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Excitonic gap, phase transition, and quantum Hall effect in graphene
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We suggest that physics underlying the recently observed removal of sublattice and spin degeneracies in
graphene in a strong magnetic field describes a phase transition connected with the generation of an excitonic
gap. The experimental form of the Hall conductivity is reproduced and the main characteristics of the dynamics
are described. Predictions of the behavior of the gap as a function of temperature and a gate voltage are made.
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I. INTRODUCTION

The properties of graphene, a single atomic layer of
graphite,! have recently attracted a lot of attention, especially
after the experimental discovery>? and (independently of
that) theoretical prediction* of an anomalous quantization in
the quantum Hall (QH) effect (for earlier considerations of
the QH effect in graphene, see Ref. 6). The graphene mate-
rial is unique because of its band structure with two in-
equivalent Dirac points at the corners of the Brillouin zone.
As a result, its low-energy excitations are described by ef-
fective “relativisticlike” Dirac equation where the speed of
light is replaced by the Fermi velocity v.’

These relativisticlike features of graphene are at the heart
of the anomalous integer QH effect. In this case, the filling
factors are v==4(|n|+1/2), where n is the Landau level in-
dex. For each QH state, a fourfold degeneracy takes place: it
is the sublattice and spin degeneracy for the lowest Landau
level (LLL) with n=0 and the valley and spin degeneracy for
higher Landau levels (LLs) with [2|>0. In the very recent
experiments,? it has been observed that in a strong enough
magnetic field the new QH plateaus v=0, =1, and +4, occur,
that was attributed to the magnetic field induced splitting of
the LLL and the n=+1 LLs. It is noticeable that while the
degeneracy of the lowest LLL is completely lifted, only the
spin degeneracy of the n==+1 LLs is removed.

In this paper, we suggest that the origin of the plateaus
v=0 and, especially, v==1 is deeply connected with a phase
transition with respect to the chemical potential u related to
the charge density of carriers (in the experiments,'3 the
chemical potential is tunable by a gate bias voltage V). This
phase transition is provided by dynamics responsible for cre-
ating an excitonic gap A in a strong magnetic field: While at
small |u| the excitonic gap is generated, there is no gap as |u|
becomes larger than a critical value |u,| determined below.
In fact, if this scenario is correct, the phenomenon discov-
ered in Ref. 8 can be interpreted as the observation of two
different phases in graphene.

As will be shown below, one of the predictions of this
scenario is that the only plateaus in the Hall conductivity o,
are those with v=0, %1, and v==+2k, k=1,2,..., ie., the
plateaus observed in Ref. 8. The plateau v=+1 appears only
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if both the spin splitting is included and the gap A is nonva-
nishing. Another prediction is that the excitonic gap A is
much smaller than the gap \2%vZeB|/c between the LLL
and the n=+1 LLs. In other words, the excitonic gap is
produced by weak coupling dynamics.’ This prediction can
be checked by measuring the critical temperature at which
the v=0 and v==+1 plateaus disappear. We also succeeded in
reproducing the experimental form of o, obtained in Ref. 8.

The fact that a magnetic field is a strong catalyst of
electron-hole (fermion-antifermion in field theory) pairing
was established long ago!'® (the phenomenon was called the
magnetic catalysis). The essence of this effect is the dimen-
sional reduction D — D-2 in the dynamics of electron-hole
pairing: In a strong magnetic field, this pairing is mostly
provided by the LLL whose dynamics is essentially (D—2)
dimensional. The dimensional reduction leads to a strong
enhancement of the density of states. As a result, for D=2, as
in graphene, the pairing dynamics in infrared becomes very
strong and, for zero temperature and zero chemical potential,
an excitonic gap is generated even at the weakest attractive
interaction between electrons and holes.!! Because of this
feature, the phenomenon is robust. It was also shown in Ref.
10, that at large temperature or/and charge density (chemical
potential), the excitonic gap disappears. As will be discussed
below, it also disappears for a large impurity scattering rate.

In graphene, the phenomenon of the magnetic catalysis
was considered in Refs. 12 and 13 in connection with an
interpretation of experiments in highly oriented pyrolytic
graphite.'* In particular, in Ref. 13, the role of temperature
and chemical potential in this dynamics was clarified in de-
tail. Also in that paper, expressions both for the diagonal
conductivity o, and the Hall conductivity o, at nonzero gap
A were derived and investigated. For further studies of this
phenomenon in graphene, see Refs. 15 and 16.

Figure 1 illustrates the main results of our analysis. It
shows the spectrum and the Hall conductivity o,, in the n
=0 and n=1 LLs for four different cases corresponding to
zero (nonzero) gap A and spin splitting. As one can see in
Fig. 1(d), when both A and spin splitting being nonzero, the
plateaus in o, observed in Ref. 8 are reproduced. Note that
the degeneracies of the LLL and higher LLs shown in Fig.
1(d) are different. The physics underlying Fig. 1 will be dis-
cussed in detail in Secs. II and III below.
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FIG. 1. (Color online) Schematic illustration of the spectrum
and the Hall conductivity in the n=0 and n=1 Landau levels for
four different cases. (a) A=0 and no Zeeman term. (b) Nonzero A
and no Zeeman term. (c) A=0 and the Zeeman term is taken into
account. (d) Both A and the Zeeman term are nonzero. Thickness of
the lines represents the degeneracy X4, X2, and X1 of the energy
states; L= \f“‘hvﬁeB\/c.

The paper is organized as follows. In Sec. II, we consider
the dynamics of the Hall conductivity in graphene when the
Zeeman term is ignored (no spin splitting). In Sec. III, the
realistic case, with the spin splitting taken into account, is
considered. In Sec. IV, the main results of the paper are
summarized. In Appendixes A—C, some useful formulas and
relations are derived.

II. DYNAMICS WITH NO SPIN SPLITTING

For the description of the dynamics in graphene, we will
use the same model as in Refs. 12 and 13, the so-called
reduced QED. In such a model, while quasiparticles are con-
fined to a two-dimensional plane, the electromagnetic (Cou-
lomb) interaction between them is three dimensional in na-
ture. The low-energy quasiparticles excitations in graphene
are conveniently described in terms of a four-component
Dirac spinor \I’£=(‘r/kam YkBas Pk Bos Pkras) Which com-
bines the Bloch states with spin o==+1 on the two different
sublattices (A,B) of the hexagonal graphene lattice and with
momenta near the two inequivalent points (K,K') at the op-
posite corners of the two-dimensional Brillouin zone. The
free quasiparticle Hamiltonian can be recast in the “relativ-
isticlike” form with the Fermi velocity vy~ 10° m/s playing
the role of the speed of light
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Hy=- quf d*rV (Y'Y + YRV )V, (1)

where ‘I_’(,=\I’j,3p is the Dirac conjugated spinor and summa-
tion over spin o is understood. In Eq. (1) y” with »=0,1,2
are 4 X 4 gamma matrices belonging to a reducible represen-
tation y’'=73® (73,i7,,—i7) where the Pauli matrices 7, 7 act
in the subspaces of the valley (K,K’) and sublattices (A,B)
indices, respectively. The matrices satisfy the usual anticom-
mutation relations {y*,y"}=2g¢*", g"’=(1,-1,-1),u,v
=0,1,2. The covariant derivative V=0+ (ie/#ic)A includes
the vector potential in the symmetric gauge A®¥'=(
—By/2,Bx/2) corresponding to the external magnetic field
applied perpendicular to the plane along the positive z axis.
In the four-component spinor representation, the Coulomb
interaction has the form

8
r—r'|

Hinl = % dzrdzr/q—,a(r) '}p\Ifo_(r)
X W ()Y, (r), (2

where the coupling g=e?/ €yivy and ¢ is the dielectric con-
stant (our convention is e>0). The total Hamiltonian H,
=Hy+ H;,, possesses U(4) symmetry discussed in Appendix
C. The chemical potential is introduced through adding the

term —uWy'W=—uWiW in H,, [this term preserves the
U(4) symmetry]. The Zeeman interaction term is included by

adding the term uzBY 1 oW =¥ o, ¥, where now o ma-
trix acts on spin indices. Here ug=efi/(2mc) is the Bohr
magneton and we took into account that the Lande factor for
graphene g;=2.

Let us first consider a simpler case with no spin splitting
(the Zeeman term is ignored). Then, in Appendix A, utilizing
the approach developed in Ref. 17 (and used in Ref. 13 and
15), we derive the thermodynamic potential per unit area in a
strong magnetic field B, when the dynamics of the LLL
dominate (here the symbol “tilde” in the potential and other
quantities implies that the spin splitting is ignored):

~ 1 bL(B)
QA p) = F{Af(A,,U«) - sz(A,,u) +2T
1 A) 1
y Re{ln F(w . _>
27T 2
(w—4) 1 1
+1nF(M+—> —21nF(L+—)} ,
27T 2 27T 2
3)
where [=\hc/|eB| is the magnetic length, L(B)

=\hvZ|eB|/c is the Landau scale, I'(x) is the Euler gamma
function, vy is a LLL impurity scattering rate, and the func-
tion f(A, w) is
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A ) = 717 m{xy(% + %) —(A—-— A)]
4)

with the digamma function W(x)= ﬁ In I'(x). The dimension-
less parameter b in Eq. (3) reads

g [~ dke™
== —, (5)
V2Jo T+kxo

where X020.56\57Tg. The gap equation 0/dA=0 for A
takes the form

A -bL(B)f(A,p) =0. (6)

As it is easy to see, for T=u=y=0 this gap equation has
only a nontrivial solution, A=bL(B) (the magnetic catalysis).
For finite values of these parameters, there also exists a
trivial solution A=0, and critical values T,,u.,y, separate
the phases with zero and nonzero gaps. The character of the
phase transition can be determined by studying the thermo-
dynamical potential (3) as a function of these parameters.
Motivated by experimental data we are mostly interested in
the phase transition with respect to the chemical potential u,
because it is easily tuned by a gate voltage. The numerical
study shows that this phase transition can be either a first
order or a second order one, depending on the values of the
scattering rate y and B. For large enough B (or small enough
v), it becomes a strong first order phase transition.

Let us show how the generation of the gap affects the
form of the Hall conductivity &,,. Its expression at nonzero
A was derived in Ref. 13. Here we will use a compact ex-
pression for &,,, valid for large B and convenient for numeri-
cal calculations, obtained recently in Ref. 18:

~ 2¢? sgn(eB) m ‘If< Yot i(w+A) . l)
27T 2

Xy
i Th

] A 1
- q,,(%rﬂ(w )+—)+(A—>_A) , ()
27T 2wT 2

where 7, is the transport scattering rate (for convenience of
the readers, the derivation of this expression is presented in
Appendix B). Note that in graphene, due, for example, to a
suppression of the backward scattering, v, can be smaller
than the scattering rate y in the thermodynamic potential
(3)." The value of 7, controls the sharpness of the transi-
tions between plateaus in the Hall conductivity.

To illustrate the role of opening the gap, let us consider
the clean limit case y=17,=0 at zero temperature, when Eq.
(7) takes the form

_ 26%
Oy =— 7 sgn u Sgn(eB)0[|/~L| - A(M’B)] (8)

When there is no gap, this expression yields the first plateau
v==+2 in the half-integer QH effect.>> The appearance of the
gap changes the situation: In this case, for |u| <A, the addi-
tional plateau &,,=0 occurs, in accordance with the experi-
mental data in Ref. 8. Note that the presence of the gap A
leads to splitting only the LLL. The degeneracy of higher
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LLs remains the same: For these levels, the gap changes only
the dispersion relations E==+\2%v}|neB|/c+A? [compare
Fig. 1(a) and Fig. 1(b)]. Therefore, besides the plateau v=0,
other plateaus are the same as those in the case with A=0,
i.e., the filling factors for them are v=+4(|n|+1/2) [see Fig.
1(b)]. In fact, as will be shown in the next section, in this
dynamics, the gap disappears for the values of the chemical
potential corresponding to higher LLs, |n|=1. Then the fact
that v==+4(|n|+1/2) for these levels becomes even more
evident.

Note that lowering the degeneracy of the LLL with gen-
erating the gap in graphene is connected with the spontane-
ous breakdown of the initial U(4) symmetry down to U(2),
X U(2),, which is described in Appendix C. The point is that
the generation of the gap A is connected with the order pa-
rameter o=—(WW)=—(0|¥W¥|0) (Refs. 10, 12, and 13) and,
as shown in Appendix C, it is invariant only under the
U(2),%XU(2), subgroup of the U(4).

The following remark is in order. Expression (7) does not
lead to the precise values of the Hall conductivity on the
plateaus for any finite value of 7,. This happens because
localized states are neglected in our consideration. With
these states taken into account, 7, should become equal zero
between Landau levels [in particular, because of that, Eq. (8)
yields the correct values of the quantized Hall conductivity].
Thus, strictly speaking, with expression (7), one can describe
the Hall conductivity o, only between plateaus, where 7
controls the sharpness of the transitions between the neigh-
bor plateaus. Note, however, that if vy, is small in comparison
with typical energy scales in the problem, the plateaus de-
scribed by Eq. (7) are rather flat and sharp (see Fig. 3 in Sec.
III below). As is shown in Sec. III, taking 7y,= /3, the
behavior of Hall conductivity described by Eq. (7) resembles
experimental results in Ref. 8.

Another way to estimate possible values of 7, and A is to
use the expression

26° yfr

T e 12

for the diagonal conductivity derived originally in Ref. 13
and valid at the Dirac point u=0. Although for A=0 it yields
G=2e*/(hm?), which is 7 times less than the experimen-
tally observed value in Ref. 2, in the presence of A, this
expression for &, shows a tendency towards an insulating
behavior, which is in accordance with the data in Ref. 8.

)

III. DYNAMICS WITH SPIN SPLITTING

In the rest of the paper, we will analyze the realistic case,
with a spin splitting taken into account, whose dynamics is
much richer. The thermodynamic potential ), the Hall con-
ductivity o, and the diagonal conductivity o, are now

.40 = 5[0 1) + B8], (10)

1
O-Xy = E[&Xy(ﬂ"') + E-X)’(/“L—)]’ (1 1)
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FIG. 2. (Color online) Upper line with triangles: The experimen-
tally observed transition points between the lowest plateaus in the
Hall conductivity from Ref. 8. Lower line: The theoretical phase
diagram in the plane of the magnetic field B and the chemical po-
tential u for y=18 K and 7=30 mK. First and second order phase
transitions are denoted by solid and dashed lines, respectively.

1
O = 5[&xx(/~l’+) + &xx(ﬂ—)]’ (12)
where the expressions for Q, Oy, and 0, are given in Egs.
(3), (7), and (BS5) in Appendix B, respectively, and pu,
=u=+d, with §,=ugB being the Zeeman term. This term
breaks explicitly the U(4) symmetry down to U(2), X U(2),
discussed in Appendix C.

In order to determine the parameters of the theoretical
model, we use the experimental data of Ref. 8 as a guide. In
the regime when the excitonic gap is sufficiently large to
remove the degeneracy of the LLL, the model predicts that
one of the transition points between the plateaus in the Hall
conductivity corresponds to a phase transition in which A
—0 (see the discussion connected with Fig. 4 below). More
precisely, it is the transition point between the v=0 and v
=2 plateaus for B=11.5 T, and the transition point between
the v=1 and v=2 plateaus for larger values of B (for B
=9 T, with no plateau v=0, the transition point is taken to be
zero). This is controlled by the value of the chemical poten-
tial w (see Fig. 2). In the experiment, the corresponding con-
trol parameter is the gate voltage V,. To obtain a relation
between the two, we compare the theoretical phase diagram
on the B-u plane with the experimental phase diagram on the
B-V, plane in Fig. 2. The latter is obtained by a simple com-
pilation of the experimentally observed transition points be-
tween the corresponding plateaus in the Hall conductivity.
The best fit that was found is

N
Ve=Vol, (13)

m=0.5(V,= Vo) +7.0 sgn(V, — V)

where while u is measured in K, V, is measured in V, and V,,
is the center point in the dependence of the Hall conductivity
obtained in experiment. Note that the values of V, are differ-
ent for different values of B and are in the interval from
0.8-5.8 V.20

In Fig. 3, we present the experimental data for o, and
their description in this model for the values of the param-
eters indicated in the figure. The form of the experimental
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FIG. 3. (Color online) Hall conductivity in the experiment (Ref.
8) (upper panel) and in the theoretical model (lower panel) for
magnetic fields B=9 T (circle), 11.5 T (pentagon), 17.5 T (hexa-
gon), 25 T (square), 30 T (diamond), 37 T (up triangle), 42 T
(down triangle), and 45 T (star). The parameters in the model are
b=0.04, y=18 K, y,=6 K, and temperature 7=30 mK.

and theoretical curves are quite similar. Note that the value
of the parameter b=0.04 corresponds to a weak coupling
with g=e?/eyhvp=0.07. Because of the three-dimensional
nature of the Coulomb interaction, it is plausible that the
value of g is influenced by a large dielectric constant €, of
the substrate in the experimental device. The main reason of
the necessity of a weak coupling for the fit is that the lengths
of the experimental plateaus with v=0,+1,+2 imply that
the Zeeman energy and the gap A are of the same order, and
the Zeeman energy is only ~10 K at B~ 10 T. Note that
although there is no =0 plateau in the B=9 T curve, the gap
A in this case is also nonzero (although small). The reason is
that in the presence of a nonzero scattering rate vy, the effect
of a small gap A=<y is unobservable.

In Fig. 4, the gap A versus V, for B=30 T and four dif-
ferent values of temperature is shown. At low 7=30 mK, a

Vg [V]

FIG. 4. (Color online) The gap A versus V, for B=30 T and four
different values of temperature 7=30 mK, 5 K, 10 K, and 15 K,
from top to bottom.
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strong first order phase transition with respect to V,, i.e., u,
is clearly seen. It corresponds to the transition point between
the v=+1 and v==+2 plateaus. The steep descents, which
occur approximately at the half of the critical value of V,
-V, are related to the transition between the v=0 and v
==+1 plateaus. The phase transition with respect to tempera-
ture is a second order one with the critical temperature 7'
=172 K.

Figure 1 in the Introduction summarizes the main results
of our analysis. Figure 1(d) clearly shows that an excitonic
gap A and a large enough Zeeman term (6, = 7y) together lead
to the QH plateaus with the filling factors v=0,+1 and v
==+2k, k=1,2,..., i.e., those observed in Ref. 8. Let us dis-
cuss this point in more detail. It is noticeable that while a
large enough Zeeman term leads to the plateau v=0 even for
A=0 [see Fig. 1(c)], the v==+1 plateaus appear only if both
the Zeeman term is included and the gap A is nonvanishing
[compare Fig. 1(d) with Figs. 1(b) and 1(c)]. Therefore the
v==1 plateaus are the clearest signature of the presence of a
dynamical excitonic gap. There are of course also the pla-
teaus v==+2 connected with the LLL. As was already pointed
out in Sec. II, the degeneracy of higher LLs is removed only
by the Zeeman term (and not by the gap A). Therefore the
filling factors of the plateaus with |v|>1 are described by
v=+2k, k=1,2,.... [see Fig. 1(d)].?! Thus, in this scenario,
the LLL plays a very special role: While the excitonic gap
does not reduce the degeneracy of higher LLs, it leads to
splitting the LLL. This point is at heart of reproducing the
QH effect data® in this scenario.

This picture is intimately connected with the removal of
the degeneracy in this dynamics. As is shown in Appendix C,
a nonzero A and the Zeeman term together break the initial
non-Abelian U(4) symmetry down to the Abelian U(1),
XU(1), XU(1);XU(1)4 one. Since irreducible representa-
tions of Abelian symmetries are one dimensional, the U(4)
degeneracy of the LLL is completely removed. By using Eqs.
(12) and (B5), we also checked that the values of A and v,
utilized in this section yield the diagonal conductivity o,
whose behavior is in a qualitative agreement with the data in
Ref. 8.

IV. CONCLUSION

We believe that the observation of the v=0 and v==1
plateaus in the experiment® strongly suggests that the exis-
tence of a dynamical excitonic gap (or gaps) in graphene in a
strong magnetic field is a viable possibility. In this paper,
only a singlet excitonic gap was considered. There of course
exist other options: For example, the same Coulomb interac-
tion can also lead to a nonzero triplet order parameter

(Wo>W). In this case, states with up and down spins will
have different gaps A, and A_, respectively. The same argu-
ments as those used above show that the degeneracy of
higher LLs is lowered only by the Zeeman term and, there-
fore, in that case the filling factors of the the QH plateaus
will be the same as in the case of the singlet excitonic gap.
Therefore the modification of Fig. 1(d) will be only in re-
placing A with A, for up and down spins.

PHYSICAL REVIEW B 74, 195429 (2006)

In the present scenario, the weak coupling dynamics was
utilized. The reason of its necessity is that the lengths of the
experimental plateaus with v=0,+1,+2 imply that the Zee-
man energy and the gap A are of the same order, and the
Zeeman energy is only ~10 K at B~ 10 T. Note, however,
that this argument is valid only for a paramagnetic regime in
which there is no large enhancement of spin splitting by
dynamics in a magnetic field. When such a enhancement
takes place, strong coupling dynamics might lead to a good
fit of the experimental data in QH effect in graphene. This
possibility will be considered elsewhere.??

It is instructive to compare the present approach with
other ones used for the description of the dynamics in QH
effect in graphene. In Refs. 23 and 24, the QH ferromag-
netism was considered. The main prediction in Ref. 23 is that
in this case the QH plateaus with all integer values of the
filling factor v occur [the critical values of a magnetic field B
at which plateaus occur are different for different » and in-
crease with v]. This prediction is quite different from the
present one that reflects a difference between the dynamics
in these two scenarios. As was emphasized above, the exci-
tonic gap does not reduce the degeneracy of higher LLs and
it is unlike the QH ferromagnetism. As a result, there are no
odd filling factors v=2k+1, k=1, in the scenario with exci-
tonic gaps.

In Ref. 25, a scenario with the paramagnetic regime was
considered (with no large enhancement of spin splitting).
Unlike the present scenario, the breakdown of the U(4) in
Ref. 25 is not spontaneous but explicit, provided by local
(on-site) interactions. The main conclusion of Ref. 25 is that
Zeeman splitting together with on-site interactions can pro-
duce QH states at v=0,+1 and +4 but not at »=+3 and £5.
Although the values of filling factors agree with ours, these
two dynamics are very different and should lead to very dif-
ferent spectra of collective excitations.

Which of these scenarios is realized in graphene is an
open issue. It would be interesting to include all possible
competing orders in the thermodynamic potential and find
the genuine ground state and the phase diagram in
graphene.?®
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APPENDIX A: THERMODYNAMIC POTENTIAL

In this Appendix we derive expression (3) for the thermo-

dynamic potential per unit area Q valid in the strong field
limit \"ﬁv%|eB|/ c¢>vy,T,u,A. We will use the formalism of
the effective action introduced and developed in classical
papers.?”?8 In those papers, the case of the effective action
for elementary fields was considered. The case of the effec-
tive action for local composite fields was studied in Ref. 17
and in our derivation we will follow that approach.

We start from a general definition of the effective action
in a theory in which the spontaneous symmetry breaking
phenomenon is driven by the local composite order param-
eter o=—(WW)=—(0|WW¥|0) corresponding to the genera-
tion of the excitonic gap A.'>!3 Following the conventional
way,! 72728 we introduce the generating functional W(J) for
the Green functions of the corresponding composite field
through the path integral

W) = f DY DV exp{i f d3x[£qp—J(x)‘f’(X)‘I’(X)]}’
(A1)

where J(x) is the source for the composite field —W(x)W(x)
and L,, is the Lagrangian density of quasiparticles in the
model at hand (note that here x° is the time variable ). Then,
by definition, the effective action for the field of(x)=

—(W(x)W(x)) is given by the Legendre transform of the gen-
erating functional W(J),

I'o)=W(J) - f EPxJ(x)o(x), (A2)

where the external source J(x) on the right-hand side is ex-

pressed in terms of the field o(x) by inverting the relation
SW(J)

——=o(x).

Sx) (A3)

The effective action I'(0) in Eq. (A2) provides a natural
framework for describing the low energy dynamics in the
model at hand. It is common to expand this action in powers
of space-time derivatives of the field o

I'o)= f d3x{— V(o) + %Z’“"&Moﬂva+ |, (A4)

where V(o) is the effective potential. The ellipsis denote

higher derivative terms as well as contributions of the
Nambu-Goldstone bosons. From Egs. (A2) and (A3), we de-
rive the following relation:

(o) B
So(x) I

(A5)

In the limit of a vanishing external source, this equation turns
into an equation of motion for the composite field o(x). In a
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particular case of constant configurations, the equation reads
dV/do=0.

The thermodynamic potential Q) per unit area in Eq. (3) is
nothing else but the effective potential V at nonzero T and .
The constant source J plays the role of the bare gap (Dirac

mass) J=A,. Then the initial relation in the derivation of Q
[following from Egs. (A4) and (A5)] is

Q)
—=A,. (A6)
Jdo

At zero T, wu and v, the gap equation with nonzero A, in a
strong field has the form [see Eq. (51) in Ref. 13]

do A d*k ficlk)?
A=Ay+ie® | — X - U(k),
ote 27w — A? (2m)? exp|: 2|eB| )
(A7)
where
U(k) 2 1 4 e? he
=—r—————  a=4mvy———\| 7,
€ |Kk|(1 + alk]) O epfivy \ |eB]
(A8)

and the const v, = 0.14 [see Eqgs. (46) and (47) in Ref. 13]. At
finite 7, p and v, the gap equation is written as the following
sum over Matsubara frequencies w,=7T(2n+1):

oo

A
A=A, +2bL(B)T .
o+ 2bL(E) :2_00 [w,+ ysgn(w,) —iu]* + A?

(A9)

The sum over Matsubara frequencies is easily performed,

[

> A

o L@, + vsgn(w,) — in]? +A?

=le{\p(w+l>-m_>4)],
2 27T 2

(A10)

where W is the digamma function. Then the gap equation
takes the form

y+i(p+A) +1>
27T 2

+i(p—-4A) 1
_q,( y+ilp=4) _) |

27T 2
Let us express A, through A from this equation and substi-
tute it into Eq. (A6). Then, taking into account the relation

1
A=Ay +bL(B)— Im{‘l’(
ar

(A11)

a0 _o0dA

- , Al2
do  JAdo ( )

we come to the final equation
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Q
Aoy pB)saw],

= Al3
dA  dA (A13)

where the function f(A, ) is given in Eq. (4). The condition
90/ dA=0 yields gap Eq. (6) in the main text.

Since the field o=—(W¥W¥), we need to evaluate the chiral
(excitonic) condensate which is given by

_ - &k
(PWy=-T >, f wtrS(wn,k), (A14)

where the fermion propagator in the LLL is
1

Yolw, + ysgn(w,) —ipn] - A
(A15)

S(w,,k) = 2P_e K leBl

with P_=(1-iy'y?)/2.
Calculating the trace and integrating over momenta we
get

2|eB|T < A
n=—oo [wn + Y sgn(wn) - l/"L]Z + Az .
(A16)

(TW) = -

The sum over Matsubara frequencies is evaluated by means
of Eq. (A10) and we obtain

— 1
o= (TW) = —f(Ap). (A17)
77l

Therefore Eq. (A13) can be rewritten as

a1 df(Ap)

oA w*  dA

[A-DbL(B)f(A,w)].  (ALB)

Integrating over A we find

1

~ b
(A ) = WIQ{AﬂA,m B

2
2 fH(A,w)
y+i(u+A) 1)
27T +2

i(uw—A 1
+lnr<%+z)] +C(M)},

+ 2TRe{ln F(

(A19)

where the integration constant C(u) was added on the right-
hand side. Since C(u) determines only the overall normal-
ization of the potential, we can take it such that ﬁ(A=O,,u
=0)=0. As a result, we arrive at Eq. (3) in the main text.
From Eq. (A19) we also find that on the solution of the gap

equation 00/ 9A=0, the carrier density p is given by the
expression

PHYSICAL REVIEW B 74, 195429 (2006)

o0 11 y+i(p+A) 1
e p=-——Im| V|
Tl” 27T 2

q,<7+i(M—A) +1>]
27T 2

APPENDIX B: CALCULATION OF THE
CONDUCTIVITIES

(A20)

In the bare bubble approximation, the expression for the
diagonal conductivity in the limit of B— % can be obtained
from Egs. (3.11), (3.12) in the second paper in Ref. 4 (=1
in Appendix B):

_ _ezytr * dw

Oy = 172

w-p

~* 4T cosh?

|: Yir Yir (B1)

Vot (0-2) " Pt (w+A)

(due to reasons pointed out in Sec. II, we use 7,., and not 7,

in conductivities o, and o,,). The integrals in this expres-

sion can be evaluated exactly as follows. First we write

I—Jm dw Vi
= osh? O yt2r+(w—A)2
2T

o o0 dweit(w—A)
e [ [ o
0 - w—p

osh?
2T

=2TRe f dte_’[%r‘i(M—A)]f L
0 _.cosh?x

—4TRe f dte~Irumitu=1)] J “')‘L(fm)'
0 o  cosh”x

etZTtx

(B2)

The integral over x is evaluated by means of the formula
(3.982.1) from Ref. 29. Then we get

“ dtt —A)t]e e
I= 47TT2J cosl(p = A)re (B3)

0 sinh(7Tt)

This integral can be evaluated by differentiating Eq.
(4.131.3) of Ref. 29 which yields

“ dtt cos[(u— A)t]e e
[=47T" f
T 0 sinh(7T?)

%r+i(,u—A)+l> (B4)

2
=—Re\I"< .
T 27T 2

Thus we obtain
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27T 27T 2 27T

1) (BS)
+=

2

One can check that for u=0 and T— 0 Eq. (B5) reduces to
Eq. (9).

Now we derive the expression for the dc Hall conductiv-
ity. In the limit B— oo, Egs. (3.14) and (3.15) in the second
paper in Ref. 4 yield

e? sgn(eB) [~ dw Yolw = A)
Oy =—
Y 47T ), , 0= )/t2r+(a)—A)2
osh® ———
2T
Ylw + A) w+A w-A
+ > 5+t arctan + arctan .
%zr+ (w+ A) Y Y

(B6)

We first consider the terms with arctan functions taking de-
rivative with respect to A:

d&ily) e sgn(eB) [~ dw
d\ 47T ), -
= cosh? e R
2T
Yir Yir

X[vi+(w+m2"y§+<w—m2]’ 7

Then we use Eq. (B4) and find

PHYSICAL REVIEW B 74, 195429 (2006)

d&ilv) - % sgn(eB) Re ‘I"( Yo+ i(p+A) . l)
dA 27T 24T 2
i(w—A) 1
_«y'(—y“Jrzl(”“T )+5>]. (BS)
v
Therefore
2 B j A 1
~g>=_mlm gf utilu+d) 1
' 27T 2
i(w—A) 1
+\p<—7"+2’(“T )+5)] (B9)
e

Here we took into account the fact that because of the con-
dition &,,(A=%)=0 [see Eq. (B6)] and the known asymptot-
ics of the W function, the integration constant equals zero.

As to the integrals of the two first terms in square brackets
in Eq. (B6), they are calculated by means of the formula

fw dw w-A
= osh? = )/l2r+(a)—A)2
2T
=—%Im‘1"(%+%>. (B10)
T T

Its derivation is as follows:

* do w-A * dw 1 * .y “ dwe" @™
-0 zw—M%z+(w—A)2=Re e zw_ﬂw_A+i7tr=Im ()dte ’ —o0 QW— M
cosh —— " cosh™ ——— cosh
2T 2T 2T
=2TIm J dte—t['ytr—i(p.—A)]f dx eiZTtx =A4TIm j dl‘e_t[‘y"_i('u—A)]f CI)CL(ZTZX)
0 _.. cosh? x 0 o  cosh?x

d

47 f “ dit sin[ (u — A)t]e™
=47

0 sinh(7Tt)

2
——1Im ‘I”(
T 27T

where, in the very last equality, Eq. (4.131.3) in Ref. 29 was
used. Combining this contribution with that in Eq. (B9), we
arrive at Eq. (7).

APPENDIX C: U4) SYMMETRY

The U (4) symmetry in graphene is discussed for example
in Appendix A in Ref. 13. Here we will describe the proper-
ties of this symmetry used in the main body of the paper.

Vet i(/vL_ A)
- +

=—47T*—

fw dt sin[(u = A)t]e™ "
dVy

0 sinh(7Tt)

1

_)’

> (B11)

The 16 generators of the U (4) are

o

T o1
2 T

(03

Ty,

g* ot 1 4
5 S @7, and — o [yL7],

(C1)

where I, is the 4 X4 Dirac unit matrix and o, with «
=0,1,2,3, are four Pauli matrices connected with spin de-
grees of freedom (¢° is the 2X2 unit matrix). The Dirac
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matrices are connected with degrees of freedom reflecting
the band structure of graphene with two inequivalent Dirac
points at the corners of the Brillouin zone. In the represen-
tation used in the present paper (see Sec. II), the Dirac ma-
trices »* and y° are

7;=Z_<o 1>, 75=i<0 1)’ ©2)

I 0 -1 0

where [ is the 2 X2 unit matrix. The order parameter con-
nected with the generation of the excitonic gap A is o=
—(WW)y=—(¥TMP) 101213 where the Dirac matrix 7° anti-
commutes both with 9* and 9° and commutes with [, %’].

expectation <\Pq,> = <[ lﬁlr(A {erAo'

+ t,bj(, Aok A0— lﬁ'j(Bo_l//KBo.— t,bj(, o’ 5o )y is directly related to
the electron density imbalance between A and B sublattices
of the bipartite hexagonal lattice of the graphene sheet.!?16
The dynamical generation of the gap leads to the spontane-
ous breakdown of the U(4) down to the U(2),XU(2), with
the generators

The nonzero value

PHYSICAL REVIEW B 74, 195429 (2006)

a

Y
2 T

o 1

— o[y, C3
5 @5yl (C3)
[note that, as one can see from Eq. (C2), [y*,y’] is diago-
nal]. As to the Zeeman term, it is connected with the spin
density operator W'oW. Therefore this term explicitly
breaks the U(4) down to the U(2).X U(2), with the genera-

tors

!
0

g
- ®I4,

o o o 1
> 2_i®¢’ 7®)ﬁ, and7®§[)’3,7’5],

(C4)

where a’=0,3. Equations (C3) and (C4) imply that the Zee-
man term and the generation of the gap together break the
U(4) down to the U(1); XU(1),XU(1); XU(1), with the
four diagonal generators

!
a

o
_®14,

o 1 ,
2 7®5[¢,75]; a'=0,3. (CS)
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