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Frequency modulation atomic force microscopy �FM-AFM� utilizes the principle of self-excitation to ensure
the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this
is achieved by fixing the phase difference between tip deflection and driving force at precisely 90°. This, in
turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in
terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate
the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and
dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive
and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error
particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase
detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude,
even while operating away from the resonant frequency with the use of appropriate replacements in the
existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demon-
strate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase
detuning, particularly in liquid environments.
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Self-excitation of cantilever probes is often used in dy-
namic atomic force microscopy �AFM� to drive the cantile-
ver at its resonant frequency, regardless of the tip-sample
interaction.1 This is achieved by exciting the cantilever with
a force that is derived from its amplified and phase-shifted
tip-deflection signal; setting the phase shift to 90° ensures
the cantilever oscillates at its resonant frequency. Typically,
the gain in this feedback loop is adjusted to ensure that the
cantilever-tip oscillation amplitude is maintained constant as
the tip approaches the sample, from which changes in energy
dissipation can be measured. Variations in the effective stiff-
ness of the lever are then easily measured by monitoring the
change in resonant frequency using frequency detection cir-
cuitry, such as a phase-lock loop. Since frequency shifts can
be measured with extreme sensitivity, and the time constant
for the cantilever to reach steady oscillation using the tech-
nique is independent of its quality factor, this frequency
modulation AFM �FM-AFM� approach presents an attractive
methodology for ultra-sensitive measurements in both ambi-
ent and vacuum conditions.1,2 The relative merits of this
technique in comparison to conventional constant frequency
excitation and static deflection measurements are discussed
in Refs. 3 and 4.

Tip-sample forces encountered in FM-AFM measure-
ments often contain both conservative and dissipative contri-
butions, which can affect both the frequency of oscillation
and the excitation amplitude. Provided the cantilever tip-
deflection lags the driving force by precisely 90°, i.e., the
cantilever is driven at its resonant frequency, these two types
of forces formally decouple.5 This feature enables interpreta-
tion of the measured frequency shift and excitation ampli-
tudes in terms of conservative and dissipative force contri-
butions. Consequently, knowledge of the effect of phase
shifts that deviate from 90° is of fundamental importance in
interpreting FM-AFM measurements from both a qualitative
and quantitative perspective, and in assessing the robustness

of this technique. To our knowledge, the only study examin-
ing the effect of such phase detuning was given in Ref. 6,
which examined deviations in the frequency shift and exci-
tation amplitude for a purely conservative interaction. The
influence of phase detuning on the coupling of conservative
and dissipative forces is yet to be examined, and is the pri-
mary focus of this study. We also reexamine the experimen-
tal approach commonly used for achieving a 90° phase shift,
which involves adjusting the phase to minimize the excita-
tion amplitude far from the sample.6 Importantly, this mini-
mum does not formally coincide with the 90° phase point
and can thus lead to significant phase detuning particularly in
liquid environments.

Provided the cantilever is driven well below its higher
harmonic resonant frequencies, the cantilever motion can be
described by a damping harmonic oscillator with a single
degree of freedom,

m
d2w

dt2 + b
dw

dt
+ kw = Fint + Fdrive, �1�

where w is the displacement of the cantilever tip from its
unperturbed position, k is the stiffness of the cantilever, m is
its effective mass, Fint is the interaction force experienced by
the tip, Fdrive is the driving force that excites the cantilever
and b is the damping coefficient of the cantilever in the
absence of an interaction force.

Noting that the interaction force is typically weak so that
the change in effective stiffness of the cantilever is small and
the cantilever motion is �approximately� harmonic, the dis-
placement of the cantilever tip and the driving force, for an
arbitrary phase lag �, can be expressed as

w = a sin��t − ��, Fdrive = F0 sin �t , �2�

where a is the amplitude of oscillation and � is the driving
frequency. Note that the interaction force in general modifies
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the frequency � and driving force F0. We define �set to be
the frequency of oscillation in the absence of an interaction
force, i.e., far from the sample. Thus if �=90°, �set coincides
with �res which is the resonant frequency of the cantilever in
the absence of an interaction force.

Typically in FM-AFM measurements, the phase shift
is fixed constant far from the sample. As the tip approaches
and interacts with the sample, the phase shift � between
cantilever-tip displacement and driving force therefore
remains constant. Consequently, all FM-AFM measurements
of the change in frequency and excitation force are taken

in reference to the frequency �set and the drive force F̄0,
respectively, far from the sample.

Importantly, the relative difference with respect to the ac-
tual resonant frequency �res is normally not accessible, since
the resonant frequency is inferred by adjusting the phase
shift in the absence of an interaction force. As such, any
phase error in this calibration procedure will be reflected
directly in the measurement of �res. We therefore define

� = �set + ��, F0 = F̄0 + �F0, �3�

where �� and �F0 are the frequency shift and change
in driving force, respectively, resulting from the tip-sample
interaction. Substituting Eqs. �2� and �3� into Eq. �1� and
performing a Fourier analysis then gives the required results

��

�set
��set

�res
�2

+
1

2
�1 − ��set

�res
�2��F0

F̄0

= Icons, �4�

�F0

F̄0

−
��

�set
= Idiss,

where

Icons = −
1

�ka
�

−1

1

Feven�z + a�1 + u��
u

�1 − u2
du , �5a�

Idiss =
2

�b
�

−1

1

���z + a�1 + u���1 − u2du , �5b�

where we have used the property that the Fourier sine series
only probes the even component of the force Feven, which
is commonly referred to as the “conservative” component,7

and that the odd component of the force can be formally
expressed in terms of a generalized damping coefficient7

Fodd=��z ,a ,� ,w�t��ẇ�t� for a fixed minimum tip-sample
separation z, where �� is the change in the generalized
damping coefficient resulting from the interaction, i.e.,
�=b+��. Equation �4� can be solved for the measured

observables �� /�set and �F0 / F̄0,

��

�set
= Icons +

�res
2 − �set

2

�res
2 + �set

2 �Icons − Idiss� , �6a�

�F0

F̄0

= Icons + Idiss +
�res

2 − �set
2

�res
2 + �set

2 �Icons − Idiss� , �6b�

which gives the explicit coupling between the conservative
Icons and dissipative Idiss interaction force contributions.

Several important features of the coupling between con-
servative and dissipative forces on the measured relative fre-

quency shift �� /�set and relative driving force �F0 / F̄0 can
be deduced immediately from Eq. �6�. Importantly, we note
that this coupling is primarily dependent on the relative dif-
ference between the unperturbed drive frequency �set and
unperturbed resonant frequency �res, rather than the actual
phase shift �. This is particularly significant for cantilevers
with high quality factors Q, such as encountered in ultra high
vacuum �UHV� measurements,3 as we shall now discuss.

We first consider the effects on the relative frequency shift
�� /�set. In situations with high quality factors, large devia-
tions of the phase from 90° may result in only minute
changes in the oscillation frequency �set from the resonant
frequency �res. Equation �6a� then immediately indicates that
the resulting coupling between conservative and dissipative
forces will be commensurately small. As an example, con-
sider a typical cantilever operating in UHV conditions with a
resonant frequency of fres=�res / �2��=150 kHz and quality
factor Q=10,000.6 If the phase shift is set to �=20°, the
corresponding unperturbed oscillation frequency will be
149.979 kHz, giving

�res
2 − �set

2

�res
2 + �set

2 	 10−4.

Assuming conservative and dissipative forces contribute
equally for the purpose of discussion, i.e., Icons and Idiss are of
equal order �but not necessarily equal�, Eq. �6a� immediately
indicates that the relative contribution of the dissipative force
to the frequency shift �� /�set will be 4 orders of magnitude
smaller than that of the conservative force, despite the large
phase anomaly. Clearly, as the quality factor is increased
further, for example by the use of quartz oscillators,3 this
coupling becomes weaker for a given phase shift �.

Importantly, the relative driving force �F0 / F̄0 always in-
volves coupling between conservative and dissipative forces
when operating on resonance, as is clear from Eq. �6b�. The
change in this degree of coupling again only varies with the
relative difference between the unperturbed drive frequency
�set and unperturbed resonant frequency �res. Therefore,
rather than the phase being the key variable controlling this
coupling, it is the relative frequency �set /�res; this can be
very small even for large phase detuning. These findings al-
low for the operation of FM-AFM measurements away from
the resonance peak while minimizing the effect on the mea-

sured observables �� /�set and �F0 / F̄0.

It is also interesting to note that the quantity �F0 / F̄0
−�� /�set, Eq. �4�, is completely independent of the phase
shift � and thus always gives the relative energy dissipated
in the interaction Idiss, as defined by Eq. �5b�. Consequently,

�F0 / F̄0−�� /�set can be used to probe the frequency depen-
dent nature of the energy dissipated in the interaction,
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provided the frequency dependence of the cantilever damp-
ing coefficient b is known. Furthermore, if it is desired to
operate an FM-AFM specifically away from �=90°, Eq. �4�
can be used to determine the resulting conservative and dis-
sipative interaction forces. This can be achieved using estab-
lished inversion algorithms such as those presented in Refs.
7–10 that enable conversion of the measured relative fre-
quency shift and change in excitation force to conservative
and dissipative forces. By using the following replacements
in the current algorithms:

��

�res
→

��

�set
��set

�res
�2

+
1

2
�1 − ��set

�res
�2��F0

F̄0

, �7a�

�F0

F̄0

−
��

�res
→

�F0

F̄0

−
��

�set
, �7b�

these methodologies7–10 are rigorously applicable, and facili-
tate measurement of conservative and dissipative forces as a
function of frequency using the FM-AFM technique. This
approach enables the FM-AFM technique to be used in a
quantitative capacity in variable frequency measurements us-
ing a single cantilever, which may be particularly useful for
investigating systems where the interaction force is
frequency dependent.11

Finally, we reexamine the procedure commonly used to
determine the �=90° point in FM-AFM measurements. This
point is typically achieved by varying the phase shift until
the excitation force/amplitude is minimized, while maintain-
ing constant tip amplitude.6 This methodology implicitly as-
sumes that the quality factor greatly exceeds unity. However,
it is commonly used to set the 90° phase shift, regardless of
the quality factor of the cantilever. Importantly, this method-
ology will not necessarily give the resonance condition �
=90°, since the frequency where the peak in the amplitude
resonance curve lies does not formally coincide with the
resonant frequency of the cantilever. To understand this con-
nection, we present the relation between the phase �, quality
factor Q, resonant frequency �res and drive frequency �set, in
the absence of a tip-sample interaction force

cot � = Q��res

�set
−

�set

�res
� . �8�

The frequency where the peak in the amplitude resonance
curve occurs is given by 12

�peak = �res�1 −
1

2Q2 . �9�

From Eqs. �8� and �9�, we then find that if the peak fre-
quency �peak is used to set the 90° phase point, then the true
phase shift is

� = tan−1�2Q�1 −
1

2Q2� . �10�

Therefore, the resulting phase shift � will be very close to
90° provided Q�1. However, in ambient and liquid environ-
ments where the quality factor can be small, the resulting
phase shift obtained from this procedure can significantly

deviate from 90°. This property is illustrated in Fig. 1, where
the resulting phase shift � obtained from Eq. �10� is plotted
as a function of the quality factor Q. At high quality factors
we recover the expected result of �=90°. However, for qual-
ity factors approaching unity, as is typical in liquid
measurements,13,14 the resulting phase shift will be signifi-
cantly lower than the expected 90°.

Since the coupling between conservative and dissipative
forces is dependent only on the relative difference between
the resonant frequency �res and the set frequency �set in
the absence of an interaction force, the resulting coupling
will only be significant provided the difference between
these two frequencies is not small. For this phase calibration
procedure, Eqs. �6� become

��

�set
= Icons +

Icons − Idiss

4Q2 − 1
, �11a�

�F0

F̄0

= Icons + Idiss +
Icons − Idiss

4Q2 − 1
. �11b�

While negligible coupling occurs for high quality factors
Q�1, significant coupling can occur for low quality
factors,12 and alternative calibration of the 90° phase point
may be required to avoid such coupling.

One approach to determine this 90° phase point is to mea-
sure the thermal noise spectrum of the cantilever. For liquid
environments, this should be performed in close proximity to
the surface, but sufficiently far from the surface so that no
interaction forces are present.14 Fitting this noise power
spectrum to the response of a damped harmonic
oscillator, as in Ref. 15,

S��� =
A

��2 − �res
2 �2 +

�2�res
2

Q2

, �12�

where A is a constant, enables determination of the true reso-
nant frequency �res and quality factor Q in liquid. The phase
in the self-excitation circuit can then be adjusted so as to
ensure that the cantilever oscillates at its resonant frequency
�res.

In summary, we have investigated the effect of phase de-
tuning from 90° in FM-AFM on the coupling between con-
servative and dissipative forces. We found that this coupling

FIG. 1. Plot of phase shift � �degrees� as a function of
the quality factor Q obtained by setting the drive frequency
�set=�peak.
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depends only on the relative difference in the drive and reso-
nant frequencies far from the surface, with the actual phase
error not directly affecting this coupling especially for high
quality factors. This finding indicates that FM-AFM is highly
robust with respect to phase detuning, allowing for operation
away from the true resonant frequency. A simple methodol-
ogy was also presented enabling the quantitative determina-
tion of both conservative and dissipative forces regardless of
the phase shift in the measurements. This allows for opera-
tion of the FM-AFM technique as a function of frequency
while maintaining its quantitative abilities. We also investi-
gated the commonly used procedure for establishing the
resonance condition of the cantilever and found that it can

lead to significant errors particularly for low quality factors,
as are typical in liquid systems. An alternative procedure was
proposed enabling the unequivocal determination of the reso-
nance condition and thus ensuring true decoupling of conser-
vative and dissipative forces.
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