
€ﬁzv§- (17)

is the inverse screening radius proportional to the Fermi
wave vector kp. After inverse Fourier transformation one
finds

Ze? TKF
V(r) = e T[Ho(Kr) = Yo(xr)] (18)

with asymptotic behavior

V(r)=— (19)

at kr>1; here H and Y|, are Struve and Neumann functions.
Estimating different terms in Eq. (15) one can demon-
strate that the solution (13) is still correct for kr<1 and the
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solution (18)—for xr> 1, but with a replacement of Z by

1
Z'=zZ- dr' VA (r’ 20
) fr - (r’) (20)
in the latter case. Analyzing contributions to the integral in
the right-hand side of Eq. (19) from these two regions we
obtain our final result

AR _z . (21)

1
1+ZQIn —
Ka

This is the effective charge of impurity in graphene at dis-
tances much larger than the lattice constant. Since we always
have kra<<1 this means that it is the charge that determines
electron scattering by a long-range part of charge impurity
potential in graphene. This weakens essentially this scatter-
ing mechanism since Q lnt is of order of ten for typical
charge carrier concentrations. Perturbative estimations of the
electron mobility'? should be thus multiplaied by this factor
squared. As a result, the mobility for the same parameters
turns out to be two orders of magnitude larger. Instead of
concentration-independent mobility, we obtain a mobility
proportional to In*(kpa). This weak dependence on the
charge-carrier concentration is probably consistent with the
experimental data.?! More accurately, one should use an ex-
pression for the mobility obtained by Ando'? [see Eq. (3.27)
and Fig. 5 of that paper] but with the replacement of Z by Z
when calculating the strength of the Coulomb interaction.
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