
Scattering T-matrix theory in wave-vector space for surface-enhanced Raman scattering
in clusters of nanoscale spherical metal particles

Karamjeet Arya
Department of Physics, San Jose State University, San Jose, California 95192-0106, USA

�Received 25 August 2006; revised manuscript received 8 September 2006; published 30 November 2006�

Very large enhancements up to 14 orders of magnitude in the Raman cross section from a molecule adsorbed
on a single cluster of a few nanoscale metal particles has been reported recently. The enhancement is believed
mainly due to the enhanced electric field because of the excitation of the localized surface plasmon modes. We
have developed a Green’s function theory using scattering t matrix approach in the wave-vector space to solve
the Maxwell equations for the enhanced field near a spherical metal particle cluster. The advantage of working
in the wave-vector space is that one does not need to use complicated translational addition theorem required
in the real space as used in earlier calculations. Therefore our theory can be easily extended to any shape or
size of the cluster. We consider clusters of two, three, and four spherical particles forming a linear chain,
triangle, and square and calculate their localized surface modes. These modes have much more localized field
near the cluster compared to those of single metal sphere and are redshifted. We find the enhancement in the
Raman cross section can reach up to 10 orders of magnitude due to the resonant excitation of these modes for
silver particle clusters and is in a broad frequency range. We also find new results that chainlike clusters of
three or more particles have very sharp resonant features that give a dramatic increase in the enhancement near
the resonance. The results for gold particle clusters are also presented.
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I. INTRODUCTION

Surface enhanced Raman spectroscopy was discovered
about thirty years back.1–6 It was found that Raman cross
section from a molecule enhances approximately by six or-
ders of magnitude when it is adsorbed on a rough metal �Ag,
Au, Cu� surface or on a nanoscale metal particle. This en-
hancement is now generally believed due to the increased
electric field because of the excitation of the localized sur-
face plasmon modes.5–8 The broadening of the molecular
electronic levels due to its interaction with the metal �chemi-
sortion effects� may also contribute some additional
enhancement.4,5,8 Recently, however, very large enhance-
ments up to 14 orders of magnitude in the Raman cross
section from rhodamine 6G �R6G� molecule adsorbed on a
silver nanoparticle cluster has been reported.9–18 It is now
believed that the excitation of localized surface modes in
case of silver nanoparticle cluster may contribute as high as
9–11 orders of magnitude to the enhancement compared to
4–6 orders of magnitude in case of a single spherical
nanoparticle.16,17,19 The additional enhancement of 2–3 or-
ders of magnitude in the Raman cross section from R6G
molecule can come from resonance and/or chemisortion ef-
fects.

The Raman spectroscopy is widely used in the analysis of
the molecular vibrational structure. Since vibrational spec-
trum is a fingerprint of its molecule it can provide complete
identification of a chemical or biological material of interest.
However, because of very low cross section �10−28-
10−30 cm2/molecule�, Raman spectroscopy is mostly limited
to analyze large sample volume. For small traces or for the
detection of a single molecule, the commonly used spectros-
copy technique is fluorescence because of its large cross sec-
tion ��10−15 cm2/molecule�. However, due to such a large
enhancement �up to 14 orders� in the cross section in the

presence of a silver nanoparticle cluster, the Raman cross
section becomes comparable to that of fluorescence. This has
lead to a growing interest in the surface enhanced Raman
scattering �SERS� phenomena in the last 5–7 yrs to replace
fluorescence with Raman spectroscopy for a single chemical
or biomolecule �DNA, Protein, etc.� detection.20–22 Most of
the SERS experiments are carried on from silver particle
clusters obtained from colloidal solutions. Not all clusters
give such a large enhancement. Only a very few clusters
termed as “hot spots” and under suitable experimental con-
ditions give large enhancement. To make SERS a viable
technique in the detection of a trace of a material or a single
molecule, one needs to analyze what shape or size of the
nanoparticle cluster can give the maximum enhancement.
Therefore, instead of using self-arranged particle clusters
from colloidal solutions one can engineer a cluster with a
specific shape and size for the maximum enhancement.

The electric field from a single spherical metal particle
can be easily calculated as exact solutions of Maxwell equa-
tions for a dielectric sphere are well known.7,23 However, for
a cluster of two or more spherical particles, Maxwell equa-
tions can be solved only approximately in the nonretardation
limit.24–28 Inoue et al.29 developed a Green’s function ap-
proach to calculate the electric field near a cluster that in-
cludes multiple scattering of spherical waves between the
spherical particles forming the cluster. The spherical waves
are expressed in terms of vector spherical harmonics with
respect to the center of a respective sphere. Their approach is
based on including multiple scattering in the real space.
Therefore one needs to use translational addition theorem for
the coordinate transformation of the vector spherical har-
monics between the centers of the spheres in the cluster.30–32

They have thus calculated the enhanced electric field near a
simple cluster of few spherical particles. This approach is
quite involved and is not simple to extend to different shape
or size of the cluster.
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In this paper, we have developed a Green’s function
theory using scattering t matrix in the Fourier �wave-vector�
space. It has been earlier used to include multiple scattering
of electromagnetic �em� waves from a random distribution of
dielectric spheres.33–35 In the wave-vector �k�� space, one
does not need any coordinate transformation for the vector
spherical harmonics. It simply adds an exponential factor

eik�·R� � for each sphere � in the cluster where R� � is the position
vector of its center. This can be handled easily in the calcu-
lations compared to the use of translational addition theorem.
This makes our approach simpler and thus can be easily ex-
tended to determine the enhanced field near a cluster of any
shape or size.

In Sec. II, we discuss the Green’s function formulation
based on the scattering T matrix for the cluster and obtain a
general expression for the electric field at any point. We then
discuss the multiple scattering between the spheres and ob-
tain an integral equation for the scattering T matrix for the
cluster in terms of the single sphere scattering matrix. In the
Fourier space and in the angular momentum representation,
the integral equation reduces to a matrix equation that can be
solved numerically. We would like to mention that the defi-
nition used for vector spherical harmonics by various authors
in the literature is not consistent at least with respect to the
prefactor as in usual spherical harmonics ylm�� ,��.23,29,33,36

We, however, use the definition consistent with that used in
Refs. 23 and 36–38. Furthermore, we find the treatment of
vector spherical harmonics in Ref. 36 in terms of coupling of
photon orbital and spin angular momentum through Clebsch-
Gorden coefficients very useful and convenient to derive
some of the relations involving this analysis. In the Appen-
dix, we have given this definition and derive some of the
useful results analytically using this definition.

In Sec. III, we give numerical results for the enhancement
in the electric field intensity and in the Raman cross section
in the presence of a metal particle cluster. We consider two
particles cluster in the shape of a dimer and three and four
particles forming a linear chain, triangular, and square shape
clusters. For two particles cluster we first derive analytically
the results obtained earlier24–26 in the dipole approximation
by including only lowest partial wave �l=1� contribution in
our theory. Our theory reproduces exactly the same results,
for example, for the number of modes, their excitation ener-
gies and their electric field strength. However, when higher
partial waves are included in our theory, we find their field
strength enhanced �more localized modes� and also a shift
towards longer wavelength. In addition, new modes appear
corresponding to higher partial waves and those can also be
excited optically. We also find that the enhancement in Ra-
man cross section can reach up to 10 orders of magnitude.
The large enhancement is usually found when the molecule
is lying trapped between the particles or very close to the
cavity. Similar results are also obtained for three and four
particle clusters with maximum enhancements in Raman
cross section reaching up to 10 orders of magnitude. How-
ever, for linear chain of three or more particles, we find
important new results where the enhancement in Raman
cross section drops dramatically near the resonant peak.
These sharp resonant features indicate the existence of very

localized modes for a chain and are the result of interference
effects of higher partial waves included in our theory. We
also consider clusters of gold nanoparticles. However, the
enhancement in Raman cross section is between 7–8 orders
of magnitude only because of large imaginary parts of the
dielectric function of gold. We conclude these results in Sec.
IV.

II. GREEN’S FUNCTION FORMULATION

A. General expression

We consider a single cluster of an arbitrary number of
spherical metal particles with the same or different radii em-
bedded in a host medium of dielectric constant �0. These
particles may be touching each other but do not overlap. The

electric field E� �r� ,�� at any point then satisfies the Maxwell
equation

− �� � �� � E� �r�,�� + k2��r�,��E� �r�,�� = 4��− i�

c2 � j�0�r�,�� ,

�2.1�

where k2=�0�2 /c2 and j�0�r� ,�� is the current source corre-
sponding to the incident field of frequency �. ��r� ,�� is the
scaled dielectric function equal to 1 for r� in the host medium
and ���� /�0 for r� within any metal sphere. We define the

photon Green’s function dJ as the solution of Maxwell equa-
tion

− �� � �� � dJ�r�,r���� + k2��r�,��dJ�r�,r���� = 4���r� − r���IJ,

�2.2�

where IJ is a unit dyadic. From Eqs. �2.1� and �2.2� one can
write

E� �r�,�� = �− i�

c2 � � d3r�dJ�r�,r��,�� · j�0�r��,�� . �2.3�

We now define the scattering TJ matrix for the cluster as

dJ�r�,r��,�� = dJ0�r�,r��,�� +� d3r�d3r�

�dJ0�r�,r��,�� . TJ�r��,r��,�� · dJ0�r��,r��,�� ,

�2.4�

where dJ0�r� ,r�� ,�� is the photon Green’s function for the host
medium �replace ��r� ,�� by 1 in Eq. �2.2��. Using Eq. �2.4� in
Eq. �2.3� we find
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E� �r�,�� = E� inc�r�,�� +� d3r�d3r�

�dJ0�r�,r��,�� · TJ�r��,r��,�� · E� inc�r��,�� , �2.5�

where E� inc�r� ,�� is the incident field.
It is convenient to work in spherical polar coordinates

because of the spherical geometry of the scattering particles
in the cluster. Therefore we write the expression for the host

Green’s function dJ0 also in these coordinates. This can be
easily done since eigensolutions of the Maxwell equation for
the host medium are well known in spherical polar coordi-
nates. For example29

dJ0�r�,r��,�� = − 4�ik	
lm	

A� klm	�r��A� klm	
* �r���, r � r�

=
4�

k2 ��r� − r���IJ, r = r�, �2.6�

where A� klm	�r�� are the two electric �	=1� and magnetic �	
=2� transverse eigenmodes of the homogeneous Maxwell
equation �2.1� with ��r� ,��=1. These are given as23

A� klm1�r�� =
i

k
�� � �f l�kr�X� lm�
��

=
i

k

1

r

�

�r
�rf l�kr��r̂ � X� lm�
�

+ i�l�l + 1�
f l�kr�

r
ylm�
�r̂� , �2.7�

A� klm2�r�� = f l�kr�X� lm�
� , �2.8�

X� lm�
� =
1

�l�l + 1�
L�ylm�
� , �2.9�

where L� =−ir���� is the angular momentum operator and
f l�r� is the spherical Bessel function jl�r� or the Henkel func-
tion hl

�1��r� of the first kind depending on whether r includes
the origin or not. Also ylm�
� are the usual spherical harmon-
ics where 
= �� ,�� are the polar angles of r�. Note that

X� lm�
�, hence A� klm	�r�� are equal to zero for l=0. One can
show this from Eq. �2.9� or from Eq. �A6�. Therefore, in the
following, the summation includes terms only for l�1.

The solution of Eq. �2.5� has been discussed earlier in
Ref. 29 in the real space using the translational addition theo-
rem. We, however, solve it in the Fourier �wave-vector�
space. We find our treatment in the Fourier space is simpler
and easy to extend to any shape or size of the cluster. We
define the Fourier transformations as

A� klm	�r�� =� d3Q

�2��3eiQ� ·r�A� klm	�Q� � , �2.10�

TJ�r�,r��,�� =� d3k

�2��3

d3k�

�2��3ei�k�·r�−k��·r��TJ�k�,k��,�� .

�2.11�

Using Eq. �2.6� and these Fourier transformations, one can
rewrite Eq. �2.5� as

E� �r�,�� = E� inc�r�,�� − 4�ik	
lm	

A� klm	�r�� � d3k1

�2��3A� klm	
* �k�1� · TJ�k�1,k�,�� · E� inc�k�,�� , �2.12�

where we have assumed the incident field

E� inc�r�,�� = E� inc�k�,��eik�·r�, �2.13�

as a single plane wave of wave vector k� and frequency �.
The second term on the right hand side of Eq. �2.12� thus
describes the scattered field by the cluster.

The expressions for A� klm	�r�� in spherical polar coordi-
nates �Eqs. �2.7�–�2.9�� are quite involved. As a result, most
of the earlier calculations are limited to the scattering prob-
lem from a single dielectric sphere. We, however, find it
convenient to write these functions in terms of vector spheri-

cal harmonics V� lLm�
� or Y� lm	�
�. These functions have
been discussed briefly in Refs. 36 and 38 and are obtained
from the addition of an orbital and spin angular momentum
of a photon in terms of the Clebch-Gorden �CG� coefficients.
In the Appendix, we have given the definitions of these vec-
tor spherical harmonics from Ref. 36 and also expressed

A� klm	�r�� in terms of these functions. We find them very use-
ful in deriving some of the results analytically. We will need
them for the scattering problem from a cluster of spherical
particles in the following section. These are also helpful in
the numerical calculations of the enhanced electric field. For
example, using these relations and using the orthogonality
relation for the spherical Bessel functions:

�
0

�

f l�kr�f l�k�r�r2dr =
�

2k2��k − k�� , �2.14�

one can derive the Fourier transformations of A� klm	�r�� from
Eqs. �2.7�–�2.9� as �see the Appendix�
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A� klm	�Q� � = 4��− i�l�− 1�	Y� lm	�
Q�
�

2k2��k − Q� ,

�2.15�

where

Y� lm1�
k� = k̂ � X� lm�
k� , �2.16�

Y� lm2�
k� = X� lm�
k� , �2.17�

are the vector spherical harmonics.36–38 Some of the other
useful results have also been derived in terms of vector
spherical harmonic in the Appendix.

B. Multiple scattering

We now discuss the scattering TJ matrix of the cluster in
the framework of the multiple scattering theory. Let tJ��r�

−R� � ,r��−R� � ,�� denotes the scattering matrix of the single

spherical particle centered at R� �. Then the scattering TJ ma-
trix of the cluster can be written as a series expansion in
terms of tJ� as33,34

TJ�r�,r��,�� = 	
�,

TJ��r� − R� �,r�� − R� ,�� , �2.18�

TJ� = tJ��� + tJ� · dJ0 · tJg���

+ 	
�

tJ� · dJ0 · tJ� · g����dJ0 · tJg��� + ¯ .

�2.19�

In Eq. �2.19�, we have suppressed the explicit dependence on

r� ,r�1 , . . . ,r�� and �. Also TJ� describes all scattering possibili-
ties from sphere  to � due to multiple scattering within the
cluster. However, consecutive multiple scattering from the
same sphere is not allowed. This is included in Eq. �2.19� by
the function g�� �=0 for �= and =1 otherwise. This is
shown schematically in Fig. 1. The series expansion in Eq.
�2.19� can be expressed by an integral equation as

TJ��r� − R� �,r�� − R� ,��

= tJ��r� − R� �,r�� − R� �,���� + 	
�
� d3r1d3r2tJ��r� − R� �,r�1 − R� �,�� · dJ0�r�1,r�2,�� · g����TJ��r�2 − R� �,r�� − R� ,�� .

�2.20�

Using the Fourier transformations as defined in Eq. �2.11� for tJ� and TJ�, one can show that

TJ�k�,k��,�� = 	
�,

TJ��k�,k��,��e−i�k�·R� �−k��·R� �, �2.21�

where in the Fourier space the integral equation �2.20� reduces to the following integral equation for TJ��k� ,k�� ,��:

TJ��k�,k��,�� = tJ�k�,k��,���� + 	
�
� d3k1

�2��3 tJ�k�,k�1,�� · dJ0�k1,�� · eik�1·�R� �−R� ��g����TJ��k�1,k��,�� . �2.22�

In Eq. �2.22�, dJ0�k1 ,�� is the Fourier transform of the host
medium Green’s function. Using translational symmetry of

the host medium, that is, dJ0�rJ1 ,rJ2 ,��=dJ0�rJ1−rJ2 ,�� and Eq.
�2.15�, one can easily obtain its expression from Eq. �2.6� as

dJ0�k1,�� = − i
2�2

k
��k − k1�IJ. �2.23�

We now discuss the solution of the integral equation
�2.22�. Since solutions of Maxwell equations for a single
dielectric sphere are well known in spherical polar coordi-

nates, one can easily derive the expression for a single sphere
t matrix using the vector spherical harmonics as �see the
Appendix�

tJ��k�,k��,�� =
4�i

k
	
lm	

Y� lm	�
k�ckl	�Y� lm	
* �
k�� , �2.24�

where k�  = k��  =��0� /c. ckl	� are the Mie scattering coeffi-

cients of a spherical wave A� klm	�r�� from a dielectric sphere
of radius R��� and dielectric constant ����. These are given
as23,39

FIG. 1. Schematic picture of multiple scattering of a photon
from the dielectric spheres in a three-particle cluster.
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ckl1� =
− ����jl�kiR�����kR���jl�kR������ + jl�kR�����kiR���jl�kiR������

����jl�kR�����kR���hl
�1��kR������ + hl

�1��kR�����kiR���jl�kiR������
, �2.25�

ckl2� =
jl�kiR�����kR���jl�kR������ + jl�kR�����kiR���jl�kiR������

hl
�1��kR�����kiR���jl�kiR������ + jl�kiR�����kR���hl

�1��kR������
, �2.26�

where ki=�����k. The prime in Eqs. �2.25� and �2.26� denotes the derivative of the term within the brackets with respect to
the arguments of the spherical Bessel jl or Henkel function hl

�1�.
Equation �2.22� is a tensor integral equation. However, because of the separable nature of the tensor tJ��k� ,k�� ,�� �see Eq.

�2.24��, this integral equation can be reduced to a scalar matrix equation in the angular momentum representation. For

example, writing some of the terms in the series expansion of Eq. �2.22�, one can show that TJ��k� , k�� , �� is of the form

TJ��k�,k��,�� =
4�i

k
	

lm	,l�m�	�

il�−l�− 1�	�−	Y� lm	�
k�ckl	�Q�lm	�l�m�	��Yl�m�	�
* �
k�� , �2.27�

where the scalar function Q�lm	�  l�m�	�� satisfies the following scalar matrix equation

Q�lm	�l�m�	�� = �ll��mm��		��� + 	
l1m1	1�

B�lm	R�l1m1	1R��ckl1	1�Q�l1m1	1�l�m�	�� , �2.28�

and the matrix B is given as

B�lm	R�l�m�	�R�� = il−l��− 1�	−	�� d
kY� lm	
* �
k� · Y� l�m�	��
k�e−ik�·�R� �−R� ��g���� . �2.29�

The solution of Eq. �2.28� can then be written in the matrix
notation as

Q = �I − Bc�−1. �2.30�

The angular integration in Eq. �2.29� can be simplified by

expanding the exponential function e−ik�·�R� �−R� �� for R� ��R� � in
terms of Henkel function of first kind as

e−ik�·�R� �−R� �� = 4� 	
l1m1

�− i�l1hl1
�1��kR���yl1m1

�
k�yl1m1

* �
R��
� ,

�2.31�

where R� ��=R� �−R� �. Therefore, one has

B�lm	R�l�m�	�R�� = 4� 	
l1m1

il−l�−l1�− 1�	−	�hl1
�1��kR���

�yl1m1

* �
R��
�g����Clm	,l�m�	�

l1m1 ,

�2.32�

where

Clm	,l�m�	�
l1m1 =� d
Y� lm	

* �
� · Y� l�m�	��
�yl1m1
�
�

�2.33�

are Gaunt coefficients. One can calculate them by expressing

Y� lm	�
� in terms of the usual spherical harmonics �Eqs. �A5�
and �A6��. This leads to the addition of three angular mo-
mentums. The angular integration can then be carried out in
terms of the CG coefficients. We have given these expres-
sions in the Appendix, which are easy to use for numerical
purposes.

Thus using Eqs. �2.15�, �2.21�, and �2.27� in Eq. �2.12�,
we find

E� �r�,�� = E� inc�r�,�� + 	
lm	

A� klm	�r�� 	
l1m1	1l�m�	��

B̃�lm	0l1m1	1R��ckl1	1
Q�l1m1	1�l�m�	��al�m�	�

inc �k��eik�·R� , �2.34�
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where the matrix B̃ in Eq. �2.34� is essentially the same as
the matrix B in Eq. �2.29� except one of the R vector is zero.
In writing Eq. �2.34�, we have used the expansion of the
incident plane wave in to vector spherical harmonics as

E� inc�k�,��eik�·r� = 	
lm	

alm	
inc �k��A� klm	�r�� , �2.35�

where alm	
inc �k�� are the expansion coefficients. These can be

determined using the Fourier transformations on both sides
of Eq. �2.35� and using Eq. �2.15� as �see the Appendix�

alm	
inc �k�� = 4�il�− 1�	E� inc�k�,�� · Y� lm	

* �
k� . �2.36�

In Eq. �2.34�, the second term on the right hand side corre-

sponds to the scattered field E� sc�r� ,�� from the cluster. Simi-
lar to Eq. �2.35�, one can also write

E� sc�r�,�� = 	
lm	

alm	
sc �k��A� klm	�r�� , �2.37�

where

alm	
sc �k�� = 	

l1m1	1l�m�	��

B̃�lm	0l1m1	1R��ckl1	1

�Q�l1m1	1�l�m�	��al�m�	�
inc �k��eik�·R� ,

�2.38�

are the scattering coefficients of a spherical wave A� klm	�r�� by

the cluster. Thus the total field E� �r� ,��=E� inc�r� ,��+E� sc�r� ,��
at any point r� can be written as

E� �r�,�� = 	
lm	

�alm	
inc �k�� + alm	

sc �k���A� klm	�r�� . �2.39�

In the derivation of Eq. �2.34�, one can choose any origin
for the spherical polar coordinate system. In Ref. 29, similar
calculations are carried on in real space where the origin is

taken as the center of one of the spheres. Therefore, one
needs a coordinate transformation for the vector spherical
harmonics for another sphere with respect to the first one.
This makes the calculations very involved. However, in the
Fourier wave-vector space, it just corresponds to an addi-

tional exponential factor of the type e−ik�·�R� �−R� �� in B matrix
�Eq. �2.29��, which can be handled easily. For simplification
of numerical work, we chose the origin to be the point where
the field is calculated, that is, outside any sphere. For ex-
ample, in SERS it can be the position of the molecule. In this

case, A� klm	�r�� in Eq. �2.39� will contain only jl�r� and for r
→0, only l=1 and 	=1 terms contribute. Note that l=0 term
is not allowed in the summation. One can also show that

from Eqs. �2.7� or �A8�that A� k1m1�r�→0�=−êm /�6� where
the unit vectors êm are defined in Eq. �A2�. Thus from Eq.
�2.39�, we have

E� �r� → 0,�� = −
1

�6�
	

m=−1

1

�a1m1
inc �k�� + a1m1

sc �k���êm.

�2.40�

We now define the enhancement factor in the electric field
intensity in the presence of the cluster compared to the in-
tensity at the same point in the host medium as

F�k�,�� = � E� �r�,��

E� inc�r�,��
�2

=

	
m=−1

1

a1m1
inc �k�� + a1m1

sc �k��2

	
m=−1

1

a1m1
inc �k��2

.

�2.41�

One can also discuss the contribution due to the enhanced
electric field in the Raman cross section from a molecule
adsorbed on a metal nanoparticle cluster. The Raman cross
section 	 from a free molecule has the expression of the type

	mole
Raman � � �g,1r� · E� 0�r�,�s��m,1��m,1Hel-vibm,0��m,0r� · E� 0�r�,�i�g,0�

�Em − Eg − � �s��Em − Eg − � �i�
�2

. �2.42�

In Eq. �2.42�, g ,�� and m ,�� are the free molecule states
where g and m correspond to the ground and excited elec-
tronic states with energies Eg and Em, respectively, and �
=0,1 corresponds to the vibrational states of the molecule.
Also Hel-vib is the electron-vibration interaction in the mol-
ecule and ��i and ��s are the incident and Raman scattered
photon frequencies, respectively. E� 0�r� ,�i� and E� 0�r� ,�s� are
the dipole electric fields seen by the molecule in the free
space. However, if the molecule is lying close to the cluster,
it will see the enhanced field due to the multiple scattering
from the cluster. In the SERS, both fields at incident and
Raman scattered frequencies ��i, �s� will be enhanced.

Therefore, the enhancement in the Raman cross section can
be written as

	SERS

	 free = � E� �r�,�i�

E� inc
0 �r�,�i�

�2� E� �r�,�s�

E� inc
0 �r�,�s�

�2

= F�k�i,�i�F�k�s,�s� ,

�2.43�

where k�i and k�s are the incident and scattered photon wave
vectors, respectively.
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III. NUMERICAL RESULTS AND DISCUSSIONS

We now give numerical results for the enhancement in the
electric field intensity and in the Raman cross section from a
molecule due to the presence of a cluster calculated from
Eqs. �2.14� and �2.43�, respectively. We have considered
clusters of both silver and gold nanoparticles. The dielectric
constant ���� of silver and gold is taken from the experimen-
tal work of Johnson and Christy.40 This data in terms of
wavelength is also given in the Appendix of Ref. 41. The
host dielectric constant �0=1. We have considered clusters
made of two, three, and four spherical particles arranged in
different shapes as linear chain, triangular, and square. As
discussed in the previous section, we assume the position of
the molecule as the origin of the coordinate system. This is
not a required condition, however, it reduces the computa-
tional time considerably without any approximation. There-
fore, in our calculations, the vector R� � in Eq. �2.29� corre-
sponds to the coordinates of the center of sphere � with
respect to this origin �molecule�.

One should note that there are three factors contributing
to the SERS enhancement: �i� The resonant excitation of the
localized modes of the cluster. In our theory, these modes
correspond to the poles of the scattering T-matrix those are
also the poles of the matrix Q �see Eqs. �2.27� and �2.30��.
The resonant position of these modes depends on the size
and shape of the cluster. �ii� The probability of the excitation
of these modes by the incident �scattered� photon. This may
depend, for example, on the polarization and wavelength of
the photon and all these modes may not be optical active.
�iii� The electric field strength of the localized mode at the
position of the molecule. The electric field of these modes is
highly localized. Therefore, large enhancements are possible
only if the molecule lies very close to the cluster. We now
discuss clusters of two and more than two spherical particles
separately.

A. Two particles cluster (dimer)

The localized modes of a dimer have been discussed ear-
lier in Refs. 24–26 in the dipole approximation �l=1�. The
SERS enhancement has also been calculated in Refs. 16, 17,
and 29 using multiple scattering approaches in the real space.
Our theory using multiple scattering in wave-vector space
also gives similar results. For example, in Fig. 2, we consider
cluster of two silver spheres each of radius 20 nm. The mol-
ecule is assumed to be in the middle of the two spheres
separated by 1 nm roughly the size of the R6G molecule.
This situation is believed in SERS experiments from R6G
molecule in silver colloidal solution where the molecule is
trapped in between the colloidal particles termed as hot
spots.9,11 The polarization direction of the incident and scat-
tered wave is taken along the dimer axis. Furthermore, in
Raman scattering since there is only a small difference be-
tween the incident and scattered photon energies, we assume
�i��s=�. Therefore, from Eq. �2.43� we have

	SERS

	 free � � E� �r�,��

E� inc
0 �r�,��

�4

= F�k�,��2. �3.1�

The enhancement �in log scale� calculated from Eqs. �3.1�
and �2.41� is plotted as a function of the incident photon

wavelength �Fig. 2�a��. We find the maximum enhancement
in the Raman cross section can reach more than ten orders of
magnitude. For comparison, we have also calculated the
SERS cross section from a molecule adsorbed on a single Ag
sphere of radius 20 nm �Fig. 2�c��. Note that even though
scattering from a single sphere can be obtained from the
solutions of the Maxwell equations directly, one can also use
the same set of equations as derived in Sec. II. For a single
sphere, however, the matrix B in Eq. �2.29� is a null matrix.
The maximum enhancement in case of single sphere is about
5 orders of magnitude only and occurs around 360 nm. This
peak corresponds to the excitation of the localized Mie mode
of a single sphere that is given by the poles in the Mie scat-
tering coefficient ckl1� �Eq. �2.25��. For l=1 and for small
sphere radius, Mie mode is given by

���� + 2 +
12

5
�kR�2 � 0. �3.2�

Note that the Mie resonance for a single metallic sphere oc-
curs only for electrical mode �	=1� and not for magnetic
mode �	=2�.

Two broad peaks around 430 and 370 nm in case of dimer
�Fig. 2�a�� correspond to the localized modes of the dimer.
These modes of a coupled two sphere system have been dis-
cussed earlier by various authors using different techniques
and approximations in the long wavelength �kR→0�
limit.24–26 For example, in Ref. 24, two spheres are treated as
electrical point dipoles �l=1�. The effects of higher partial
waves are discussed approximately in Refs. 25 and 26. In our

FIG. 2. Calculated electric field enhancements of Raman cross
sections in the case of spherical silver particle cluster. �a� Molecule
is adsorbed in between two spheres �dimer� each of radius R
=20 nm. The full circle is a silver sphere and an open circle in
between is a molecule of 1 nm size. The polarization of both inci-
dent and scattered photon is along dimer axis �shown by double
arrow�. �b� Same as in �a� but includes contributions of all partial
waves only up to l=1 in Eq. �2.34�. �c� Molecule is adsorbed on a
single sphere of radius 20 nm at a distance of 0.5 nm.
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theory, these long wavelength results can be obtained by re-
taining lowest partial wave contribution only in Eq. �2.32�.
These calculations are simple to carry out analytically and
are useful for the analysis of our exact numerical results. For
example, using l= l�=1 and 	=	�=1 in Eq. �2.32�, we have

B�1m1R�1m�1R��

= 4� 	
l1m1

i−l1hl1
�1��kd�yl1m1

* �
R��
�g����C1m1,1m�1

l1m1 ,

�3.3�

where d= R� �� is the distance between the centers of the two
spheres. Note that the coefficients C1m1,1m�1

l1m1 �see Eq. �A26��
are nonzero only for l1=0 and 2 and for m1=m−m�. In the
long wavelength limit, that is, kd→0, we have

hl
�1��kd� � − i

�2l − 1� ! !

�kd�l+1 . �3.4�

Therefore, the dominant contribution in Eq. �3.3� comes
from l1=2 term only. Furthermore one can choose z axis of
the polar coordinates along the dimer axis without loss of
any generality. Therefore, 
R��

= �0,�� and

yl1m1

* �0,�� =�2l1 + 1

4�
�m1,0. �3.5�

Thus in Eq. �3.3�, only l1=2 and m1=0 term contributes in
the summation. Thus we have

B�1m1R�1m�1R��ck11

= g����
1 − �

2 + �
�R

d
�3

�80�C1m1,1m1
20 �mm�, �3.6�

where in the limit kR→0 we have used for the scattering
Mie coefficients ck11 from Eq. �2.25� as

ck11 � − i
2�1 − ��
3�2 + ��

�kR�3. �3.7�

The Gaunt coefficients can also be calculated from Eq. �A26�
as C111,111

20 =C1−11,1−11
20 =1/�80� and C101,101

20 =−2/�80�.
Thus the 6�6 matrix �I-Bc� �Eq. �2.30�� reduces to the
form:

�I − Bc� = � I �

� I
� , �3.8�

where

� = �− � 0 0

0 2� 0

0 0 �
� , �3.9�

� =
1 − �

2 + �
�R

d
�3

. �3.10�

For a single sphere, for l=1, there are three degenerate Mie
modes �m=0, ±1�. For two isolated spheres, there will be six
degenerate modes for l=1. However, when the two spheres
are brought closer, the degeneracy may be lifted because of

dipole-dipole interaction. In Eq. �3.9�, � essentially corre-
sponds to this interaction. For isolated spheres �→0 as
R /d→0.

The eigenmodes of the coupled two spheres are given by
Det�I-Bc�=0. One can easily show that

Det�I − Bc� = �1 − ��2�1 + ��2�1 − 2���1 + 2�� = 0.

�3.11�

Therefore, we now have two doubly degenerate modes
for �=1; �����= �1−2�3� / �1+�3�� and �=−1; �����= �1
+2�3� / �1−�3��. The nondegenerate modes are for �=1/2;
�����=2�1−�3� / �2+�3�� and �=−1/2; �����=2�1+�3� / �2
−�3��. The expressions in parenthesis where �=d /R corre-
spond to the value of ���� obtained from Eq. �3.10� for the
corresponding mode. The nondegenerate and degenerate
modes correspond to the dipoles oscillating parallel �m=0�
and perpendicular �m= ±1� to the dimer axis, respectively.
These values agree exactly with the results of Refs. 24–26.

One can also calculate the scattered field due to the exci-
tation of these modes by the incident EM wave from Eqs.
�2.37� and �2.38�. All modes may not be optical active. For

example, B̃ is now 3�6 matrix. For the field in the middle of
the two spheres, this is essentially same as B matrix except in

Eq. �3.6�, we now have �2R /d� instead of R /d. Thus B̃c
= �8� 8�� where � is 3�3 matrix defined in Eq. �3.9�. The
matrix Q= �I−Bc�−1 can also be calculated easily from Eq.
�3.8� and is of the form

Q = �E F

F E
� , �3.12�

where E and F are 3�3 diagonal matrices with E11=E33
=1/ �1−�2�, E22=1/ �1−4�2�, F11=F33=� / �1−�2�, and
F22=−2� / �1−4�2�. Using these results in Eqs. �2.37� or
�2.40�, we have

E� sc�r� → 0,�� =
− 32�

1 + 2�
E� inc

� ��� +
16�

1 − �
E� inc

� ��� ,

�3.13�

where

Einc
� ��� = − a10

incê0/�6� , �3.14�

Einc
� ��� = − �a1−1

inc ê−1 + a11
incê1�/�6� , �3.15�

are the components of the incident field parallel and perpen-
dicular to the dimer axis, respectively. Close to the reso-
nance, one can show that

Esc
� �r� → 0,�� = i

96�d/R�3

�2��d/R�3 − 2�2Einc
� ��� , �3.16�

for ��−1/2 and corresponds to the collective oscillations of
the dipoles parallel to the dimer axis. For ��1, we have

KARAMJEET ARYA PHYSICAL REVIEW B 74, 195438 �2006�

195438-8



Esc
��r� → 0,�� = − i

48�d/R�3

�2��d/R�3 + 1�2Einc
� ��� , �3.17�

and it corresponds to the collective motion perpendicular to
the dimer axis. In Eqs. �3.16� and �3.17�, �2 is the imaginary
part of �=�1+ i�2. These results are also in agreement with
those obtained in Ref. 29 using point dipole approximation
for the spheres. For d /R � 2.05 used for our numerical
results, the parallel mode has resonance for �1���
�−3 and the enhanced field Esc

� /Einc
� �18.4/�2. In Fig.

2�b�, we have given the enhancement in the cross section for
a dimer calculated from Eq. �2.41� retaining only l=1 partial
wave. The maximum enhancement occurs around �
=390 nm for ���=390 nm�=−3.9+0.20i slightly shifted to-
wards longer wavelength due to finite sphere radius. For �2
=0.2, the enhancement in Raman cross section Esc

� /Einc
� 4

�7�107 in agreement with our numerical results in Fig.
2�b�. For d /R�2.05, perpendicular mode has resonance for
�1����−1.67 and the enhanced scattered field Esc

� /Einc
� 

�4.5/�2 is much smaller compared with that in the case of
parallel mode. Note that, in Fig. 2�b�, the incident and scat-
tered fields are parallel to the dimer axis. Therefore, there is
only one peak corresponding to the excitation of the parallel
mode.

The effects of higher partial waves have been discussed in
Refs. 25 and 26. One now has 2lmax�lmax+2� modes for two
sphere cluster where lmax is the maximum number of partial
waves considered in Eq. �2.30�. The interaction between
these multipolar modes has two effects:25 �i� the parallel
mode �l=1, m=0� discussed above shifts towards longer
wavelengths, that is, from �����−3 to �����−4 and �ii�
other modes corresponding to higher partial waves may be-
come optical active, e.g., for l=2, m=0. Our exact numerical
calculations support these results. For example, in Fig. 2�a�,
the peak at 390 nm in Fig. 2�b� shifts to 430 nm and another
broad peak at 370 nm appears due to the excitation of the
higher partial wave mode. However, at 430 nm, the enhance-
ment in the cross section is almost two orders of magnitude
more than at 370 nm. We also carried out calculations when
the incident and scattered photon polarization is perpendicu-
lar to the dimer axis. However, the enhancement is much
smaller in this case.16

In our numerical calculations, most of the contribution
comes from the electrical mode �	=1�. The magnetic mode
�	=2� contribution is less than 1% because of the absence of
the Mie resonance for this mode. Retaining only the electri-
cal modes, the size of the matrix �I−Bc� in Eq. �2.30� is
Nlmax�lmax+2��Nlmax�lmax+2� where N is the number of
spheres in a cluster. lmax is the maximum value of the partial
wave included in Eq. �2.30� to achieve convergence. In our
calculations, we find the convergence within 2% for lmax=6
�see Fig. 3�. Even for three and four sphere clusters discussed
later, convergence is within 3%. This is because in the cal-
culations of the local modes of a cluster �poles of Q matrix
Eq. �2.30��, the dominant contribution to the matrix elements
of Bc comes from the poles of Mie coefficients �ckl1� corre-
sponding to lower partial waves only in the wavelength re-
gion considered here. The B matrix elements, however, are

calculated exactly including all partial waves �l1�12� in the
summation in Eq. �2.32�. Far away from the Mie resonance
region or for dielectric �nonmetal� spheres the convergence
may be slow and one may need to include more partial
waves in Eq. �2.30�.

Another important reason for this convergence in our
theory is that one can chose any point to be the origin of the
spherical coordinate system because of the use of wave-
vector space. By choosing the point where the field is calcu-
lated �position of the molecule� as the origin, one needs only
l=1 and 	=1 term in Eq. �2.34�. This is because in Eq.

�2.34�, A� klm1�r�� contains jl�r� /r and for r→0, it is nonzero
only for l=1. Note that l=0 term is not allowed in the sum-
mation. In this way, at least one summation �lm	� in Eq.
�2.34� is carried out exactly. In earlier work29 that includes
multiple scattering in real space, the center of coordinate
system is taken as the center of one of the sphere in a cluster
in order to use the addition theorem. Therefore, the above
simplification cannot be used in order to calculate the field
outside the spherical particle in a cluster and thus many more
partial waves need to be included. In addition it has been
found that convergence becomes even slower using real
space with the increase of the ratio d /R where R is the radius
of the sphere and d is the distance between the centers of the
two spheres. In our theory, however, convergence becomes
much better with increasing d /R because of the special
choice of the origin. �See Figs. 3�b��.

In Fig. 4, we plot the maximum enhanced field due to the
excitation of local modes as a function of the distance from
the dimer and from a single sphere. The field at 430 nm is
much more localized near a dimer compared with that from a
single sphere at 360 nm. For example, the field decays with
in 6 nm in case of dimer whereas it extends up to 25 nm for
the sphere. This is usually the case in any metal particle
cluster that the field is more localized near a cavity �cavity

FIG. 3. Calculated electric field enhancement of Raman cross
section for a dimer showing numerical convergence with the total
number of partial waves included in Eq. �2.34� and particle separa-
tion. Full line is the result when all partial waves up to lmax=6 are
included. Dotted line is for lmax=7. �a� For d /R=2.05 �b� d /R
=2.25. Here d is the distance between the centers of two spheres
and R is the sphere radius.
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mode� and has very large electric field there.17 As a result,
the enhancement is much larger if the molecule is lying very
near to the cavity. In Fig. 5, we have given the dependence of
the maximum SERS enhancement on the radius of the
spheres forming the dimer. The enhancement is maximum
for sphere radius up to 20 nm and then decreases slowly.
Also the local mode �peak� position shifts to a longer wave-
length with the increasing sphere size. This is consistent with
Eq. �3.2�.

B. Three and four particles clusters

Next we consider clusters of three and four spherical par-
ticles with same radii of 20 nm. In Fig. 6, we have given the
enhancement for a linear chain of three and four particles.
The molecule of 1 nm size lies in between the two particles
as shown in the figure. The case of dimer is also given for
comparison. The polarization of the incident and scattered
photon is along the chain. The maximum enhancement in the
cross section is between 9 and 10 orders of magnitude some-
what less than in the case of dimer. However, there are now
three broad peaks in the wavelength region considered here
compared with two in the case of dimer. The peak at longer
wavelength has dominant contribution coming from l=1 par-
tial wave with some effects of higher partial waves. We find
this peak shifts towards a longer wavelength as one goes
from two to three to four particles chain. This trend is in
agreement with the results obtained in dipole approximation
of Ref. 24. For example, in Ref. 24, this peak corresponds to
�=−3 �dimer�, �=−3.76 �3 particle chain� and �=−4.32 �4
particle chain� and corresponds to the collective motion of
the dipoles along the chain. The other two peaks at 410 nm
and at 370 nm correspond to higher partial waves. We find
another important difference between the dimer and the lin-
ear chain cluster that there is now a sharp drop in the SERS
enhancement near the first resonant peak in the case of linear
chain. This behavior is independent of the position of the
molecule. �See Figs. 6�c� and 6�d�. Also see Fig. 8.� It shows

this feature must be the result of sharp resonance mode struc-
ture of the chainlike cluster that may arise because of the
interference effects due to higher partial waves included in
our theory. Such features have been observed in SERS ex-
periments from colloidal solutions.42

To understand these effects of higher partial waves, we
consider a three particle chain in Fig. 7. When all partial
waves up to lmax=1 are included in the summation in Eq.
�2.34�, there is only one peak at 410 nm �full line�. This
corresponds to the collective motion of all the dipoles along
the chain in agreement with Ref. 24. Including all partial
waves up to lmax=2, we find this peak moves towards a
longer wavelength from 410 nm to 420 nm �dash line�. Also

FIG. 4. Distance dependence of enhanced field due to local
modes of a two-particle cluster and of a sphere. For dimer,

E� �0�2 / E� inc�0�2�1.6�105 and occurs at �=430 nm. For a single

sphere, E� �0�2 / E� inc�0�2�400 at �=360 nm. The polarization di-
rection of the incident photon is also shown by the double arrow.

FIG. 5. Dependence of SERS cross section on the radius of
spheres forming a dimer cluster. The numbers in the graph indicate
the photon wavelength �in nm� for the maximum enhancement due
to the resonant excitation of the local mode.

FIG. 6. Calculated electric field enhancement of Raman cross
section from a molecule �open circle� of 1 nm size trapped in be-
tween a linear chain of two �full line�, three �dashed line�, and four
silver particles. In the case of a four particle chain, both cases of
molecule being trapped in the middle �dotted line� and between first
and second particle �dash-dot line� are considered. Radius of each
sphere is 20 nm. The polarization direction of both incident and
scattered photon is along the chain.
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a second peak at 380 nm starts to develop. Including all par-
tial waves up to lmax=3, the l=1 peak moves to 460 nm and
the broad peak at 380 nm splits into two peaks at 380 nm
and 360 nm �dash-dot line�. Furthermore the SERS enhance-
ment at 460 nm also increases giving a sharp resonance be-
havior. This trend continues when more partial waves are
included making the resonance feature very sharp �lmax=4
�dash-dot�, lmax=6 �dotted line�, lmax=10 �thick dash line��.
This figure also shows the convergence results around lmax
=6.

In Fig. 8, we consider a case where the molecule is lying
on one end of the linear chain instead of being trapped in
between the particles. We find the maximum enhancement to
be much smaller �about 5 orders of magnitude only� roughly
the same as in the case of a molecule adsorbed on a single
sphere �see Fig. 2�c��. However, the sharp resonance features
are still present in case of a linear chain of three and four
particles as in Fig. 6. This also shows that for maximum
enhancement, the molecule must be trapped in between the
particles in a cluster. This is consistent with our earlier re-
sults of Fig. 4 where the field is maximum localized inside
the cavity near the cluster. Recently there is some interest to
use silver nanorods with molecule lying on its tip for SERS
experiments. However, our results of Fig. 8 representing
some what of this structure indicates that a nanoscale rod
with a molecule on its tip may not be the best structure for
large SERS cross section.

In Fig. 9, we consider clusters of three and four particles
in the triangular and square shape. The position of the mol-
ecule �open circle� and the polarization direction �double ar-
row� are shown in the inset. The enhancement in the cross
section is between 9 and 10 orders of magnitude. In each
case, there are 3 peaks in the wavelength region considered
here. However, there is no sharp resonant feature as observed
in the case of a linear chain cluster. The behavior is more like
that of a dimer except now there is a third peak on the longer
wavelength side giving less enhancement. This is evident

from Fig. 9�b� for an isosceles triangular shape cluster where
the third particle is at 40 nm from the molecule and is not
touching the other two spheres. This behavior with the main
peak at 430 nm is similar to that of a dimer �dotted line�.
However, when the third particle comes closer at 34.5 nm
forming an equilateral triangle �Fig. 9�a��, the main peak still
remains at 430 nm, however, a third peak at 500 nm with
enhancement up to 8 orders of magnitude develops �full
line�. In case of a square shape cluster �Fig. 9�c��, one has
similar features except the third peak with similar enhance-

FIG. 7. Dependence of the resonance features of the electric
field enhancement in case of a three particle chain on the maximum
number of partial waves included in the summation in Eq. �2.34�.

FIG. 8. Calculated electric field enhancement of Raman cross
sections from a molecule of 1 nm size lying on one edge of a linear
chain of two, three, and four silver particles. Radius of each sphere
is 20 nm. The polarization direction of both incident and scattered
photon is along the chain.

FIG. 9. Calculated electric field enhancement of Raman cross
sections in the case of three and four silver particles cluster in the
shape of an equilateral triangle ��a� and �d��, an isosceles triangle
��b�� and a square ��c��. The molecule of 1 nm size is trapped be-
tween the two particles as shown in the inset. Radius of each sphere
is 20 nm. The polarization direction of both incident and scattered
photon is the same as shown by the double arrow.
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ment now moves to 540 nm �dash line�. In case of equilateral
triangle, we have also considered the case when the photon
polarization is perpendicular to its base �Fig. 9�d�, dash dot
line�. The enhancement decreases considerably, however, it
is still large compared to that in the case of a dimer when
photon polarization is perpendicular to the dimer axis.

In Fig. 10, we have given the enhancement calculated in
the case of two and three gold particle clusters. We find the
maximum enhancement of 8 orders of magnitude but in a
broad wavelength range. There are no sharp peaks in the
enhancement as seen in the case of silver particle clusters.
These peaks are smeared out because of the large imaginary
part of the dielectric function of gold. However, the broad
maximum shifts towards longer wavelength with the increase
in the number of particles in the cluster.

IV. CONCLUSIONS

In summary, we have developed an exact theory to calcu-
late the enhanced electric field near a nanoparticle cluster of
any shape or size. Our theory reproduces exactly the results
obtained earlier for a dimer obtained in the dipole approxi-
mation �l=1�.24–26 However, we find in the case of these
clusters, higher partial wave contribution is very important.
This usually leads to more localization of the modes, shift
modes towards longer wavelength and appearance of new
modes those that can be excited optically. In the case of a
linear chain cluster, we find an important new feature where
the enhancement drops dramatically near the resonant peak
indicating the existence of very localized modes for a chain.
These sharp resonant features can be observed either in
SERS or absorption experiments and may lead to informa-
tion about the cluster size and shape responsible for large
enhancements. The electric field contribution to the enhance-
ment in SERS is found to be up to 10 orders of magnitude in
the case of silver and is in a broad frequency range. The
enhancement in the case of gold cluster is somewhat less but

still much larger than in the case of a single gold spherical
particle. We find a cluster in the shape of a linear chain of a
few nanoparticles with a molecule trapped in between the
particles gives the maximum enhancement. This is consistent
with the experimental results of Ref. 9. The enhancement
occurs in broad wavelength range and is always towards a
longer wavelength side of the Mie mode of a single sphere.
However, the enhancement for a linear chain is very sensi-
tive to the photon polarization. For example, maximum en-
hancement occurs when both incident and scattered photon
polarization directions are along the chain. There is almost
no enhancement when polarization is perpendicular to the
chain. On the other hand, in a triangular shape cluster, the
enhancement is somewhat less but it is also less sensitive to
the polarization direction. Furthermore, smaller particle size
��30 nm� in the cluster is preferred for maximum enhance-
ment. The enhancement is maximum if the molecule is
trapped very close to the cluster inside a cavity because of an
extremely localized field there.
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APPENDIX

Here we discuss the properties of the vector spherical har-
monics following Refs. 36 and 38. Vector spherical harmon-
ics are the result of coupling photon orbital angular momen-
tum and its unit spin using relevant CG coefficients.
Following Ref. 36, we define the vector spherical harmonics
as

V� lLm��,�� = 	
�=−1

1

�L1m − ��lm�yLm−���,��ê�, �A1�

where

ê1 = −
1
�2

�x̂ + iŷ�, ê0 = ẑ, ê−1 =
1
�2

�x̂ − iŷ� , �A2�

form an orthonormal set of three unit vectors, that is,
êm

* · êm�=�mm�. For CG coefficients �j1j2m1m2  jm�, we have
used the notation of Ref. 43. For given l in Eq. �A1�, L can
take only three values, l−1, l, and l+1. Accordingly, we have

a set of three vector spherical harmonics V� ll−1m�
�, V� llm�
�,
and V� ll+1m�
� which make a complete set of orthonormal
functions

� V� lLm
* �
� · V� l�L�m��
�d
 = �ll��LL��mm�. �A3�

This orthogonality condition can be easily verified using Eqs.
�A1� and �A2� and the relation for the CG coefficients43

FIG. 10. Calculated electric field enhancement of Raman cross
sections for two and three spherical gold particle clusters. Cluster
size and molecule position is shown in the inset. The polarization
direction of incident and scattered photon is the same and is shown
by the double arrow.
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�=−1

1

�L1m − ��lm��L1m − ��l�m� = �ll�. �A4�

For the discussions of eigensolutions A� klm	�r�� of the Max-
well equations, one constructs another set of three orthonor-

mal functions by taking linear combination of V� lLm�
� as

Y� lm1�
� = i
� l + 1

2l + 1
�1/2

V� ll−1m�
� + � l

2l + 1
�1/2

V� ll+1m�
��
= r̂ � X� lm�
� , �A5�

Y� lm2�
� = V� llm�
� = X� lm�
� , �A6�

Y� lm3�
� = 
� l

2l + 1
�1/2

V� ll−1m�
� − � l + 1

2l + 1
�1/2

V� ll+1m�
��
= r̂ylm�
� . �A7�

The equality on the right hand side in these equations in

terms of r̂�X� lm�
�, X� lm�
�, or r̂ylm�
� can be verified using
the relevant expressions for the CG coefficients. In fact all

vector spherical harmonics V� lLm�
� �Eq. �A1�� involve the
CG coefficients �j1j2m1m2  jm� with j2=1. These coefficients
have simple analytical expressions44 that make most of the
calculations possibly analytically. Thus the two transverse

functions A� klm	�r�� �Eqs. �2.7� and �2.8�� can be written as

A� klm1�r�� = 
� l

2l + 1
�1/2

f l+1�kr�V� ll+1m�
�

− � l + 1

2l + 1
�1/2

f l−1�kr�V� ll−1m�
�� , �A8�

A� klm2�r�� = f l�kr�V� llm�
� . �A9�

The result �A9� is straightforward. However, in deriving Eq.
�A8�, we have used the following recursion relations for the
spherical Bessel functions f l�x�:36

f l��x� +
�l + 1�

x
fl�x� = f l−1�x� , �A10�

f l��x� −
l

x
f l�x� = − f l+1�x� . �A11�

Note that for 	=1 and 2, A� klm	�r�� and Y� lm	�
� are zero for

l=0. The representation of A� klm	�r�� or Y� lm	�
� in terms of

V� lLm�
� makes some of the algebra simple especially for
numerical purposes. For example

1. Fourier transformations of A� klm�„r�…

From Eq. �2.10� we have

A� klm	�Q� � =� d3re−iQ� ·r�A� klm	�r�� . �A12�

Using the relation

e−iQ� ·r� = 4�	
lm

�− i�l jl�Qr�ylm�
Q�ylm
* �
r� , �A13�

and Eqs. �A8� and �A9� for A� klm	�r�� and the orthogonality
relation for the spherical Bessel functions �Eq. �2.14��, one
can easily show that

A� klm	�Q� � = 4��− i�l�− 1�	Y� lm	�
Q�
�

2k2��k − Q� . �A14�

2. Scattering t matrix for a single sphere

In Eq. �2.5�, replacing TJ with tJ, the scattered field �second
term on its right hand side� from a single sphere of radius
R��� can be written as

E� sc�r�,�� =� d3r�d3r�dJ0�r� − r��,�� · tJ��r��,r��,�� · E� inc�r��,�� .

�A15�

In case, the center of the sphere lies on the origin of the

coordinate system, for E� inc�r� ,��=A� klm	�r��, the scattered field

E� sc�r� ,��=ckl	�A� klm	�r�� where ckl	� are the Mie scattering
coefficients. Using these results in Eq. �A15� and taking the
Fourier transformations on both sides we obtain

ckl	�Y� lm	�
k� =
k

4�i
� d
k�tJ��k�,k��,�� · Y� lm	�
k�� .

�A16�

In writing Eq. �A16�, we have used Eqs. �A14� and �2.23� for

A� klm	�Q� � and dJ0�Q ,��, respectively. Using the complete set

property of Y� lm	�
k�, that is

	
lm	

Y� lm	�
k�Y� lm	
* �
k�� = ��
k − 
k�� , �A17�

we obtain

tJ��k�,k��,�� =
4�i

k
	
lm	

Y� lm	�
k�ckl	�Y� lm	
* �
k�� , �A18�

where k�  = k��  =��0� /c.

3. Expansion of incident plane wave in terms of A� klm�„r�…

Since A� klm	�r�� are the eigenfunctions of the Maxwell
equation for the host medium, one can expand the incident
plane wave in terms of this complete set as

E� inc�r�,�� = E� inc�k�,��eik�·r� = 	
lm	

aklm	
inc �k��A� klm	�r�� ,

�A19�

where aklm	
inc are the expansion coefficients. Multiplying both

sides with e−iQ� ·r� and integrating with respect to r�, we obtain
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�2��3��k� − Q� �E� inc�k�,�� = 	
lm	

aklm	
inc �k��A� klm	�Q� � .

�A20�

Using Eq. �A14� for A� klm	�Q� �, multiplying both sides with

Y� lm	
* �
Q� and then integrating with respect to solid angle


Q, we find

aklm	
inc �k�� = 4�il�− 1�	E� inc�k�,�� · Y� lm	

* �
k� . �A21�

For numerical purpose, it is convenient to use Eqs. �A5� and

�A6� for Y� lm	
* �
Q�. For example

aklm1
inc �k�� = 4�il+1
� l + 1

2l + 1
�1/2

V� ll−1m
* �
k�

+ � l

2l + 1
�1/2

V� ll+1m
* �
k�� · E� inc�k�,�� ,

�A22�

aklm2
inc �k�� = 4�ilV� llm

* �
k� · E� inc�k�,�� . �A23�

4. Gaunt coefficients Clm�,l�m���
l�m�

From Eq. �2.33�, we have

Clm	,l�m�	�
l�m� =� d
Y� lm	

* �
� · Y� l�m�	��
�yl�m��
� ,

�A24�

where Y� lm1�
�= r̂�X� lm�
� and Y� lm2�
�=X� lm�
� �Eqs. �A5�
and �A6��. Since r̂�X� lm

* �
� · r̂�X� lm�
�=X� lm
* �
� ·X� lm�
�

�note r̂ ·X� lm�
�=0�, one has Clm1,l�m�1
l�m� =Clm2,l�m�2

l�m� . For angu-

lar integration in Eq. �A24�, we write Y� lm2�
� in terms of

V� llm�
�. Therefore, for 	=	�=1,2, using Eqs. �A6� and
�A1� in Eq. �A24�, one has

Clm	,l�m�	
l�m� = 	

�=−1

1

�l1m − ��lm��l�1m� − ��l�m��

�� ylm−�
* �
�yl�m�−��
�yl�m��
�d
 ,

�A25�

where we have used ê�
* · ê=��. The angular integration in

Eq. �A25� can now be carried out using the addition of
spherical harmonics.43 We thus have

Clm	,l�m�	
l�m� = �m,m�+m�
 �2l� + 1��2l� + 1�

4��2l + 1� �1/2

�l�l�00l0� 	
�=−1

1

�l1m − ��lm��l�1m� − ��l�m���l�l�m� − �m − m�lm − �� .

�A26�

For 	�	�, one can easily show that

Clm2l�m�1
l�m� = − Clm1l�m�2

l�m� . �A27�

In this case, the angular integration in Eq. �A24� can also be carried out in a similar way using Eqs. �A5�, �A6�, and �A1�. We
have

Clm1l�m�2
l�m� = − i
 �2l� + 1��2l� + 1�

4��2l + 1� �1/2

	
�=−1

1

�l�1m� − ��l�m��

�� � l

2l + 3
�1/2

�l + 11m − ��lm��l�l�m� − �m�l + 1m − ���l�l�00l + 10�

+ � l + 1

2l + 1
�1/2

�l − 11m − ��lm��l�l�m� − �m�l − 1m − ���l�l�00l − 10� ��m,m�+m�. �A28�

Equations �A26� and �A28� involve several CG coefficients. For numerical purpose, we have used the following relation to
evaluate them:45

�j�j�m�m�jm� = �m,m�+m���j� + j� − j� ! �j + j� − j�� ! �j + j� − j�� ! �2j + 1�
�j + j� + j� + 1�!

�	
k

�− 1�k��j� + m�� ! �j� − m�� ! �j� + m�� ! �j� − m�� ! �j + m� ! �j − m�!
k ! �j� + j� − j − k� ! �j� − m� − k� ! �j� + m� − k� ! �j − j� + m� + k� ! �j − j� − m� + k�!

. �A29�
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