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Combining the thermodynamics at the nanometer scale and the continuum mechanics, we established a
universal and analytic thermodynamic model to elucidate the surface energy of nanocrystals. It was found that
the surface energy decreases with decreasing the size of nanocrystals. The theoretical predictions were well
consistent with the experimental data, implying that the thermodynamic model could be expected to be a
general approach to understand surface energy in nanomaterials.

DOI: 10.1103/PhysRevB.74.195408 PACS number�s�: 68.60.Dv, 61.46.�w

INTRODUCTION

Isolated nanocrystals as building blocks have attracted
much interest due to their unique applications in mesoscopic
physics and fabrication of nanoscaled devices in recent
years.1 Therefore, surface energy is the important physical
quantity of nanocrystals, especially for nanoscaled devices,
because, with decreasing the size of the devices, the ratio of
surface/volume will increase, and then the surface energy
will greatly affect the properties of materials. However, in
the past decades, many few studies reported the surface en-
ergy of nanocrystals has been experimentally measured.2–4 In
other words, the convincing experimental data of surface en-
ergy of nanocrystals have not been available in the present
securable literatures. However, very recently, Nanda et al.
reported a series of substantial experimental data of surface
energies of Ag, Au, and PbS nanocrystals.5,6 On the other
hand, there are a variety of theoretical approaches to calcu-
late surface energy of nanocrystals such as the tight-binding
parametrizations,7 the ab initio calculations,8–10 the broken-
bond rule,11–13 the modified embedded atom method,14 the
equivalent crystal theory,15 the thermodynamic model,16 and
the molecular dynamics simulations.17 Interestingly, two
common conclusions can be abstracted from all theoretical
calculations above as follows.18 One is that surface energy of
nanocrystals is size dependent, and another one is that the
value of nanocrystals’ surface energy is usually much smaller
than that of the partner bulk. Nevertheless, there is a big
issue about surface energy of nanocrystals, as Nanda’s ex-
periments contradict the theoretical results above.19 Decid-
edly, the experimental data showed the value of nanocrys-
tals’ surface energy is similar to the bulk’s value and
basically not size dependent.5,6

For the issue, in this contribution, we theoretically estab-
lish a universal and analytic thermodynamic model to eluci-
date the surface energy of nanocrystals on the basis of the
thermodynamics at the nanometer scale and the continuum
mechanics. Importantly, our study not only provides the the-
oretical predictions of surface energy of nanocrystals �may
be the first time� that are well consistent with experimental
data, but also settles the dispute among theoretical calcula-
tions and experiments.

THEORETICAL MODEL

The size-dependent thermodynamic model of the surface
energy of nanocrystals is developed as follows. From the

thermodynamics, the surface energy � is defined as the re-
versible work per unit area involved in creating a new sur-
face at constant temperature, volume, and total number of
moles.20 Generally, the relationship of surface energy and
surface stress tensor is g��=A−1� ��A� /���� �� ,�=1,2�, in
which A and ��� denote the surface area per atom and the
strain tensor.21 For a liquid situation, the diagonal compo-
nents of g�� are numerically equal to �. However, the g�� is
not equivalence to � for solid. The energy � is defined to be
the energy to create unit area of surface. In our case, the
surface energy of nanocrystals includes the structural part
due to surface stress derivation and surface chemical part for
breaking bonds energy. Therefore, the corresponding surface
free energy is expressed

� = �stru + �chem. �1�

The �stru is related to the surface strain energy. Saito et al.
studied a two-dimensional crystal of square lattice and ob-
tained the total elastic stain energy of the rigid structure, in
which the spontaneous stress situation is given with defects
such as adsorbed atoms or with steps and attains the energy
minimum.22 Similarly, we approach the spherical face of fine
structural nanocrystals by considering the reconstruction and
relaxation of the surface.22 The �stru is the density of surface
strain energy. Figure 1�a� showed the schematic illustration
of surface unit cell of nanocrystals. Considering a nanocrys-
tal with cubic structure, we take a surface unit cell with four
atoms whose coordinates can be shown as �1� �xi ,yj�, �2�
�xi+1 ,yj�, �3� �xi ,yj+1�, and �4� �xi+1 ,yj+1�. The displacements
of the atom �xi ,yj� in the surface are respectively expressed
as u�xi ,yj� and v�xi ,yj�. Each atom interacts with its nearest-
neighbors and next-nearest neighbors and the interactions are
represented by a spring with spring constants �1 and �2. Due
to the influence of surface relaxation, the distances between
two atoms on the surface are determined by the ambient
temperature.23,24In other words, the spring coefficients are
also temperature dependent, i.e., ��T�. The distance between
two atoms is signed as � with consideration of a quadrangle
under the condition of the reconstruction case. The � is equal
to �as due to the surface relaxation, where � and as are the
relaxation parameter and lattice constant of the surface unit
cell. The atomic positions of 2, 3, and 4 are moved to 2*, 3*,
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and 4* for the lattice relaxation. The elastic strain energy in
the surface cell can be written as follows:

U�i,j�
s = U1−2

s + U1−3
s + U1−4

s + U2−3
s , �2�

U�i,j�
s represents the deformation energy between atoms i and

j due to stretching of the spring. According to a semicon-
tinuum model,25,26 the elastic strain energy in the surface unit
cell can be written as
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Assuming the deformation is small, we can define the elastic
strains in the surface cell as �x

s = �u
�x , �y

s = �v
�y , �xy

s = 1
2

� �u
�y + �v

�x
�.

Therefore, we can obtain the elastic strain energy in the sur-
face cell as

U�i,j�
s =

1

2
��as�2��1��x

s2 + �y
s2� + �2���x

s + �y
s�2 + 4�xy

s 2� .

�4�

Thus, the surface strain energy density is deduced as

�stru =
Ui,j

S
=

1

2
��1��x

s2 + �y
s2� + �2���x

s + �y
s�2 + 4�xy

s 2� .

�5�

The surface strain ����
s � of a sphere is related to the absolute

bulk strain ��ij� within the particle through a coordinate
transformation ���

s = t�it�j�ij, in which � ,� range from 1 to 2
and i, j range from 1 to 3. The t�i is the transformation tensor
and the transformation matrix is expressed as follows:20

�tij = �cos � cos 	 sin � cos 	 − sin 	

− sin � cos � 0

sin 	 cos � sin 	 sin � cos 	
� . �6�

Therefore, the surface strain of a spherical particle is listed
as �11

s = t11t11�11+ t12t12�22+ t13t13�33, �12
s =�21

s = t11t21�11
+ t12t22�22, and �22

s = t21t21�11+ t22t22�22, respectively.
From these deductions above, the structural part of sur-

face free energy of the cubic structural lattice is obtained as

�stru = �2��1 + 2�2� . �7�

According to the Hooker’s law and Gibbs-Thomson equa-
tion, the bulk strain � in cubic structural lattice is deduced

as27,28 �=− 2k
3D

	D0hSmbHmb

kVsR
, in which k, D, h, Smb, Hmb, Vs, and

R denote the compressibility of bulk crystals, the average
diameter of the particles, the atomic diameter, melting en-
tropy, melting enthalpy, the molar volume of crystals, and the
ideal gas constant, respectively. Note that D0 is the smallest
size with D0=3h for spherical particles.28 The negative sign
denotes the lattice contraction. According to Eq. �7�, we can
calculate the surface strain energy for spherical particles.

On the other hand, the �chem is related to the surface dan-
gling bond energy. Galanakis et al. have applied the Green’s
function based full-potential screened Korringa-Kohn-
Rostoker �FKKR� method in conjunction with the local den-
sity approximation �LDA� to study the surface free energies
of the noble and fcc transition and sp metals.11 In fact, the
results of Galanakis are the coefficients �
�hkl�� of the surface
chemical energy in our model. Thus, 
�hkl�= �1−	Zs /Zb�Eb,
in which Zs, Zb, and Eb are the coordination number, the bulk
one, and cohesive energy, respectively. The size-dependent
cohesive energy �E�D� of nanocrystals is expressed as29

E�D� = Eb�1 −
1

D/D0 − 1
�exp�−

2Smb

3R

1

D/D0 − 1
� . �8�

Accordingly, we can obtain the size dependence chemical
part of the surface energy of nanocrystals as shown

FIG. 1. Modeling of surface unit cell in nanometer spherical
particle under the condition of reconstruction case �a�. Dependence
on relaxation parameter of surface spring coefficients of Au and
Ag �b�.
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�chem = 
�hkl��1 −
1

D/D0 − 1
�exp�−

2Smb

3R

1

D/D0 − 1
� .

�9�

From these deductions above, the complete expression of
surface energy of nanocrystals is obtained.

The spring constants of �i �i=1,2� can be calculated by
the follow method: According to continuum mechanics, the
spring coefficients � between two atoms can be expressed as
�=Ea, where E is the Young’s modulus of nanocrystals. As
for the surface of nanocrystals, the surface spring coefficients
can be easily written as

� = Esas
* �10�

in which Es and as
* are surface Young’s modulus and distance

of two atoms in the surface unit cell. Furthermore, based on
the Sun’s considerations,30 the correlation between the sur-
face Young’s modulus �Es� and the lattice deformation can be

obtained as
Es

E0
= � as

a0
�m

−3
as

a0
+3, where m is a parameter used

to describe the change of the binding energy. Note that the
value of m�−4 for alloys and compounds and m�1 for
metal elements. Therefore, we can obtain the relationship
between spring coefficient and relaxation parameter as
shown

� = E0a0��m+1 + 3� − 3�2� . �11�

We calculate the surface spring coefficients of Au and Ag as
showed in Fig. 1�b�. Clearly, we can see the � increase as the
small deformation case. Physically, the relaxation of surface
lattices is activated by ambient temperature, which can in-
duce the variety of surface spring coefficients.

RESULTS AND DISCUSSION

Taking Au nanocrystals as an example, we calculate the
elastic strain energy, the chemical energy, and the total sur-
face energy by Eqs. �7�, �9�, and �1� as shown in Fig. 2. The
corresponding parameters in our calculations are listed in
Table I. From Fig. 2�a�, we can clearly see the elastic strain
energy on the nanocrystal surface increases with a decrease
in size. The conclusion is consistent with that the bulk
strain ��ij� of the nanocrystals increases as the size
decreases.27,31–33 However, the surface chemical energy �in-
set of Fig. 2�a� decreases with a reduction in size. Further,
the total surface energy of isolated spherical nanocrystals is
shown in Fig. 2�b�. Evidently, the surface energy of Au nano-
crystals reduces with decreasing the size.

In order to avoid confusion of conceptions, we need to
discuss the physical interpretation of Nanda’s experimental
data5,6 before comparing the theoretical results to experi-
ments. In fact, the experimental data of Nanda are original
from the size-dependent evaporation of nanoparticles. For
instance, the schematic illustration of the �111� surface bond
and dangling bond of a face-center-cubic �FCC� element is
shown in Fig. 4, which is represented respectively the natural
dividing surface �a� and the evaporation case �b�. Definitely,
the main difference between two cases is the coordination
numbers �z� of an atom. For FCC, body-center-cubic �BCC�,

and NaCl type crystal structure, the coordinate numbers are
respectively as 12, 8, and 6. Comparing with the natural
dividing surface, the cohesive energy per atom in the evapo-
ration case must be multiplied by z /2 �cohesive energy of
each atom bond is shared by two atoms�. Naturally, the dif-
ferent physical processes will lead to the different under-
standings of surface energy of nanocrystals. Note that, all
theoretical calculations including our model are on the basis
of the natural diving surface case as shown in Fig. 3�a�.
However, Nanda’s experiments are on the basis of the evapo-
ration case in Fig. 3�b�. Therefore, the difference between the
physical processes causes the contradiction above. Accord-
ingly, the value of the surface energy of nanocrystals, which
is experimentally measured by the Kelvin equation in the
evaporation case, can be calculated by �n=�stru+ z

2�chem, in
which �n is the surface energy of free nanocrystals. Accord-
ing to the experimental results, �n=7.2 Jm−2 for Ag while
�=1.065 or 1.363 Jm−2 in bulk. The main reason is the dif-
ferent surroundings for nanocrystals. In general, � is used in
the liquid-drop model to understand size-dependent melting
of nanocrystals while �n is obtained by analyzing the size-
dependent evaporation data.34,35 � can be evaluated directly
if �n is known based on the above discussions. In light of this
equation, the size-dependent surface energy of Ag and PbS
nanocrystals are shown in Fig. 4�a�. Evidently, our theoreti-
cal results are well in agreement with the experimental data,
in which the deviations in all comparisons are very small.
Meanwhile, we can clearly see that the size dependence of
surface energy of nanocrystals is very weak when the size

FIG. 2. Size-dependent Au nanoparticle surface strain energy
and chemical energy with A and surface free energy with B.
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more than 10 nm, as reported by Nanda et al.5,6 Importantly,
there are several physical quantities with surface energy, sur-
face tension, and surface stress to nanocrystals. Note that the
surface tension and surface stress are the same as surface
energy for liquids. However, there exist the significant dif-
ference between the surface stress and the surface energy for
solid nanocrystals.18,19 The surface energy of free nanocrys-
tals is characterized by the surface tension �for Ag, �n
=7.2 Jm−2�. In fact, according to the liquid-drop model, the
surface tension �surface energy�/surface stress of free nano-
crystals are higher than the bulk. Meanwhile, the surface
energy of free nanocrystals is different from that of capped
or embedded nanocrystals.

Noticeably, under the condition of low temperature, the
equilibrium crystal shape is usually a faceted polyhedron and
not an elegant sphere.36 As for the sake of simplification,
only the same type crystalline facet surrounding the nano-

crystals can be considered in the above discussions under the
condition of low temperature. In terms of the above equation,
the size-dependent surface energy of Na �110� and Al �110�
nanocrystals under free standing and no evaporation cases
are shown in Fig. 4�b�. Interestingly, the corresponding ex-
perimental results are consistent with the theoretical predic-
tions.

Actually, the nanostructural materials show evidently the
size effects for many physical qualities such as the interac-
tion binding energy, etc.37 According to the liquid drop
model, the cohesive energy per atom is expressed as av,d

TABLE I. Calculating parameters of Ag, Au, and PbS. The data are cited from Refs. 16, 40, and 41.

h
�nm�

Sb

�J mol−1 K−1�
Hm

�KJ mol−1�
Vs

�cm3 mol−1�
k

��10−12 Pa−1�
a

�nm�

Ag 0.2889 9.16 11.3 10.3 9.6225 0.418

Au 0.2884 9.38 12.55 10.2 5.848 0.420

PbS 0.297 4.96 18.4 15.7 15.1 0.594

Na 0.397 7 2.6 23.78 158.7 0.4291

Al 0.286 11.463 10.7 10 13.16 0.4050

FIG. 3. Schematic illustration of FCC elements �111� surface
bond and dangling bond. Natural dividing surface with A and
evaporation case with B.

FIG. 4. Size-dependent surface free energy of Ag and PbS nano-
particle with considering coordination numbers per atom with A.
The experimental data are taken from Refs. 5, 6, and 42. Size-
dependent surface free energy of Na �110� and Al �110� with B.
The corresponding experimental points are taken from �Refs. 43
and 44�.
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=av−6v0� /d, in which, v0, d, av,d and av denote the atomic
volume, the size of nanocrystals, the radius of an atom with
sphere shape, the cohesive energy per atom and correspond-
ing the bulk.38,39 From our theoretical results above, the sur-
face free energy of nanocrystals is size dependent too. The
predictions are well agreement with the recent results.17

CONCLUSION

In summary, aiming at a clear physical insight into the
surface energy of nanocrystals, we systematically studied the
components of the surface energy from the viewpoint of ther-

modynamics and continuum mechanics, and then deduced a
general and analytic thermodynamic expression for the size-
dependent surface energy of nanocrystals. It was found that
the surface energy decreases with decreasing the size of the
nanocrystals, which are well consistent with the experiments.
We expected the model to be a general approach to under-
stand surface energy in nanostructures.
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