
Local density of states of atoms interacting with finite-bandwidth surfaces: Spin-statistics effects

Marcelo A. Romero and Edith C. Goldberg
Instituto de Desarrollo Tecnológico (CONICET-UNL) and Facultad de Ingeniería Química, UNL, cc91, 3000 Santa Fe, Argentina

�Received 11 July 2006; revised manuscript received 5 October 2006; published 15 November 2006�

The density of states on atoms interacting with solid surfaces is a required physical quantity for the under-
standing of processes related to scanning tunneling and photoemission spectroscopy, single-atom conductance,
and emission and scattering of atoms from surfaces. In this work, we present a model calculation that allows
including the localized aspects of atomic interactions and the extended features of the surface, together with
alternative treatments of the Coulomb repulsion terms in the atom site. The effects of the spin fluctuation
statistics treated up to a second order in the atom-surface coupling term are especially explored in this case.
This approximation is comparatively analyzed with the exact results available in a model system of four levels
and then used in the description of hydrogen interacting with an Al surface. Effects due to finite bandwidth and
energy dependence of the local surface density of states are discussed.
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I. INTRODUCTION

How localized and delocalized electrons interact in atom-
surface systems is a central question to many problems in
condensed matter physics. The atom density of states and the
change in the total density of states due to the interaction are
quantities required for solving and understanding the physics
in a variety of different kind of processes. For instance, scan-
ning tunneling and photoemission spectroscopy have been
extensively used to investigate the modification of surface
electronic structure by magnetic and nonmagnetic adatoms,
through the knowledge of the local density of states �LDOS�,
within a wide energy range around the Fermi level.1–8 Also,
to obtain the energy transfer rates in nearly adiabatic pro-
cesses of adsorption reactions, in which hot electrons or
holes are then detected as chemicurrents,9,10 require the in-
stantaneous LDOS.11 The adatom LDOS is always assumed
close to the ground state density in these cases.

Because of the importance of a proposal accounting for
both the characteristics of surface band structure and the lo-
calized nature of atom-atom interactions, we present in this
work a calculation of the density of states on atoms in front
of a surface. This is done by including a detailed description
of atom-surface interaction from the knowledge of the unper-
turbed surface density of states and the localized properties
of the atoms involved. The Coulomb repulsion term in the
atom site is taken into account in this case through the spin
fluctuation statistics that are introduced by considering the
infinite correlation limit. The atom density of states is ob-
tained here by using a consistent motion equation method
based on a slave-boson version of the Anderson Hamiltonian.
The Anderson impurity model12 is commonly used to de-
scribe the physics of magnetic impurity in a conducting host,
and exhibits different types of behavior, such as mixed va-
lence and the Kondo effect. In the case of a flat band ap-
proximation, the conduction electron bandwidth represents
the largest energy scale in the problem. This is not the case
of finite-bandwidth substrates in which arises the possibility
of localized states. The solution obtained to a strict second
order in the atom-surface hopping parameter �V2� is able to
reproduce the qualitative features of the atom density of

states in the three strong correlation regimes �Kondo, mixed
valence, and empty orbital�, and provides occupations in an
excellent agreement with exact results.13 A solution to order
V4 improves the Kondo peak in the Kondo regime, and prac-
tically reproduces the numerically exact results in the other
two regimes.14 In the present work, we will use the V2 solu-
tion together with an atom-surface interaction model that has
been widely used in chemisorption and collision
processes.15,16 Thus, a rich variety of ingredients related to
localized properties of atomic interactions and extended fea-
tures of solid states are introduced in the calculation of the
atom LDOS �Sec. II�. In Sec. III a comparative analysis with
the exact results in the four-level system case is performed,
showing that the main features of the exact atom density of
states are quite well captured by the second-order solution.
Afterwards, we analyze the case of a hydrogen atom inter-
acting with an aluminum surface by considering the spin-
fluctuation statistics in the charge exchange. Two different
situations are analyzed depending on the hydrogen charge
states allowed in each one. Then, it is accounted for only
neutral and positive charge states in one situation, and for
only neutral and negative charge states in the other one. The
density of states when only H0↔H+ is involved shows a
Kondo regime in which the resonance turns to be a localized
state as the atom gets closer to the surface. While in the case
of allowing only H0↔H−, which sounds appropriate for de-
scribing the adsorption process, the three regimes are ob-
served in the behavior of the LDOS as a function of the
atom-surface distance. The comparison with the spinless ap-
proximation allows us to infer the importance of correlation
effects in stationary as well as in nonequilibrium processes
such as ion scattering experiments.17,18 In these cases, it is
concluded that negative hydrogen formation occurs after an
efficient neutralization process on either protons or negative
ions during the incoming trajectory. Our model calculation is
also adequate for describing nonequilibrium stationary phe-
nomena, such as the conductance through single atoms in the
case of metallic contacts. These precisely represent cases in
which neither the bandwidth is the largest energy nor is the
energy dependence of the surface LDOS negligible.
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II. THEORY

The atom-surface interacting system is described by a pre-
viously developed bond-pair model Hamiltonian that looks
exactly the same as an extended version of the Anderson
Hamiltonian,15,16

H = �
k�,�

�k�n̂k�� + �
a,�
�Ea

� +
1

2�
b

�Jabn̂b−� + �Jab − Jab
x �n̂b���n̂a�

+ �
a,k�,�

�Vak�
� ĉa�

† ĉk�� + h.c.� .

In this expression, k� refers to the solid states that include also
the narrow core bands, and a ,b to the localized atom state;
Ea

� includes the energy level of the isolated atom, crystal-
field terms, and correction terms proportional to overlaps; Jab
and Jab

x are the direct and exchange Coulomb integrals. The
hopping term Vak�

� includes also two electron interactions con-
sidered within a mean field approximation. Details of this
model have been given in Ref. 15 and will be omitted here.
However, it is important to remark that the Hamiltonian pa-
rameters are completely defined from the properties of the
unperturbed solid given fundamentally by its density of
states, and the characteristics of the involved atoms through
a good set of atomic basis functions. Here it is considered
only one degenerate state on the atom site with energy Ea

�

=�a, then

H = �
k�,�

�k�n̂k�� + �
�
��a +

1

2
Un̂a−�	n̂a�

+ �
k�,�

�Vak�
� ĉa�

† ĉk�� + h.c.� . �1�

We are interested in situations where large values of the Cou-
lomb repulsion U limit the charge exchange between atom
and surface to either one electron or one hole. In these cases,
the Hamiltonian based on the slave-boson approach to Eq.
�1� is adequate,

H = �
k�,�

�k�n̂k�� + �
�

�an̂a� + �
k�,�

�Vak�
� ĉa�

† b̂ĉk�� + h.c.� . �2�

An auxiliary boson field b̂, b̂† has been introduced with the
constraint relation

b̂†b̂ + �
�

n̂a� = 1.

The appropriate Green functions for solving nonequilibrium
processes described by Eq. �2� are the following Keldysh-
Green functions:13

Gaa
� �t,t�� = i��t� − t�
�ĉa�

† �t��b̂�t��, b̂†�t�ĉa��t��
 ,

Faa
� �t,t�� = i
�ĉa�

† �t��b̂�t��, b̂†�t�ĉa��t��
 ,

where � � and � � are anticommutator and commutator, re-
spectively. For equilibrium processes, it is enough to calcu-
late the advanced Green function from which is obtained the
atom density of states,

�aa
� ��� =

1

�
Im Gaa

� ��� ,

which satisfies �−�
� �aa

� ���d�=1− 
n̂a−�
 due to the infinite-U
constraint.

The equations of motion solved up to a second order in
the atom-surface coupling lead to the following expression
of the advanced Green function:13

Gaa
� ��� =

1 − 
n̂a−�
 − I−����
� − �a − 	0

���� − 	�
� ���

, �3�

which for the case of an N-fold degenerate atom state is

Gaa��� =
1 − �N − 1��
n̂a
 + I����

� − �a − 	0��� − �N − 1�	����
.

In this last expression, N=2 corresponds to the present case
of a spin-degenerate state, and N=1 to the spinless approxi-
mation of the atom-surface interaction.

The quantities introduced in Eq. �3� �we prefer to keep
spin indexes for clarity� are

	0
���� = �

k�

�Vk�a
� �2

� − �k� − i

,

	�
� ��� = �

k�

�Vk�a
−��2
n̂k�−�


� − �k� − i

,

and

I−���� = �
k�

Vk�a
−�
ĉa−�

† b̂ĉk�−�


� − �k� − i

.

Here, 
n̂k��
 is the solid k��-state occupation and the crossed

term 
ĉa−�
† b̂ĉk�−�
 is given by


ĉa−�
† b̂ĉk�−�
 = 
n̂k�−�
Vk�a

−�Re Gaa
−���k��

+
P

�
�
K�


n̂K� −�

Vk�a

−�Im Gaa
−���K� �

�K� − �k�
, �4�

with P indicating the principal value. By considering an ex-
pansion of the solid states in an atomic basis set �� j�r
−Rs��, with j the type of state �s , p ,d� and Rs giving the atom
position in the solid, one obtains

�k���r� = �
j

Cj,Rs

k�� � j�r − Rs� . �5�

This kind of description requires the knowledge of partial
and local density of states of the solid calculated as

�iRs,jRs�

� ��� = �
k�

�Ci,Rs

k�� �*Cj,Rs�

k�� 
�� − �k�� . �6�

By using Eqs. �5� and �6�, 	0
����, 	�

� ���, and I−���� can be
expressed in terms of the density of states of the solid and of
the atom-atom hopping integrals VjRs,a

,
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	0
���� = �

iRs,jRs�

ViRs,a
VjRs�,a

�P�
−�

� �iRs,jRs�

� ���

� − �
d� + i��iRs,jRs�

� ���� ,

	�
� ��� = �

iRs,jRs�

ViRs,a
VjRs�,a

�P�
−�

� �iRs,jRs�

� ���f��� − ��

� − �
d� + i��iRs,jRs�

� ���f��� − ��� ,

Re I−���� = �
iRs,jRs�

ViRs,a
VjRs,a

P�
−�

�

d�
�iRs,jRs�

−� ���

� − � � f��� − ��Re Gaa
−���� +

P

�
�
K�

f���K� − ��Im Gaa
−���K� �

�K� − � �
Im I−���� = �

iRs,jRs�

ViRs,a
VjRs�a

�iRs,jRs�

−� �����f��� − ��Re Gaa
−���� + P�

K�

f���K� − ��Im Gaa
−���K� �

�K� − � � . �7�

The occupation of the surface states is given by the Fermi function f���K� −��, with � representing the chemical potential of
the surface. The eventual presence of localized surface states is accounted for by the surface density of states �iRs,jRs�

� ���. In

considering the contributions of inner bands l� with vanishing bandwidths and energies �l, the real parts of 	0
����, 	�

� ���, and
I−���� are modified accordingly to the expressions

	0
���� = �

iRs,jRs�

ViRs,a
VjRs�,a

�P�
−�

� �iRs,jRs�

� ���

� − �
d� + i��iRs,jRs�

� ���� + P�
l,Rs

�VlRs,a
�2

� − �l
, �8�

	�
� ��� = �

iRs,jRs�

ViRs,a
VjRs�,a

�P�
−�

� �iRs,jRs�

� ���f��� − ��

� − �
d� + i��iRs,jRs�

� ���f��� − ��� + P�
l,Rs

�VlRs,a
�2f���l − ��

� − �l
, �9�

Re I−���� = �
iRs,jRs�

ViRs,a
VjRs,a

P�
−�

�

d�
�iRs,jRs�

−� ���

� − � � f��� − ��Re Gaa
−���� +

P

�
�
K�

f���K� − ��Im Gaa
−���K� �

�K� − � �
+ P�

l,Rs

�VlRs,a
�2

� − �l
� f���l − ��ReGaa

−���l� +
P

�
�
K�

f���K� − ��Im Gaa
−���K� �

�K� − �l
� . �10�

Equations �3�, �7�, and �10� are solved self-consistently to-
gether with the occupation of the atom state


n̂a�
 = �
−�

�

d��aa
� ���f��� − ��

=
1

�
�

−�

�

d� Im Gaa
� ���f��� − �� .

On the other hand, the total change of the density of states
due to the presence of the adatom is given by

������ = �1/��Im��
k

Gkk
� ��� + Gaa

� ��� − �
k

Gkk
��0����� ,

where Gkk
� �Gkk

��0�� refers to the Green’s function of the con-
duction electrons with �without� the adatom. By using the
equations of motion for Gkk�

� and Gak
� , one finds

������ = �1/��Im�Gaa
� ����1 −

�

��
�

k

�Vak
� �2

� − �k − i
	� .

�11�

The atom LDOS �aa
� ��� and the change in the density of

states of the total system ������ show a quite different be-
havior, since the conduction electrons react to the presence
of the adsorbate. This is not the case of a flat-band, where
�aa

� ���=������ always.
By using Eqs. �5� and �6�, we can write

������ = �aa
� ��� + �

i,Rs

��i,Rs

� ��� . �12�

In Eq. �12� we have introduced the quantity
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��i,Rs

� ��� = �− 1/��Im�Gaa
� ���

�

��
�
j,Rs�

ViRs,a
VjRs�,a

��
−�

�

d�
�iRs,jRs�

� ���

� − � − i
� , �13�

which allows us to discriminate per atom and state the
change in the substrate density of states.

III. RESULTS AND DISCUSSION

A. Three-atom substrate

This model system consists of a chain of four atoms, one
representing the adsorbate and the other three the substrate,
with a total number of electrons �n� equal to 4. The three-
atom substrate accounts for an incipient solid band formation
and allows for an exact calculation of the density of states on
the adatom site. The Hamiltonian �1� is in this case

H = �
�,k=1,2,3

�kn̂k� + �
�
��a +

U

2
n̂a−�	n̂a�

+ �
�,k=1,2,3

�Vakĉa�
† ĉk� + h.c.� .

For the three-atom substrate with an atom-atom hopping in-
teraction t, and a site energy equal to 0, the energies �k of the
“band states” are �1=−�2t, �2=0, and �3=�2t. By consider-
ing the interaction only with the “surface atom” �V0�, that is,
the first atom of the three-atom chain, the hopping param-
eters Vak=a1

kV0 are calculated as

Va1 =
1

2
V0, Va2 =

1
�2

V0, Va3 =
1

2
V0.

The exact diagonalization of this Hamiltonian, in the case of
four electrons and in the infinite-U limit, is performed within
a basis set of 55 Slater determinants that contemplate only
positive and neutral atom configurations.

The Lehmann representation of the Green function
Gaa

� �t , t��= i��t�− t�
�ĉa�
† �t�� , ĉa��t��
 is given by

Gaa
� ��� = �

m

��m
� �2

� + Im − i

+ �

p

��p
��2

� − Ap − i

, �14�

with

Im = �Em
n−1 − E0

n� ,

Ap = �Ep
n+1 − E0

n� ,

being respectively the ionization and affinity energies. The
corresponding weights are

�m
� = 
�0

n�ĉa�
† ��m

n−1
 ,

�p
� = 
�0

n�ĉa���p
n+1
 .

In these expressions �0
n is the ground state of the

n-electron system, and �m
n−1�n+1� are the eigenstates of the

Hamiltonian for the four-level system with n−1 �n+1� elec-
trons. The calculation of Gaa

� ��� requires also the exact di-
agonalization of the Hamiltonian in the cases of three and
five electrons �n=4�. These are performed in the infinite-U
limit within basis sets of 50 and 36 Slater determinants, re-
spectively. In this form, we are able to calculate the whole
spectrum of one particle excitations. The atom density of
states is obtained from Eq. �14� as

�aa
� ��� =

1

�
Im Gaa

� ��� = �
m=1−50

��m
� �2
�� + Im�

+ �
p=1−36

��p
��2
�� − Ap� . �15�

The atom-state occupation �we are considering T=0 K� is
given by


n̂a�
 = �
m

��m
� �2,

and the infinite-U limit constraint implies that

�
m

��m
� �2 + �

p

��p
��2 = 1 − 
n̂a−�
 .

Let us now discuss the calculation of the density of states
by using the approximated expression �3� of the advanced
Green function. Due to the discrete nature of the substrate,
only the real parts of 	0

����, 	�
� ���, and I−���� remain. Then

we have

�aa
� ��� = �

i
�1 − 
n̂a−�
 − Re I−����� 
�� − �i�

�� f�/�����i

, �16�

with �i being the root of

f���� = � − �a − Re�
0

�

��� − Re�
�

�

��� �17�

and

Re 	0
���� = V0

2�
k

�a1
k�2

� − �k
, Re 	�

� ��� = V0
2 �

kocc

�a1
k�2

� − �k
,

Re I−���� = − V0
2 �

kocc

�a1
k�2�

i

�1 − 
n̂a�
 − Re I���i��
�� − �k���i − �k��� f�/�����i

+ V0
2�

k

�a1
k�2�

iocc

�1 − 
n̂a�
 − Re I���i��
�� − �k���i − �k��� f�/�����i

.

�18�

For arriving at expression �18�, we have used

Re Gaa
� ���� = −

1

�
�

−�

�

d�
Im Gaa

� ���
� − ��

= − �
i

�1 − 
n̂a−�
 − Re I−���i��
��i − ����� f�/�����i

.

From �16�, the adsorbate-state occupation results
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n̂a�
 = �
iocc

�1 − 
n̂a−�
 − Re I−���i��
�� f�/�����i

. �19�

Equations �18� and �19� are solved self-consistently by start-
ing the calculation with initial zero values for 
n̂a�
 and
I����.

The atom density of states given by Eq. �16� is compared
with the exact one �Eq. �15�� in Figs. 1–3. Three different
values of �a �0, −1.5, and 1.5 a .u.�, and for each one, two
values of V0 �0.1 and 1 a .u.� are analyzed. In all the cases,
the hopping parameter t of the three-atom chain is equal to
2 a .u. It can be observed from these figures that the approxi-
mated calculation of �aa

� ��� resumes the main features of the
exact one. The only four possible one-particle excitation en-
ergies �i from Eq. �17� account in an average form for the
ones with relevant weights within the exact calculation �it is
possible 86 one-particle excitation energies in this case�. For
small values of V0 �0.1 a .u . �, and the atom level energy
either greater or smaller than 0 a .u., both �aa

� ��� show prac-
tically only one �i=�a. While in the case of an atom level
resonant with the highest occupied substrate level ��a

=0 a.u . �, this small V0 leads to only one excitation energy
below zero in the approximated calculation. This excitation
energy results to be a mean value of the two exact values,
with a weight equal to the sum of the corresponding exact
weights. For larger values of V0 the main differences be-

FIG. 1. Density of states on the atom site from exact �full
squares� and approximated �full triangles� calculations, for atom
level energy equal to 0 a .u. and for atom-surface coupling values of
�a� 0.1 a .u. and �b� 1 a .u.

FIG. 2. The same as Fig. 1 for atom level energy equal to
−1.5 a .u.

FIG. 3. The same as Fig. 1 for atom level energy equal to
1.5 a .u.
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tween exact and approximated calculations occur near to the
“Fermi energy” ��2� of the substrate in the cases that could
be identified as representing Kondo ��a=−1.5 a .u . � and
mixed valence ��a=0 a.u . � regimes. The empty orbital re-
gime is the one better reproduced by the approximated cal-
culation. But in all the cases, an excellent agreement between
both calculations is observed in the hole density of states
�positive excitation energies�. The atom state occupations are
compared in Fig. 4 for a wide range of V0 values. The coin-
cidence found allows concluding that the second-order ap-
proximation in the atom-substrate coupling is a very good
one for calculating the atom occupations in the infinite-U
limit, within either weak or strong coupling regimes.

The expression �16� accounts for the exact values in the
V0=0 limit, being in this case the expression of 
n̂a�
 re-
duced to


n̂a�
 = 
n̂a−�
 = �
−�

0

�1 − 
n̂a−�
�
�� − �a�d� .

We have 
n̂a�
=0 for �a�0. The values 
n̂a�
=0.5 for
�a�0 and 
n̂a�
=1/3 for �a=0, are a clear consequence of
the elimination of negative atom configurations. The ground
states are in these cases �considering the total spin well de-
fined�

�0��a = − 1.5 a.u.� =
1
�2

�ĉ1↑
† ĉ1↓

† ĉ2↓
† ĉa↑

† �0
 ± ĉ1↑
† ĉ1↓

† ĉ2↑
† ĉa↓

† �0
� ,

�0��a = 0 a.u.� =
1
�3

�ĉ1↑
† ĉ1↓

† ĉ2↑
† ĉ2↓

† �0
 + ĉ1↑
† ĉ1↓

† ĉ2↓
† ĉa↑

† �0


− ĉ1↑
† ĉ1↓

† ĉ2↑
† ĉa↓

† �0
� .

The occupation 
n̂a�
 shows an abrupt change from 1/3 to
1/4 for V0 tending to zero in the �a=0 a.u. case. This change
is due to the singlet nature of the ground state of the inter-
acting system in the infinite-U limit,19

�0��a = 0, V0 � 0� =
1
�2

�ĉ1↑
† ĉ1↓

† ĉ2↑
† ĉ2↓

† �0


+
1
�2

�ĉ↑
†ĉ1↓

† ĉ2↓
† ĉa↑

† �0


− ĉ1↑
† ĉ1↓

† ĉ2↑
† ĉa↓

† �0
�	 .

The symmetry of the interacting system for �a=0 fixes
practically in 1/4 the atom occupation for any V0, and the
same situation is recovered for the other values of �a when
V0��a and V0� t. The atom density of states is shown in
Fig. 5 for a large V0 value. It is observed that the three �a
values lead practically to the same density of states. There

FIG. 4. Atom occupation per spin as a function of the atom-
surface coupling value. Solid lines represent the exact calculation;
empty symbols are the approximated results. Triangles correspond
to atom energy level ��a� equal to 1.5 a .u., squares to �a=0 a.u.,
and circles to �a=−1.5 a .u.

FIG. 5. Density of states on atom site for a coupling value equal
to 50 a .u., and for the three values of �a. Full squares are the exact
results and full triangles the approximated ones.
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are only three excitation energies in the exact calculation
case, which is characteristic of a two-degenerate level system
in the infinite-U limit.19

In Fig. 6, the substrate density of states �s
����

= 1
� Im�kGkk

� ��� obtained by using either the exact calcula-
tion of Gaa

� ��� or the approximated expression given by Eq.
�3� can be observed. The atom density of states from both
calculations is also shown in this figure. These results corre-
spond to the case �a=0, but the discussion is completely
valid for the other cases too. The differences found between
the exact and approximated one-particle excitation energies
are more dramatic in the calculation of �s

���� due to the
factor �� /���	0��� �see Eq. �11��, which depends strongly
on the energy separations between �i and the nonperturbed
substrate eigenvalues �k. As it can be seen from Fig. 6, the
exact calculation ensures the conservation of the total num-
ber of electrons given by the identity

�
−�

0

d���aa
� ��� + �s

���� − �s
��0����� = 0.

But this relation is far from being accomplished by the ap-
proximated calculation, which gives a poor description of the
�s

���� for the negative excitation energies in this very dis-
crete system.

B. Hydrogen interacting with aluminum surface

Here we consider an on-top adsorption configuration. The
atom energy and hopping terms are obtained from an adia-
batic calculation of the atom-surface interaction within a
mean field approximation with atom occupations frozen at
their values in the noninteracting limit. This calculation is the
same one used successfully in the description of the hydro-
gen scattering by Al�100� surface.18 All the one- and two-
electron atomic integrals required for the calculation are pro-
vided by a quantum chemistry code,20 by using the
GAUSSIAN atomic orbitals given by Huzinaga.21 The local
and partial density of valence states �iRs,jRs�

� ��� for the

Al�100� surface is calculated through a decimation
technique,22 and the Al-core bands are considered as local-
ized states with energies equal to the experimental values
obtained from x-ray photoemission spectroscopy data.23

We consider two different situations: one in which the
infinite-U limit allows for only neutral and positive charge

FIG. 6. �a� Density of states of the substrate ��s
����� in the

�a=0 a.u. case. Full squares are the exact results and full triangles
the approximated ones; empty triangles correspond to the unper-
turbed substrate density of states. �b� LDOS on atom site, full
squares are the exact calculation, and full triangles the approxi-
mated one.

FIG. 7. �a� Ionization �dash line� and affinity �solid line� levels
of hydrogen as function of distance from Al surface; the gray shad-
owed figure corresponds to the Al�100� LDOS. The Fermi energy is
indicated by a gray line. �b� H-Al coupling parameters as function
of surface distance; dotted line corresponds to the coupling with the
Al-2s, long dash line to Al-2pz, dash line to Al-3s, and solid line to
Al-3pz.
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states, and the other in which the infinite-U limit allows for
only neutral and negative charge states. In the slave-boson
approximation, the first case has to be with two strongly
correlated electrons, while the second one has to be with two
strongly correlated holes.

The hydrogen level shift in front of Al surface is calcu-
lated by joining the mean field calculation that takes into
account the short-range interactions, with the correct behav-
ior by the image potential at large distances.18 This means to
consider

�a�z� = ��̃a�z� − �̃a�zA� + �� + Vim�zA� for z � zA

�� + Vim�z� for z � zA,
�

where �̃a�z� corresponds to the calculation including the
short-range interactions, and zA �=8 a.u . � is the distance at
which the join with the correct behavior by the image poten-
tial Vim�z� is performed. The asymptotic value of the atom
energy level is given by ��. In the case of the ionization level
�E0

n−E0
n−1�, we have ��=−0.5 a .u. and Vim�z�=1/ �4�z−z0��.

While for the affinity level �E0
n+1−E0

n�, ��=−0.0276 a .u. and
Vim�z�=−1/ �4�z−z0��. The z0 distance corresponds to the im-
age plane position for the Al�100� surface �3.06 a .u . �. In
this way, a good agreement with other existing results is
obtained.24,25

In Fig. 7�a�, the ionization �E0
n−E0

n−1� and affinity �E0
n+1

−E0
n� levels are shown as a function of the normal distance

�z� to the last atomic plane of the surface. The Al�100� local

density of states are also shown in this figure. The reference
in energy in Fig. 7�a� is the Al Fermi level, positioned at
−4.36 eV with respect to the vacuum level. In Fig. 7�b�, the
Al-H hopping terms VjR0,a, where j indicates the atomic
states 2s, 2pz, 3s, and 3pz of the aluminum atom situated at
R0= �0,0 ,0�, are shown as a function of z. In all the follow-
ing analysis, we consider the renormalized atom-surface cou-
pling Vak /�N as to make possible the comparison with the
N=1 case; and the density of states �aa

� ��� is calculated by
considering in Eqs. �7�–�10� the contribution of only the
nearest aluminum atom Rs=R0. The effect of Al core-bands
in the atom LDOS calculation was negligible for the ana-
lyzed range of distances.

1. Only H0^H+ involved

The atom density of states �aa
� ��� is shown in Figs. 8 and

9 for two different distances, z=4 and 3 a.u., respectively,
and for T=0 K. In the first case �z=4 a.u . �, a pronounced
narrow resonance appears close to the bottom of the valence
band at � around −0.36 a .u., suggesting the formation of a
localized state which becomes clearly defined in the z
=3 a.u. case �Fig. 9�. The negligible contribution of the vir-
tual states showing a Kondo structure for z=4 a.u. becomes
more important for z=3 a.u. In this case, a well-defined
Kondo peak is observed at ��0.0018 a .u . �0.05 eV�. The
other peaks located to the left and right of the Kondo peak

FIG. 8. Density of states on H site in the case of H0↔H+, in
front of Al surface for a distance value of 4 a .u. Solid line corre-
sponds to N=2 and dash line to N=1. The top figure is a zoom of
the bottom one.

FIG. 9. The same as in Fig. 7 for a distance value of 3 a .u.
Solid line and full square correspond to N=2, dash line and full
triangle to N=1. It is also shown the Al�100� density of states
�dotted line�.
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are originated in the Al LDOS, as it can be seen from Fig. 9.
The main differences with the N=1 approximation occur
around the Fermi level, where no pronounced peak structure
is registered by the spinless calculation. The localized state
�Fig. 9� arises when

�i − �a − Re�	0��i� + �N − 1�	���i�� = 0

and

Im�	0��i� + �N − 1�	���i�� = 0.

According to Eq. �9� Re�	���i�� would lead to a smaller
value of �i in the case of N=2 compared with N=1. But due
to the coupling renormalization, we have in the strong cor-
relation case

Re�	0��i� + 	���i�� =
1

2�
i,j

Vi,aVj,aP

��
−�

� �i,j
� ���

�i − �
�1 + f�����d� ,

while in the N=1 case

Re�	0��i�� = �
i,j

Vi,aVj,aP�
−�

� �i,j
� ���

�i − �
d� .

In this way, the N=2 case leads to a larger value of �i.

The level width at the atom-level energy ���a� is calcu-
lated as

���a� = Im�	0��a� + �N − 1�	���a��

=
�

N
�
i,j

Vi,aVj,a�i,j
� ��a��1 + �N − 1�f���a�� ,

and the atom state occupation are shown in Fig. 10 as a
function of surface distance z. In this case where �a is always
below the Fermi energy, both ���a� from N=2 and N=1
calculations are equal. The occupations are very similar, be-
ing always larger in the N=2 case. When atom-surface inter-
action is significant, the high neutral fraction is practically
determined by the contribution of the localized state �z
�4 a .u . �. We can observe that the presence of the localized
state disappears in the N=2 case for smaller distances than in
the N=1 case, giving place to another important difference
between them. The virtual states have the significance that
their energy, translated into complex frequency, governs the
time evolution of the atom state.26 Therefore, less neutraliza-
tion is expected in the case of nonequilibrium processes, due
to the pronounced downshift of the atom level, the magni-
tude of the atom-atom coupling terms, and the energy depen-
dence of the Al surface LDOS. The differences between N
=1 and N=2 arising in the density of states around the Fermi
energy are not expected to be relevant in defining the neutral
fractions in ion scattering processes, while it can be impor-
tant in stationary processes related with electronic transport.

FIG. 10. �a� The level width at the ionization level energy as
function of surface distance, �b� atom state occupations from N=2
�dash line� and from N=1 �dot line� calculations. Empty symbols
are the contributions from localized state and full symbols are from
virtual states �squares correspond to N=2 and circles to N=1
calculation�.

FIG. 11. Hole density of states for H− in the case of H0↔H−, in
front of Al surface for a distance value of 4 a .u. Solid line corre-
sponds to N=2 and dash line to N=1 calculation.
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In this on-top configuration at z=3 a.u., a high Kondo tem-
perature TK�570 K is obtained. Then, there is no practical
variation with temperature in this case, since T�TK is re-
quired for it. That means that correlation effects are still
present at room temperature.

2. Only H0^H− involved

The negative charge state in the infinite-U limit is taken
into account by considering two strong correlated holes; this
means that the hole-state occupation 
n̂a↑
+ 
n̂a↓
 provides
the neutral fraction. In the hole picture,

f�
holes��� = 1 − f�

electrons��� .

The occupied hole states correspond to ��0; this means that


n̂a�
 = �
−�

�

�aa
� ���f�

holes���d� ,


n̂a↑n̂a↓
 = �
−�

�

�aa
� ���f�

electrons���d� = 1 − 
n̂a↑
 − 
n̂a↓
 .

The atom density of states �aa
� ��� for distances z=4 and

3 a .u., and for T=0 K, are shown in Figs. 11 and 12, respec-
tively. In the z=4 a.u. case, a LDOS characteristic of the

FIG. 12. The same as in Fig. 11 for a distance value of 3 a .u.

FIG. 13. �a� The level width at the affinity level energy as func-
tion of surface distance, solid line corresponds to N=2 and dot-
dashed line to N=1. The inset shows the decaying exponential be-
havior of the level width for large distances. �b� Atom state
occupations from N=2 �solid line� and from N=1 �dot-dashed line�
calculations.

FIG. 14. Atom state occupation as function of temperature. Full
symbols correspond to N=2 and empty symbols to N=1 calcula-
tion. Triangles are for surface distance equal to 6 a .u., squares to
4 a .u., circles to 3.5 a .u., and rhombus to 3 a .u. The infinite tem-
perature limit values, 2 /3 for N=2 and 1/2 for N=1, are indicated
by solid and dot-dashed lines, respectively.
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mixed valence regime is observed, while a transition to the
empty orbital regime is taking place at smaller surface dis-
tances �z=3 a.u . �. Pronounced differences with the uncorre-
lated case N=1 are obtained for ��0 �empty hole states�. In
Fig. 13, the neutral fraction or hole-state occupation is shown
as a function of surface distance. The evolution of the occu-
pation behavior from 
n̂a
�1 to 
n̂a
=1 indicates the differ-
ent regimes in the N=2 case. The transition between the
empty orbital for z�4 a .u. and the Kondo regime for z
�5 a .u. occurs with a change of slope associated to the
valence mixed one. This behavior, depending on the atom-
level position respect to the Fermi energy, is strongly related
to the spin statistics; therefore, it cannot be registered by the
spinless calculation.

In Fig. 13, ���a� is shown as a function of surface dis-
tance. In the inset of Fig. 13�a�, an exponentially decaying
behavior of the level width can be observed for large dis-
tances �z�5 a .u . �. The values obtained are in good agree-
ment with those calculated by other methods.27 The atom-
level energy becomes resonant with the empty hole-band
states for distances smaller than 3.8 a .u., in this case being
���a�N=2= �1/2����a�N=1. In this form, spin-statistical factors
appear, defining the capture rate of holes equal to ���a�N=1

and the loss rate of holes equal to �1/2����a�N=1.27 As a
direct consequence, the main differences between occupation
values from N=2 and N=1 calculations occur in the empty
orbital regime. The atom-level width in H0↔H− is larger
than in H0↔H+. This fact is related with a larger substrate
density of states at energies around the affinity level �Fig.
7�a��. Then, the neutralization of negative ions is mainly de-
fined by the contribution of virtual states, making it possible
to infer the charge exchange in dynamical processes such as
ion scattering. An increasing negative ion fraction is ex-
pected the smaller the incoming and the larger the outgoing
ion kinetic energies are, and major or minor differences be-
tween N=1 and N=2 calculations will be obtained depend-
ing on the ion velocity. The effects of the infinite-U limit in
the empty LDOS structure are important for processes in-
volving holes conduction.

We also calculated ��i,R0

� ��� given by Eq. �13� and found
that the conservation of electron number is much better sat-
isfied in the case of extended substrates. For a distance of
3 a .u., the atom charge equal to 0.72 is mainly provided by
the s-valence states of Al ��−�

0 ��s,R0

� ���d��−0.7 and
�−�

0 ��p,R0

� ���d��−0.05��, while in the case z=4 a.u., simi-
lar contributions from s and p-valence states are found

��−�
0 ��s,R0

� ���d��−0.27 and �−�
0 ��p,R0

� ���d��−0.16�.
These results show the dependence of the resonant mecha-
nism of charge exchange on the adatom-level position re-
spect to the valence band states.

Figure 14 shows the dependence of the occupation with
temperature for the atom at different distances from the sur-
face, and therefore for different correlation regimes. Both
calculations are compared, showing the infinite temperature
limits in each case: 2 /3 in the N=2 and 1/2 in the N=1
case.28 It is only in the mixed valence regime �z=4 a.u . �
where one can observe a more significant change for T
�300 K.

IV. CONCLUSIONS

The model calculation presented in this work is funda-
mentally based on the knowledge of the interacting atom
states of either localized or extended nature. The Coulomb
electron interactions in the localized states can be consis-
tently contemplated within different perturbative schemes
going from Hartree-Fock to infinite value limit.13,29 We have
in this form the possibility of exploring interesting correla-
tion effects in a lot of atom-surface systems by taking into
account real features originated in the properties of the in-
volved atoms. In summary, a calculation only based on ab
initio calculated parameters that allows describing equilib-
rium and nonequilibrium stationary or dynamical processes
is presented.

To account for the spin fluctuations by considering
H0↔H− in the adsorption process on metal surfaces repre-
sents an improvement with respect to previous model calcu-
lations based on the Hartree-Fock approximation.15,16 In hy-
drogen scattering by Al surface, the spin statistics are
expected to have a more significant effect in the negative ion
formation from H0 than in H+ neutralization.

It is concluded that the use of realistic surface LDOS can
provide insights about the contribution of electron correla-
tion and surface orbitals to photoemission spectra from
simple adsorption systems, and also to ion and electron spec-
troscopies.
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