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The degree and orientation of the magnetic-field induced linear polarization of the photoluminescence from
a wide range of heterostructures containing �001� �Cd,Mn�Te quantum wells between �Cd,Mn,Mg�Te barriers
has been studied as a function of detection photon energy and of the strength and direction of a magnetic field
applied in the plane of the quantum well. Three field-induced contributions to the linear polarization of the
photoluminescence are observed which differ in their dependence on the angle, �, between the magnetic field
and the �110� direction, being, respectively, independent of �, varying as cos�2��, and as cos�4��. A theoretical
description of each of these contributions in terms of an in-plane deformation acting on the valence band states
is presented and verified by comparison with the experimental data. In our model, we account for the possi-
bility that the in-plane deformations are distributed in both magnitude and direction. We conclude that it is
possible to account for the magnetic-field induced linear polarization of the photoluminescence via in-plane
deformations and without invoking terms in the valence band spin Hamiltonian which are cubic in J. The
models developed in the present paper apply in full measure to nonmagnetic quantum wells as well as
ensembles of disklike quantum dots with shape and/or strain anisotropy.
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I. INTRODUCTION

The linearly polarized luminescence of semiconductor
nanostructures can yield information on the details of their
symmetry, on the mechanisms of the interparticle exchange
interaction and on the interaction of the particles with exter-
nal fields. For quantum wells �QWs� and disklike quantum
dots, it also contains valuable information on the confine-
ment potential in the lateral direction, which cannot be ob-
tained from conventional �polarization-independent� spec-
troscopy. In Ref. 1, an unusual behavior of the degree of
linear polarization of the emission of CdTe/ �Cd,Mn�Te
QWs was discovered with a magnetic field parallel to the
QW layer. The most remarkable finding of Ref. 1 was the
extremely anisotropic g factor of the valence band states and
this was explained as a consequence of a uniaxial in-plane
distortion lowering the QW symmetry; an important contri-
bution to the theory has been presented recently in Ref. 2.
The concept of an extremely anisotropic �but pseudo-
isotropic� hole g factor has been verified by spin-flip Raman
scattering �SFRS� experiments3 and photoluminescence �PL�
studies of charged single quantum dots,4 where the energy
separation of the valence band spin sublevels was spectrally
resolved. In Ref. 3, some other observations of related in-
plane anisotropy effects were reviewed. In particular, inter-
face effects in �Cd,Mg�Te/ �Cd,Mn�Te QWs of the type
studied here have been studied previously,5 where the pos-
sible effects of a realistic degree of interface intermixing
were assessed.

The present paper is devoted to the detailed investigation
of the contributions to the linear polarization of the PL of

QWs and aims at the generalization of results obtained on
many samples, and at the understanding of the factors con-
trolling the PL polarization in QWs of �for example� differ-
ent thicknesses, barrier heights, or concentrations of mag-
netic ions. Attention has been paid, both in theory and in
experiment, to the analysis of the contributions to the polar-
ization dependence having different symmetries �the “angu-
lar harmonics” of polarization� and the complementary
techinques of PL and SFRS have been applied. The theory
developed is compared to the experimental angular,
magnetic-field, and spectral dependences of the polarization.

The paper is organized as follows. In Sec. II we describe
the samples under study and give a brief description of the
experimental techniques. Sec. III contains the review of our
experimental results. In Sec. IV we develop the theoretical
model. Section V is devoted to a comparison of the theoret-
ical and experimental results. Finally, Sec. VI lists the main
results and conclusions of the paper.

II. SAMPLES AND EXPERIMENTAL DETAILS

We have studied several samples and present here results
on six QW heterostructures that provide typical examples of
the polarization behavior of interest; their details are summa-
rized in Table I. We note that the bandgaps Eg of the well and
barrier layers of Cd1−x−yMnxMgyTe can conveniently be es-
timated using the expression Eg=1.595+1.592x+1.607y.6

In the PL experiments, the magnetic field was in the plane
of the QWs �H� �001�� and the luminescence collected was
propagating normal to the plane �the Voigt configuration�.
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The PL was excited by either helium-neon or argon ion la-
sers, with a pump density of less than 1 W/cm2. The linear
polarization data were taken using a photoelastic quartz po-
larization modulator and a two-channel photon counting
technique. As the excitation energy was well above the re-
combination energy, no influence of the excitation polariza-
tion on the PL polarization was detected in our experiments.

To obtain complete information about the linear polariza-
tion of the PL, we measured the two polarization parameters
defined as

R0 = �I� − I��/�I� + I��, R45 = �I+45 − I−45�/�I+45 + I−45� ,

where I� and I� stand for the intensities of PL polarized
perpendicular and parallel to the magnetic field, respectively,
while I+45 and I−45 represent those polarized in two orthogo-
nal directions rotated �in the sample plane� by 45° with re-
spect to the field. These two parameters are unambiguously
related to the true �total� polarization degree and the direc-
tion of the plane of polarization.1 The angular scans of po-
larization �i.e., dependences of the polarization degrees R0
or R45 on the angle � which the magnetic field makes with
the �110� axis of the crystal� were obtained by rotating a
sample immersed in superfluid helium �T�2 K� around its
growth axis.

In the SFRS experiments, a Ti-sapphire laser pumped by
the green/blue output from an argon ion laser was used to
provide resonant excitation and the scattered light was ana-
lyzed in a spectrometer with a double subtractive filter stage
followed by a final dispersing stage of focal length 1 meter.
The light was detected either with a charge coupled detector
array or with a cooled GaAs photomultiplier photon counting
system. The specimens were mounted in direct contact with
superfluid helium at 1.6 K in a superconducting magnet that
provided fields up to 6 T and the Raman spectra were taken
in the back-scattering mode. The specimen orientation rela-
tive to the field direction �horizontal� could be changed by
rotation about the vertical axis by an angle �, so that �=0°
and �=90° correspond to the Faraday and Voigt configura-
tions, respectively.

III. EXPERIMENTAL RESULTS

A. Polarized photoluminescence

Figure 1 shows the typical PL spectra of the
CdTe/ �Cd,Mn�Te QWs. The characteristic feature of such
spectra is the presence of the two lines separated from each
other by about 4 meV �Fig. 1�a� and 1�b��. Depending on the
properties of a given sample, and on the QW thickness, these
lines may be well resolved or may overlap, as seen in Fig.

TABLE I. The details of the samples used in this work. Buffer type A consisted of 0.2 �m ZnTe, 0.8 �m CdTe, and 2 �m Cd1−xMnxTe.
Type B contained an “aperiodic superlattice” �ASL� of 10 alternating layers of ZnTe, CdTe, and �Cd,Zn�Te of thickness 3–20 nm, followed
by a 3 �m layer of CdTe and a 0.7 �m layer of �Cd,Mn�Te; type C consisted of a 6 �m CdTe layer.

Sample
number

Cd1−xMnxTe
quantum
well: x

Cd1−x−yMnxMgyTe
barrier: x, y

Quantum well widths
�Å�

Barrier
width �Å�

Buffer
type Substrate

1 0.00 0.10, 0.00 40, 60, 80 500 A �001� GaAs

2 0.00 0.30, 0.00 20, 40, 60, 80 500 A �001� GaAs

3 0.00 0.50, 0.00 20, 40, 60, 80 500 A �001� GaAs

4 0.00 0.30, 0.00 20, 40, 60, 80 500 B �001� GaAs

5 0.07 0.07, 0.29 30 C �001� GaAs

6 0.07 0.07, 0.20 9, 16, 45, 80, 300 500 �001�
Cd0.964Zn0.036Te

FIG. 1. Photoluminescence �solid lines� and linear polarization
degree R0 �circles connected by a spline� spectra taken from differ-
ent QWs in the magnetic field H�z: �a� sample 2, QW 60 Å, H
=2.5 T; �b� sample 1, QW 40 Å, H=0.4 T; �c� sample 4, QW 20 Å,
H=1.5 T. Excitation by He-Ne laser �1.96 eV�, T=2 K.
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1�c�. The ratio of the intensities of the high- and low-energy
lines is also influenced by the temperature, the magnetic
field, the energy of the exciting photons, and the pump
density.7

The interpretation of the lines is as follows. The high-
energy line �X� is due to recombination of excitons formed
by electrons and holes from the lowest-energy QW levels for
the respective energy bands �1e-1hh excitons in common no-
tation�. The excitons responsible for the X line are the quasi–
two-dimensional �2D� excitons localized at the interface
roughnesses. The low-energy line is also formed by the 1e-
1hh excitonic states but arises either from negatively charged
excitons, trions �X−�, or from excitons localized on neutral
donors �D0X�. It is not easy to distinguish experimentally
between the two possibilities,8 as both the trion and the do-
nor complex include one hole and a pair of electrons.9 In
what follows we will refer to the low-energy line as the trion
one, whilst bearing in mind that every conclusion presented
here for trions would apply equally well to donor-bound ex-
citons.

Figure 1 also shows the spectral dependence of the PL
polarization parameter R0 at the magnetic field applied. The
energy dependence of the polarization degree has a remark-
able shape; the polarization degree shows a quadratic in-
crease with magnetic field �in the low-field domain� and, as
was discovered earlier, depends strongly on the orientation of
the magnetic field with respect to the crystallographic axes.

An analysis of the influence of symmetry on the proper-
ties of the PL polarization for various QWs is of great inter-
est. As shown in Ref. 1, for an ideal �001�-oriented QW
possessing D2d symmetry, the angular scans R0��� can con-
tain only zeroth �R0 is a contant� and fourth �cos 4�� angular
harmonics. However, experiments showed that, in fact, the
second angular harmonic �cos 2�� also contributes, its am-
plitude often being larger than those of zeroth and fourth
harmonics. It was concluded that the true symmetry of all the
QWs studied in Ref. 1 was orthorhombic �C2v�, so that the

axes �110� and �11̄0� lying in the QW plane were not equiva-
lent; C2v symmetry allows zeroth, second, and fourth har-
monics in the quadratic approximation in field. All these har-
monics had been discovered in the angular scans. The ratios
of their amplitudes were different for different QWs.

The most striking results of the angular scan are shown in
Fig. 2�a�, which shows that the second angular harmonic
alone is sufficient to fit the data for R0. This implies that, for
any orientation of the magnetic field in the plane of the QW,
the predominant polarization of the PL is unchanging in di-
rection and is directed, depending on the detection energy,

along either the �110� or �11̄0� axis �see Fig. 1�a��. The total
polarization degree depends on the strength but not on the
direction of the magnetic field. Measurement shows that,
even at zero magnetic field, a weak linear polarization �of a
few percent� directed along �110� is observed �referred to in
what follows as the “built-in polarization”�. The angular scan
of the built-in polarization displays also the second harmonic
�Fig. 2�b��; this fact, however, is only the trivial consequence
of the rotation of the QW with respect to the laboratory ref-
erence frame in which the intensities I� and I� are defined.
Thus, the magnetic field-induced polarization of the PL dem-

onstrates exactly the same behavior as the built-in polariza-
tion �cf. Fig. 2�a� and 2�b��, that is, the former is in no way
related to the orientation of the magnetic field though being
induced by the field.

In Ref. 1 an explanation of the angular scans similar to
that shown in Fig. 2�a� was suggested on the basis of an
extremely anisotropic lateral g factor of holes, induced by a
low-symmetry distortion of the QW. The microscopic origin
of the distortion remained obscure �possibilities include a
uniaxial deformation in the plane of the QW, anisotropy of
the single heterointerface, or an anisotropy of the “islands”
localizing the quasi-2D excitons�. The following results help
shed some light on the origin of the reduced symmetry in
these samples.

Figure 3�a� depicts the angular dependences of R0 and
R45 for the narrow QW in sample 2. Fitting shows that here,
in contrast to Fig. 2�a�, the contributions of all three
symmetry-allowed harmonics are present in the angular scan
of R0. The amplitudes of the zeroth and second harmonics
have comparable values, while that of fourth harmonic is
smaller �the fourth harmonic manifests itself in the sharpen-
ing of the maxima and the flattening of the minima.�. Figure
3�b� shows the angular scans for the Cd0.7Mn0.3Te barrier
layer in the same sample. The anisotropy of R0 in the barrier
is similar to that in the QWs, except that the fourth harmonic
is more pronounced. The anisotropy of the magnetic field-
induced linear polarization of the PL in bulk crystals has
been reported earlier.10 When the light is emitted along
�001�, the symmetry of the bulk crystal allows only zeroth
and fourth harmonics in the angular scan. Here, we are prin-
cipally interested in the fact that the angular scans of the
barrier PL clearly contain the second angular harmonic, i.e.,
not only the QWs but also the barriers are distorted in their
plane.

FIG. 2. In-plane angular scans of polarization parameters R0

�open circles� and R45 �closed circles� taken in the following con-
ditions: �a� sample 2, QW 60 Å, H=2.5 T �H�z�; �b� sample 6,
QW 45 Å, H=0. Angle �=0° corresponds to H � �110�. Lines show
the pure second harmonic fits: R0�cos 2�, and R45�sin 2�.
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Figure 4�a� and 4�b� presents the results of the measure-
ments on sample 4 under analogous conditions to those of
Fig. 3. This sample was grown with the same design as the
sample 2 except for an additional ASL buffer that was de-
posited in order to stop misfit dislocations spreading into the
heterostructure during growth. One can see that in Fig. 4 the
contribution from the second harmonics is much smaller than
in Fig. 3. Thus we are led to the conclusion that, in samples
with a “conventional” buffer, the C2v distortion comes from
the lattice misfit of the substrate and the heterostructure. One

should note that, even for sample 4, the angular scans of the
wider QWs demonstrate more clearly the presence of the
second harmonic, though it is less pronounced than in QWs
of the corresponding thickness in sample 2. Therefore, the
ASL buffer is not completely effective in permitting relax-
ation of the misfit.

The angular scans of the �Cd,Mn�Te/ �Cd,Mg,Mn�Te
QWs, in which the Mn ions are inserted both in the barrier
and in the QW layers, are qualitatively similar to those of
CdTe/ �Cd,Mn�Te QWs. Figure 5 presents the results ob-
tained on samples 5 and 6. The angular scan of sample 6
�Fig. 5�a�� is dominated by the second harmonic. However,
one should note that in the QWs of sample 6, in contrast to
the QWs of all other samples, the amplitude of the built-in
polarization is noticeable, so the major part of the second
harmonic seen in the figure is the zero-field effect. Sample 6
has been grown under a different set of conditions to samples
1–5 �in particular, on a different substrate�. Meanwhile, the
polarization scan of sample 5, which was grown under the
same conditions as the majority of the samples, is dominated
by the zeroth harmonic, though the second and the fourth are
also present.

We now discuss the increase of the PL polarization as the
magnetic field is increased. Fig. 6�a� depicts the dependences
of R0 on the value of the magnetic field for the two orienta-
tions of the field—when it is parallel to the �110� axis �along
the in-plane distortion� and to the �100� �at 45° to the distor-
tion�. The angular scan of the present QW is dominated by
the second harmonic, but the zeroth harmonic also admixes.
Therefore, the increase of the polarization when the field is
along �110� mainly corresponds to the increase of the ampli-

FIG. 3. In-plane angular scans of polarization parameters R0

�open circles� and R45 �closed circles� taken for: �a� sample 2, QW
20 Å, H=2.5 T; �b� sample 2, luminescence from the barrier layer,
H=1 T. Points are fitted by a sum of zeroth, second, and fourth
harmonics �in case of R0� and by that of second and fourth har-
monics �in case of R45�.

FIG. 4. In-plane angular scans of polarization parameter R0

�open circles� taken for: �a� sample 4, QW 20 Å, H=1.5 T; �b�
sample 4, luminescence from the barrier layer, H=0.3 T.

FIG. 5. In-plane angular scan of polarization parameter R0

�shown in polar coordinates� taken for: �a� sample 6, QW 45 Å,
H=1.25 T; �b� sample 5, QW 30 Å, H=2.6 T.
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tude of the second harmonic. One can see that, above
�0.5 T, the initially quadratic increase of polarization with
field becomes weaker. For a field along �100�, the second
harmonic obviously cannot contribute to R0 �since cos 2�
equals zero�, so the latter dependence reflects the increase of
the zeroth harmonic. Here, the polarization again increases
quadratically, but with a smaller coefficient. However, the
increase of polarization remains quadratic over the whole
field range of 2.5 T.

Another interesting case of the field dependence of R0 is
shown in Fig. 6�b�. This curve was recorded for sample 1, a
structure with rather low barriers and a high effective con-
centration of Mn ions11 and thus with an especially strong
exchange enhancement of the external magnetic field. Here,
one can see a complex and non-monotonic behaviour of the
polarization: a quadratic growth is replaced by a kind of
saturation, followed by a new region of polarization increase.

Figure 7 demonstrates the field dependences of the ampli-
tudes of the three angular harmonics in one QW; a QW was
chosen for which the angular scan of R0 contained a domi-
nant zeroth harmonic with smaller but significant second and
fourth harmonics, so that a comparison of the behaviour of
all the harmonics was possible. We have measured the angu-
lar scans of R0 for a selection of magnetic field values. Each
angular scan was then fitted by a sum of harmonics whose
amplitudes were the fitting parameters. We also have
checked that each dependence was an even function of field.
Although for second and fourth harmonics, the amplitudes
do not exceed 3%, the data points lie well on a smooth trend.
In fact, the experimental error for each point in Fig. 7 is
smaller than that of a single polarization measurement, since
each value of the amplitude was obtained from many single
measurements making the angular scan. The results show
that the zeroth and the second harmonics are approximately
quadratic in the whole field range up to 2.5 T whereas, for
the fourth harmonics, the points lie on a straight line in the
range 0.25 to 1.75 T.

B. Spin-flip Raman scattering

While the PL polarization measurements are highly sen-
sitive to weak distortions of the QW symmetry, they are not
well suited for quantifying the electron and hole spin split-
tings. The measured value of the PL polarization degree is
affected by both the electron and hole spin polarizations.
Moreover, in diluted magnetic semiconductors, the spin po-
larizations are often controlled not so much by the simple
ratios of the corresponding spin splitting and the tempera-
ture, but by more specific factors such as the magnetic po-
laron effect, magnetic fluctuations, etc. �see Ref. 12 and Sec.
V E�.

Spin-flip Raman scattering measurements allow one to
obtain more direct information about the splitting of the elec-
tron and hole spin sublevels in a magnetic field. The spin-flip
Raman spectra of QWs demonstrating a pseudo-isotropic
hole g factor were studied recently.3 That work focused on
spectra obtained in the Voigt configuration; here, we present
results for a tilted magnetic field making a range of angles �
to the growth axis and we confirm the validity of some of the
approximations that will be made in the theoretical treatment
of Sec. IV.

Figure 8 demonstrates a series of spin-flip Raman spectra
taken at �=60° with values of the magnetic field from
1 to 6 T. The optical excitation was in resonance with the X
excitons in the QW �see Fig. 1�a��. The sharp line close to
the laser �marked MnSF� corresponds to the spin flip of elec-
trons in the 3d shells of manganese ions and the line marked
ESF arises from the spin flip of band or donor-bound
electrons.3 The two lines marked HSF and XSF are absent in
the pure Voigt configuration; as the magnetic field increases,
the Raman shifts of the HSF and the XSF lines tend to satu-
ration, similar to that of ESF and in contrast to that of Mn, as
shown in Fig. 9�a�. This implies that the HSF and XSF lines
are due to the spin flips of the charge carrier band states
which experience the action of the effective “exchange field”
of the magnetic ions. Similar lines have been observed also

FIG. 6. Magnetic field dependences of the polarization degree
R0 taken for: �a� sample 2, QW 40 Å, two different orientations of
the crystal with respect to the field; �b� sample 1, QW 40 Å. Solid
lines are guides for the eye. The dotted line in panel �a� shows the
quadratic fit.

FIG. 7. Magnetic field dependences of the amplitudes of zeroth,
second, and fourth angular harmonics of R0, taken for sample 6,
QW 16 Å. Solid lines show the quadratic fits of the two former
dependences. Since for the fourth harmonic the quadratic fit does
not work in this magnetic field range, a straight line is shown in-
stead �dotted�.
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in SFRS studies of related nonmagnetic QW systems �for
instance, by Sirenko et al.13�, where a signal similar to XSF
was ascribed to an exciton spin flip process; this identifica-
tion is confirmed below.

The field dependence of the ESF Raman shift is reason-
ably well described by a Brillouin function11 plus the intrin-
sic conduction band Zeeman splitting with the following pa-
rameters: effective temperature T+T0=3.8 K �higher than

the bath temperature of 1.5 K because of antiferromagnetic
coupling effects at the high Mn concentration of the
barrier14�; effective paramagnetic Mn concentration experi-
enced by the quantum well electrons x=0.0034; s-d ex-
change constant N0�=0.22 eV, and conduction band g factor
for the quantum well of −1.3; this latter is altered from the
intrinsic CdTe conduction band g factor value of −1.67,15

because of quantum confinement effects.13,16 Several alterna-
tive sets of fitting parameters can be found but we have cho-
sen the set most consistent with the previous work cited here.
Interestingly, the Brillouin fit works less well for HSF and
XSF because of their slower saturation, as demonstrated by
Fig. 9�b�, where the Raman shifts of HSF and XSF are plot-
ted as a function of magnetization taken from the Raman
shift of ESF. As the magnetization increases, the spin split-
tings first increase linearly and then acquire a superlinear
contribution. We note that the slower saturation of HSF and
XSF could in principle arise from an intrinsic valence band
Zeeman splitting gh�BH, but a fit including such a term to
this data requires gh�2.1 to 2.2, which is implausibly
large.13,16

At a fixed magnetic field, the Raman shifts of the Mn and
ESF lines do not depend on �, since the g factors of the 3d
electrons of manganese and of the conduction band electrons
are both to a good approximation isotropic.13 On the other
hand, the Raman shifts of the HSF and XSF depend strongly
on �, as shown in Fig. 10. This confirms that the Raman
shifts of both processes include contributions from the heavy
hole g factor, which is expected to possess a longitudinal
component g� �along the growth axis� much larger than the
in-plane components.17 The sum of the Raman shifts of the
ESF and HSF equals the Raman shift of XSF and so we
attribute the HSF signal to the spin flip of the hole and XSF
to the correlated spin flip of the electron and hole of an
exciton.18,19 The � dependences of the HSF and XSF Raman
shifts are well described by the expression

�h = �BH�g�
2 cos2 � + g�

2 sin2 �

�when, for XSF, an angle-independent electron spin flip
value is also added�. The observed ratio of g� to g�

FIG. 8. Resonant spin-flip Raman scattering in sample 2, QW
60 Å subject to tilted magnetic field ��=60° to the growth axis� at
different field strengths. The spectral position of the laser is seen in
the figure, T=1.6 K; spectra are consecutively upshifted for conve-
nience. Spectral features corresponding to spin flips of manganese,
electron, hole, and exciton are marked as described in the text.

FIG. 9. Raman shifts of the ESF, HSF, and XSF features in
sample 2, QW 60 Å �at H along �=60°� plotted versus the value of
the field �a� and the magnetization of the manganese spin system
�b�. Lines in �a� show the Brillouin fits.

FIG. 10. Out-of-plane angular dependences �� dependences� of
the Raman shifts of ESF, HSF, and XSF features corresponding to
spin flips of the electron, the hole, and of the exciton, respectively.
H=1 T, T=1.6 K. Lines show the results of calculation as de-
scribed in Sec. III B.
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�5.7±0.7� is in good agreement with the values obtained for
the same QW in Ref. 3 by the analysis of the Raman excita-
tion profiles �5.7±1.5� and from the angular dependences of
the excitonic luminescence �5.6±0.7�.

These results allow us to define, for the purposes of the
following theoretical discussion, the extent of the low-field
region in which the electron and hole splittings are propor-
tional and are dominated by the term due to the exchange
field of the Mn ions. This region depends on the sample and,
for sample 2, extends up to about 2 T, as indicated on Fig.
9�b�.

IV. THEORY

In rectangular QWs based on cubic semiconductors, the
ground state of holes is the heavy hole state characterized by
a projection of the angular momentum onto the growth axis
�001� equal to ±3/2 �we define z � �001� while the x and y
axes lie in the plane of the QW�. Therefore, for an in-plane
magnetic field, there is no splitting of the ground state in a
linear approximation in the field �g��0 and so �h=0 for
�=90°�. This calls for specific mechanisms responsible for
the linear polarization of radiation. The present section pre-
sents a detailed investigation of those mechanisms.

The selection rules for radiative transitions between the
electrons in the �6 state and the holes in the �8 state have the
form17

��	3

2

 = − A

ex + iey

�2
; ��	1

2

 = A�2

3
ez;

��	−
1

2

 = A

ex − iey

�6
; ��	−

3

2

 = 0;

��	3

2

 = 0; ��	1

2

 = − ��	−
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2

*

;

��	−
1

2

 = ��	1

2

 ; ��	−

3

2

 = − ��	3

2

*

, �1�

where A is a constant, ej is the electric dipole transition am-
plitude for a light polarization vector in direction j= �x ,y ,z�,
and � and � denote the electron states with z projection of
the spin equal to +1/2 and −1/2, respectively. Equations �1�
show that, to obtain linearly polarized ground-state emission
propagating in the z direction, it is necessary to admix the
hole states �−1/2� and �+3/2� or �+1/2� and �−3/2�; the
recombination of an electron with such a hole state generates
a coherent superposition of two photons having opposite cir-
cular polarizations and, therefore, a linear component to the
emission.

Mixing of states �+3/2� with �−1/2�, or �−3/2� with
�+1/2�, can be accomplished either by an in-plane magnetic
field �in second-order perturbation theory� or by a uniaxial
in-plane deformation of the QW �in first-order perturbation
theory�. In the former case, the linear polarization is qua-
dratic in the magnetic field and does not depend on the elec-
tron spin orientation. In the latter case, the polarization is

linear in the deformation and does not require application of
the magnetic field. Finally, if both a magnetic field and a
deformation are imposed, there arises a splitting of the heavy
hole levels which is linear in both the field and the deforma-
tion. This results in a linear polarization of the emission
which depends on the spin orientation of electrons and holes.
Let us consider in more detail the mechanisms responsible
for the linear polarization.

We assume that recombination takes place between the
electron and the hole with momentum k=0, while the mag-
netic field H lies in the plane of the QW. The Hamiltonian
describing the splitting of the electron states may be pre-
sented as

He = ge�s . H� , �2�

where ge stands for the g factor of the electron �in what
follows, the Bohr magneton is for convenience included in
the definition of the g factor� and s is the spin operator. The
splitting of the electron levels, �Ee=geH, does not depend
on the orientation of the magnetic field. The Hamiltonian
describing the splitting of the hole states in the simplest ap-
proximation, when only the ground state and the first excited
state of the hole are accounted for, has the form

Hh =
0

�3

2
g1H−

�3

2
	 0

�3

2
g1H+ − � g1H−

�3

2
	

�3

2
	 g1H+ − �

�3

2
g1H−

0
�3

2
	

�3

2
g1H+ 0

� . �3�

Here H±=Hx± iHy, 	 is the value of the in-plane deformation
multiplied by the respective constant of the deformation po-
tential, � is the energy separation between the heavy and the
light holes, g1 is the hole g factor for the bulk material,17 and
the principal axis of the in-plane deformation is taken as the
x axis.

An important note is that, as can be seen from Eq. �3�, the
deformation and the magnetic field mix heavy hole states
only with the light hole ones, whereas the light hole states
are mixed both with light and heavy hole states. That is why
the Hamiltonian �3� can be considered as an effective Hamil-
tonian for the ground state holes in the QW, in which all the
excited states with projections of the angular momentum
�±1/2� are taken into account by the phenomenological pa-
rameters g1 and 	. Furthermore, the value of the matrix ele-
ments H12 and H23 may differ not only by the numeric coef-
ficient �3/2, but also by some function of effective masses,
barrier height, etc. For this reason we will write H12
=�3g1H− /2, H23=g1

*H−, where

g1 = g�
R


lh�z�
hh�z�dz ,
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g1
* = g�

R


lh
2 �z�dz ,

g1
long = g�

R


hh
2 �z�dz ,

g =
7

6
x

�N0

kT
g0�B. �4�

Here g0 is the g factor of 3d5 electron of Mn ion, x stands
for the “effective” concentration of Mn ions in the barriers,
�B is the Bohr magneton, �N0 is the exchange interaction
constant of holes with 3d5 electrons,11 and 
lh and 
hh are the
envelope functions of light and heavy holes, respectively.
The integration in �4� is performed over the regions R con-
taining the Mn ions, and 
lh and 
hh are normalized. The
expression for g1

long, which represents the effective g factor of
heavy holes in the Faraday geometry, will be used in the next
section. We note that nonmagnetic systems �quantum wells
or dots� having finite terms g1, g1

*, and g1
long will be described

equally well by the model that follows, though these terms
will have their origins in the details of the semiconductor
band structure and will not be given by Eqs. �4�.

Calculation shows that in linear approximation in both H
and 	, a splitting of the heavy hole levels �Eh=3g1H	 /�
appears, where � is the subband separation and is assumed to
exceed all splittings caused by external fields and to satisfy
��kT. In order to explain our experimental results on the
PL polarization, we need to determine the wave functions
and the energy levels of the hole ground state to order H2. A
convenient way to do this is, firstly, to find out the eigenval-
ues and the eigenfunctions of Eq. �3� at H=0 and, secondly,
to carry out the calculations to order H2 inclusive. As the
experimental situation satisfies the condition 	 /��1, we
shall retain the terms to up to order 	2 /�2 in the expressions
for the light intensities.

Assume that in equilibrium the populations of the hole
states are proportional to exp�Eh /kT�, while those of electron
states are proportional to exp�−Ee /kT�. If the inequalities
g1a1H /kT�1 and geH /kT�1 are fulfilled �the case of weak
thermal orientations of holes and electrons�, then the expres-
sion for the degree of linear polarization of the PL may be
presented in the form

R0 = � cos 2 + A0H2 + A2H2 cos 2 + A4H2 cos 4 ,

�5�

where  is the angle between the magnetic field and the
principal axis of the deformation, and Ai and � are given by
Eq. �6�:

A0 =
g1g1

*

�2 �1 −
19

2
a1

2� +
2a1

2g1g1
*

�kT
,

A2 =
�3

3

a1

�2 �g1
*2 − 5g1

2� −
�3geg1a1

�kT�2 +
2
�3

geg1a1

�kT
+ �3

a1g1g1
*

�kT
,

A4 = −
geg1

*

�2

19

12
a1

2 −
geg1

*a1
2

2�kT�2 +
4

3

geg1
*a1

2

�kT
+

geg1
*a1

2

2�kT
,

a1 =
�3

2

	

�
, � =

	

�
. �6�

In making comparison between the Ai, it will be signifi-
cant that A0 and A4 depend on a1

2, whereas A2 is linear in a1
and, therefore, in the deformation. The first term in A0 deter-
mines the PL polarization independent of the spin polariza-
tion of holes �analogous to van Vleck paramagnetism�.

The opposite extreme is realized under the conditions that
the splittings of both electron and hole states exceed
kT : g1a1H /kT�1 and geH /kT�1; then, only one optical
transition out of four survives, and

R0 = � 1

4�3

g1
*

g1

ge

�ge�
�a1� −

g1

�g1�
ge

�ge�
a1

�a1�
cos 2

−
1

4�3

g1
*

g1

ge

�ge�
�a1�cos 4� . �7�

Expressions �6� and �7� were obtained on the assumption that
there is a unique direction and magnitude of the deformation.
However, in real QWs the deformations can be distributed in
both direction and value. To account for this, we introduce a
distribution function f���, which determines the probability
of finding a deformation whose principal axis makes an
angle � with the direction �110�. Then, the angle that the
magnetic field makes with the �110� axis will be �=�+,
and all nonequivalent directions of the deformation will be
included between �=0 and �=�.

Generally, the function f��� may contain all harmonics.
However, since the expression �5� contains only the zeroth,
second, and fourth harmonics, we retain just these three har-
monics in the expression for f���:

f��� =
1 + C2 cos 2� + C4 cos 4�

2�
. �8�

The integral �0
2�f���d�=1, and there is a limitation imposed

on the values of Cn, as the probability f���d� must be posi-
tive at any �.

To calculate R0 now, it is necessary to average the radia-
tion intensities with appropriate polarizations over the direc-
tions �. On averaging, other harmonics which are omitted in
Eq. �8� do not contribute to the polarization �this justifies the
present form of the distribution function Eq. �8��. The result-
ant polarization R0 can be presented in the form of Eq. �5�
with  replaced by �, while the expressions for � and Ai take
the form

� =
2
�3

�a1�C2,
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A0 =
g1g1

*

�2 �1 −
65

6
�a1

2� +
4

3
�a1�2C2

2� −
1

3

geg1
*

�kT
��a1

2� − �a1�2C2
2�

+ 2
g1g1

*�a1
2�

�kT
,

A2 = �a1�C2�−
�3

2�kT�2geg1 +
�g1

*2 − 5g1
2�

3�2 +
2
�3

geg1

�kT
+

�3g1
2

�kT
� ,

A4 = −
geg1

*

2�kT�2 �a1�2C4 −
g1g1

*

�2 �9

2
�a1

2�C4 −
4

3
�a1�2C2

2�
+ 2

g1g1
*

�kT
��a1

2�C4 +
�a1�2C2

2

3
� +

�a1
2�C4g1g1

*

�kT
, �9�

where ��Eh ,�Ee��kT and �…� implies the averaging over a
magnitude. In the converse conditions ��Eh ,�Ee��kT one
obtains, instead of Eq. �7�,

R0 = � 1

4�3

g1
*

g1

ge

�ge�
�a1� −

g1
*

�g1�
ge

�ge�
�a1�
�a1�

C2 cos 2�

−
1

4�3

g1
*

g1

ge

�ge�
�a1�C4 cos 4�� . �10�

The authors of Ref. 2 have shown that the fourth harmonic of
polarization can appear as a consequence of the cubic aniso-
tropy of the hole g factor. If that is the case, the heavy hole
states split linearly in the magnetic field even without the
effect of an in-plane deformation. A calculation for the weak
magnetic field range g2H�kT, where g2 is the anisotropic
part of the hole g factor in the bulk material, leads to the
following expression for R0:

R0 = B0H2 + B4H2 cos 4� ,

B0 =
G1

2

�2�1 +
G2

G1
� ; B4 = −

geG2

2�kT�2 +
G1G2

�kT
−

G1G2

�2 ,

G1 = g1 +
7

4
g2, G2 =

3

4
g2. �11�

The expression of R0 for the arbitrary ratio between g2H and
kT, and for g1=0 has been obtained in Ref. 2. In the limit
g2H�kT, the result of Ref. 2 coincides with Eq. �11�. By
comparison of Eqs. �5� and �6� with Eqs. �11� one can see
that the deformation results in the anisotropy of the magnetic
properties in the plane of the QW, where the combination
g1

*	2 /�2 in effect plays the role of g2.

V. DISCUSSION

We have seen that the calculation of the linear polariza-
tion of the PL from the QW subject to a magnetic field in the
plane of the QW turns out to be a sophisticated problem.
Even in a low-field range, the expressions for the symmetry-
allowed zeroth, second, and fourth angular harmonics in-
clude many contributions and it is in general impossible to

point out a priori which contributions will be most signifi-
cant. Moreover, we have available two theoretical ap-
proaches which interpret in different ways the nature of the
fourth angular harmonics of the linear polarization. While
one version �Eq. �11�� includes the Luttinger parameter of
the cubic anisotropy of the valence band g2 �i.e., it follows
Ref. 2�, the other version �Eq. �9�� does not require that
parameter.

The experimental data obtained for QWs of different
thicknesses and in different samples show a wide variety in
the key characteristics, for instance, the amplitude of the sec-
ond angular harmonics at zero field �“built-in polarization”�
and the ratios of the magnetic field-induced zeroth, second,
and fourth angular harmonics. In the present section we at-
tempt to identify clues to the microscopic origin of the va-
lence band spin anisotropy and to the mechanisms which
actually determine the linear polarization of the PL in the
QWs subject to the in-plane magnetic field.

A. Low symmetry and the influence of the substrate

The most general observation for almost all of the QWs in
all the samples �with rare exceptions as in Fig. 4� is the

nonequivalence of the �110� and �11̄0� directions. In other
words, the angular scans of the polarization always contain
the second harmonics. So it is interesting to know what fac-
tors can influence the amplitude of the second harmonics.

One can see from Fig. 3 that the second harmonic is
present in the angular polarization scans of the PL both from
the QW and from the thick barrier layer. Obviously, if the
barrier layer were characterized by the nominal point sym-
metry Td or D2d, the presence of the second harmonics would
be impossible. This means that the in-plane distortion that
reduces the symmetry to C2v exists not only in the QW, but
also in the barrier. Since neither the anisotropy of the QW
heterointerfaces20 nor the anisotropic localization of excitons
in the QW21 affect the barrier layer, this observation implies
instead a perturbation of another nature, which permeates the
whole heterostructure.

Comparison with the similar results in Fig. 4 shows that if
the heterostructure is separated from the substrate by an ASL
buffer, the second harmonic almost disappears from the an-
gular scans of both the QW and the barrier PL. This suggests

that the non-equivalence of the �110� and �11̄0� directions is
present throughout the heterostructure, the reason being
traced to the buffer. This conclusion agrees with the results

of Ref. 22 where the nonequivalence of the �110� and �11̄0�
directions was revealed by the x-ray diffraction study of
similar heterostructures. The interpretation involved the evo-
lution of the misfit dislocations during the growth of the
heterostructure.

B. In-plane distortion: regular or random?

Scanning of the light spot over the surface of the samples
shows that the PL polarization and, thus, the in-plane distor-
tions are homogeneous over the plane of the samples on the
large �millimeter� scale. As for homogeneity on the smaller
scale, one can judge it by comparison of the SFRS data with
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the value of the built-in polarization. The easiest way is to
analyze the results for the QW with the most extreme aniso-
tropy of the hole g factor �see Fig. 2�a��. In this QW, the
magneto-induced polarization of the PL contains only the
second angular harmonic, so that one can be certain that the
transverse g factor of the hole is completely induced by the
in-plane distortions and that the splitting of the heavy hole
states in the transverse magnetic field is determined by the
expression �Eh=3g1H	 /�. The splitting of the heavy hole
states in a longitudinal magnetic field does not depend on the
value of the in-plane distortion and equals �Eh

long=3g1
longH,

where g1
long is the hole g factor in the Faraday geometry �we

must distinguish between g1
long, g1, and g1

*; see Sec. IV�. The
experimental ratio of the values of the hole splitting in the
transverse and the longitudinal magnetic fields equals �0.2,
while the theory yields for that ratio �Eh /�Eh

long

=g1	 /g1
long�. A simple calculation of the envelope functions

of the light and heavy holes for the chosen QW shows that
g1 /g1

long�2, so that for the ratio 	 /� we obtain the estimated
value 0.1. However, according to Eqs. �6� the ratio 	 /� is
numerically equal to the value of the built-in polarization �,
for which the direct measurement gives 0.02. The discrep-
ancy is significant since the determination of the g factors by
the SFRS technique is sufficiently accurate; also the value of
the built-in polarization Eqs. �6� is determined solely by the
wave functions of the valence band. The latter gives an ad-
vantage as compared to the magneto-induced polarization of
the PL, where a quantitative analysis requires that the prop-
erties of the electron are correctly accounted for, as well as
the various specific properties of the semi-magnetic layers
�magnetic fluctuations,12 heating by light,23 inhomogeneity
of the exchange field of manganese ions, etc.�.

The contradiction in the deduced values of the ratio 	 /�
can be resolved by taking into consideration the fact that the
SFRS experiment is sensitive only to the value but not the
sign of the hole g factor, so the regions with different local
orientations of the in-plane distortions will give the same
value of the Raman shift. Contrary to that, in the case of the
built-in polarization, regions with different orientations of
the in-plane distortion will give different responses. It is the
result of averaging Eqs. �6� over all possible orientations of
the in-plane distortion that will determine the measured
value of the built-in polarization �see Eqs. �9��. In other
words, the built-in polarization will differ from zero when
the probabilities of in-plane distortions along �110� and along
�11̄0� are not equal.

Hence, we are led to conclude that submillimeter regions
with different orientations of the in-plane distortion exist and
that the proportions of the regions distorted along �110� and
along �11̄0� are not balanced, so that, “on average,” the QW
possesses effective C2v symmetry. This conclusion should
hold true for the other QWs so, for comparison with experi-
ment, one should use the results of the calculations in the
form Eqs. �9�, where averaging over an ensemble of the in-
plane distortions has been performed. This has important im-
plications in the problem of the microscopic origin of the
fourth angular harmonic of the polarization.

C. Analysis of contributions to the angular harmonics

The whole set of experimental results shows that the ze-
roth and second harmonics are dominant. The zeroth har-

monic is more pronounced in the structures with Mn
throughout than in the QWs with the magnetic barriers.
Within a given sample, it is stronger �as compared to other
harmonics� for thinner quantum wells.

One can see from Eqs. �9�, which yields the quadratic
approximation in the magnetic field, that the zeroth harmonic
�A0� has the most numerous potential sources, all having
comparably large effects. In the first term, the prefactor con-
tains in the denominator the large value �2; however the first
term in brackets �unity, the “van Vleck term”� is not para-
metrically small in a1, while the next �small� item has, in-
stead, a numeric coefficient of about 10. The second and the
third terms are parametrically small in a1 but, in the prefac-
tors, the smaller quantity �kT enters instead of �2. Thus, it
appears that none of the contributions can be eliminated.

For the second harmonic, it is quite natural that the com-
mon prefactor �a1�C2 appears in Eqs. �9�, since its amplitude
must become zero either if 	 /� tends to zero or if the mo-
ment C2 in the angular distribution Eq. �8� becomes zero

�i.e., if the distortions along �110� and along �11̄0� are
equally probable�. Here, we note that it is the first term that
mainly determines the value of the amplitude A2; this term
originates from the thermal spin orientation of both electrons
and holes and has a squared dependence on temperature in
the denominator. The rest of the contributions to A2 may be
neglected.

Finally, for the fourth harmonic in Eqs. �9�, similar argu-
ments show that the first term again dominates. Only if the
moment C4 is totally absent in the angular distribution Eq.
�8� will the contributions containing C2 play a role.

We would like to note that the formulae of Eqs. �9� cor-
respond to the low-field approximation, i.e., �Ee, �Eh�kT.
However, this model also yields a simple result, Eq. �10�, for
the opposite limit �Ee, �Eh�kT, a condition which leads to
only two levels of the four being populated. While there is no
guarantee that this limit is strictly reached �the theory is valid
at �Eh�� only�, Eqs. �9� and Eqs. �10� allow one to esti-
mate the behavior of the polarization in a realistic domain
�Ee ,�Eh�kT. Indeed, for many QWs the experiment shows
a deviation of the polarization from a quadratic field depen-
dence as the field is increased �see Figs. 6 and 7�.

It is interesting to compare Eq. �10� to Eq. �7�, which does
not account for the distribution of the orientations of the
in-plane distortions. In Eq. �7� the second harmonic always
dominates, even if in weaker field the zeroth harmonic pre-
vails �for small a1; see Eq. �6��. In Eq. �10�, the ratio of the
amplitudes of the zeroth and second harmonics can be arbi-
trary; it is determined by the ratios between H, a1, and C2.
The experiment shows that �when we were able to apply a
sufficiently large magnetic field� the angular polarization
scans do not evolve towards second harmonics anyway. So, a
model involving a spread of orientations of the in-plane dis-
tortions appears to describe experiment better than a model
with a uniform in-plane distortion.

D. Relationships between the harmonics and origin of the
fourth harmonic

We now analyze the typical observed relationships be-
tween the different harmonics of the angular scans of polar-
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ization. Consider first the signs of the principal terms in am-
plitudes, Eqs. �9�.

The built-in polarization � was defined in Eq. �5� and its
sign can be chosen to be positive, for the sake of comparison
with the coefficients Ai in Eqs. �9�. The magneto-induced
second harmonic A2 has a negative sign in the first �main�
term. The experiment shows that if the polarization is re-
corded at the low-energy part of the spectrum �see for details
Sec. V E� and the magnetic field increases, then the total
amplitude of the second harmonic increases in absolute value
monotonically. Hence, in Eqs. �9� the sign of � must coin-
cide with that of A2. In turn, this means that the product g1ge
must be negative. Indeed, in our theory g1 and ge have op-
posite signs. We have confirmed this by comparison of the
optical selection rules Eqs. �1� with the well-known fact that
in systems based on �Cd,Mn�Te in the Faraday geometry, the
lowest-energy transition between the electron and the hole
spin sublevels is optically-allowed.11 Since ge is certainly
positive when the Mn exchange term dominates over band
structure effects �as proved in Fig. 9�, then it follows that g1
is negative, consistent with Eq. �4�, in which �N0 is
negative.11

Another experimental fact is that if one fits the angular
scans of R0 by a sum of zeroth, second, and fourth harmon-
ics, the signs of the amplitudes of the zeroth and fourth har-
monics always coincide. For the estimate a1�0.1 the zeroth
harmonic in Eqs. �9� is controlled by the van Vleck first
term, which is positive in our theory. In the fourth harmonic,
the dominant first term is negative; however, the product
g1

*ge is negative �since g1
* and g1 have the same sign, from

Eqs. �4��. The coefficient C4 appears to be positive, which
implies the prevalence of distortions along �110� over those
along �100� �we note that the preference of directions �110�
in the QWs and quantum dots based on cubic semiconduc-
tors has been reported by many authors24�. As a result, the
signs of the zeroth and the fourth harmonics coincide, sub-
stantiating the experimentally established rule.

We now generalize the data on the absolute values of the
harmonics. In the experimental angular scans, the zeroth and
the second harmonics were the main ones. They often had
comparable values, but the ratio between them in different
QWs could differ from complete absence of the zeroth har-
monic to the complete absence of the second harmonic. The
fourth harmonic was either not visible or smaller by an order
of magnitude than the dominating harmonic.

We note that the zeroth and the second harmonics have
independent values already in the model with a homoge-
neous in-plane distortion �Eqs. �6��: the ratio between them
is controlled by the value a1. In the final expressions �Eqs.
�9��, the coefficient C2 introduces an additional freedom in
the ratio between the two harmonics. It may appear that the
magneto-induced second harmonic A2H2 cannot exceed the
built-in polarization � but, as was pointed out in Ref. 2 and
as observed in experiment, the magnetic field-induced sec-
ond harmonic can be much larger than the built-in polariza-
tion. This is possible within the framework of Eqs. �9� be-
cause g1geH2 / �kT�2 need not be a small value; it was only
required that g1a1H /kT and geH /kT were small so, for ex-
ample, a significant second harmonic would arise if g1�ge.
Figure 7 presents a case where the magneto-induced second

harmonic is clearly detected but where the built-in polariza-
tion is below our detection limit; for this sample �sample 6�,
the condition g1�ge is only just satisfied �the two are in the
approximate ratio 4:1� so that, in this particular case, Eqs. �6�
may not strictly apply but still appear to be a better guide to
the field dependence of all harmonics than the other extreme
represented by Eq. �7�. This may arise if, as will be discussed
in Sec. V E, geH /kT should be replaced �for emission from a
trion state� by geH /�, where � is the PL linewidth, so that
the conditions necessary for Eqs. �6� to hold are now satis-
fied.

In the version of the model represented by Eqs. �6�, the
explanation of the value of the fourth harmonic presented
difficulties. Indeed, in our model the second and the fourth
harmonics have a common cause, namely, the presence of
the in-plane distortion of the QW and, therefore, nonzero a1.
Comparing the principal contributions to A4 and A2, one can
see that the fourth harmonic must always be smaller in am-
plitude than the second, since the former is quadratic while
the latter is linear in the small parameter a1. However, we
have shown one case where the fourth harmonic is not small
compared to the second �Fig. 4�a��. No difficulty arises in the
present theory of Eqs. �9�, as the amplitudes of the second
and the fourth harmonics are controlled by different mo-
ments of the distribution function Eq. �8� �C2 and C4, respec-
tively�.

To summarize, the experimental results on the fourth har-
monic of the PL polarization can be explained without taking
into account any cubic corrections g2�iJi

3Hi to the spin
Hamiltonian of the valence band. Certainly, such corrections
would have contributed to the amplitudes of harmonics
�principally to that of the fourth harmonic,2 see also Eqs.
�11��. However, it is unclear whether such a contribution will
be significant, as the values of the parameter g2 in CdTe and
�Cd,Mn�Te are poorly known.25 According to Ref. 26, in
GaAs this parameter equals 0.04, two orders of magnitude
smaller than g1. For this reason, it is important to seek an
alternative explanation �in which g2=0� for the presence of
the fourth harmonic. One should note that the concept of a
distribution of in-plane distortions �Eq. �8��, which allowed
us to obtain an arbitrarily large ratio of the fourth harmonic
to the others, was dictated by independent reasons �see Sec.
V A�.

E. Spectral dependences of the polarization

We now consider the spectral dependences of the linear
polarization of the PL and shall see that a detailed under-
standing of the mechanisms underlying the harmonics of the
polarization angular scans will be essential; the results will
underline the relevance of the preceding model.

A strong spectral dependence of the polarization is typical
for those QWs where the angular scans are dominated by the
field-induced second harmonic �Fig. 2�a��. Figure 1�a� shows
an example of such a case, where one sign of polarization
�conventionally positive� dominates on the excitonic line, but
within the trion line the polarization changes sign, with the
high-energy wing being negatively and the low-energy wing
positively polarized.
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The theoretical treatment requires further comment. Equa-
tion �9� includes all sets of the electron-to-hole recombina-
tion transitions �6–�8; it was implicitly assumed that the
linewidths corresponding to each of the transitions are larger
than any of the spin splittings. Equation �10� describes the
case when only one transition �lowest in energy� contributes
to the radiation. For a comprehensive description of the po-
larization at all wavelengths and temperatures, one should
sum the four lines corresponding to four transitions �6–�8 in
such a way that the line positions are determined by the
respective combinations of the electron and the hole spin
splittings, the polarization is given by formulae similar to Eq.
�10�, and each line is summed with a weight proportional to
the populations of the respective sublevels. Such a calcula-
tion is, however, unfeasible in view of the unknown param-
eters involved and is therefore not useful in the quantitative
interpretation of the experimental data.

In a literal interpretation of Eqs. �9�, all the terms that
depend on the spin polarization of electrons, including the
principal terms of the second and fourth harmonics, must
become zero for the trion state where the total spin polariza-
tion of the two electrons equals zero. However, since the
final states of recombination of the hole with this or that
electron have different energies in the magnetic field, oppo-
sitely polarized emission is produced on the two wings of the
PL line. Assuming that holes populate the lower spin sublev-
els in each of the trions, the X− emission will be constructed
from two lines of equal intensities. Recombination leaving
behind the electron on the upper Zeeman sublevel will result
in a smaller photon energy and positive polarization, while
that leaving behind the electron on the lower Zeeman sub-
level will produce a larger photon energy and negative po-
larization �just as in Fig. 1�a��. This reasoning leads one to
the important conclusion: if the PL polarization is measured
for the X− line, the term geH /kT in Eqs. �9� which represents
the “polarization of electrons” should be replaced by the
term geH /� �where � is the PL linewidth�. If the holes can
populate both the lower and the upper spin sublevels, as is
observed, e.g., in nonmagnetic CdSe/ZnSe quantum dots,3

the spectrum of X− in a magnetic field will consist of four
lines, which can lead to an even more complicated spectral
dependence of the polarization. The same considerations af-
fect the exciton X but, in contrast to X−, the populations of
the two electron spin sublevels will not be equal.

One can see that the polarization spectrum in Fig. 1�b� has
the same general pattern as the spectrum in Fig. 1�a�. The
different feature is the presence of a spectrally independent
positive contribution that moves up the spectrum in Fig. 1�b�
as a whole. This contribution is due to the zeroth harmonic of
the polarization �the presence of the zeroth harmonic is
proved by the angular scan for the given QW�. Actually, the
van Vleck principal term of the zeroth harmonic arises com-
pletely from the wave functions of the valence band and has
no relation to the splitting of levels of electrons or holes.
Therefore, it has no spectral dependence. Accordingly, in
those QWs where the zeroth harmonic dominates, the polar-
ization has almost no spectral dependence �Fig. 1�c��. We
note that the absence of spectral dependence makes the
magneto-induced zeroth harmonic similar to the built-in po-
larization. This is because they have a common origin; the

built-in polarization is also due to the structure of the
valence-band wave functions.

In summary, the magneto-induced second �and, most
probably, fourth� angular harmonics have a sharp spectral
dependence as their amplitudes change sign from one optical
transition to another. Contrary to that, the zero-field second
harmonic �the built-in polarization� and the magneto-induced
zeroth harmonic have practically no dependence on detection
energy.

F. Magnetic field dependences of the polarization

Let us now consider one more property of the angular
harmonics: the dependence of their amplitudes on the value
of the magnetic field. In particular, we are concerned with
the characteristic field values where the quadratic depen-
dence of a given harmonic in the field disappears. Figure 6�a�
shows that this does not happen simultaneously for all har-
monics: the zeroth harmonic remains a quadratic function of
the field longer than the second harmonic.

The reason can be readily understood on the basis of Eqs.
�9�. The principal term of the zeroth harmonics, the van
Vleck term g1

*g1H2 /�2 originates fully from mixing of the
heavy and light subbands by the magnetic field, thus it keeps
its form as long as g1H and g1

*H remain small compared to
�. The second harmonic is dominated by the orientational
term related to thermalization of the electrons and holes on
the corresponding Zeeman sublevels �with the proviso dis-
cussed in the previous subsection�. This is why here the qua-
dratic behavior is lost earlier; it disappears as soon as either
of the splittings �electron or the hole� becomes comparable to
kT.

It is not so easy to understand why the fourth harmonic
ceases to be quadratic in field earlier than the second one
�Fig. 7�. In the model of the present paper we did not take
into account the cubic symmetry of the host crystal. How-
ever one can show that if this symmetry were taken into
account, the fourth harmonics would acquire additional con-
tributions involving H4 �not only those containing g2, see Eq.
�11��. As, in our theory, the terms involving H2 in the fourth
harmonic contain the factor 	2 /�2�1, the contribution from
H4 which does not contain 	 may influence the result already
in rather weak fields.

Finally, the complex field dependence in Fig. 6�b� is
worth discussion on the basis of Eqs. �9� and �10�. Obvi-
ously, the initial growth of polarization proceeds in the re-
gime of Eqs. �9�. At higher fields, the electron and hole spin
splittings presumably exceed kT, and the system enters the
regime of Eq. �10� where the polarization depends on the
field only weakly �this is the plateau of the dependence�. It is
essential that because of the prefactor C2 the amplitude of the
polarization Eq. �10� remains significantly less than unity
�compare with Eq. �7��. Upon a further increase of the field,
the spin splitting becomes comparable to the hole subband
separation � and the model based on perturbation theory
ceases to be valid. The increase of polarization in Fig. 6�b�
recommences.

VI. CONCLUSIONS

We have analyzed in detail the contributions of different
symmetries to the linear polarization of the PL of QWs, as
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well as the physical mechanisms underlying them. The mag-
netic field, angular and spectral dependences of the PL po-
larization along with the data on the spin-flip Raman scatter-
ing were used for construction and verification of the
theoretical model. We have shown that in real QWs, the ef-
fects related to the breakdown of the in-plane symmetry are
essential for the linear polarization of the PL and also deter-
mine the spin splitting of the valence band states in the in-
plane magnetic field. On the contrary, the “semi-magnetic”
nature of the QWs under study has not resulted in any quali-
tatively new effects �though it was useful in experiments,
shifting the magneto-optical phenomena toward the smaller
magnetic fields applied�. Thus the conclusions of the present
paper apply in full measure to systems such as nonmagnetic
QWs and also to quantum dot systems, where one may ex-
pect particularly strong in-plane perturbations with a signifi-
cant distribution of orientations and magnitudes.

In most of the QWs, the zero-field PL possesses a weak
linear polarization �the “built-in polarization”� whose direc-
tion is linked to the crystal axes but whose value changes
only weakly over the whole PL spectrum. The mixing of the
valence band states by the in-plane distortions is responsible
for this polarization. For a magnetic field applied in the plane
of the QW, field-induced contributions to the linear polariza-
tion appear, which differ in their dependence on the angle of
rotation of the crystal around the growth axis. The first con-
tribution �the zeroth angular harmonic� corresponds to the
polarization whose direction is determined by the magnetic
field but which has a weak spectral dependence. This polar-
ization mainly originates from the van Vleck type term,
which depends on the mixing of the valence band states pro-
duced by the magnetic field. The second contribution �the
second harmonic� corresponds to the polarization whose di-
rection is related to the crystal axes, similar to the built-in
polarization, but, in contrast to that, its magnitude has a

strong spectral dependence. Similar to the built-in polariza-
tion, this contribution is totally due to the in-plane distor-
tions, but, unlike the built-in polarization, it originates in the
splitting of the electron and hole sublevels by the magnetic
field. The third contribution �the fourth harmonic� has 90°
symmetry and is the most debatable in nature. We have
shown that a contribution of such type can be obtained in the
quadratic approximation in the magnetic field without invok-
ing terms in the valence band spin Hamiltonian which are
cubic in J �as was done in Ref. 2� and, moreover, with no
explicit account of the cubic elements of symmetry of the
crystal.

We also addressed the question of the origin of the in-
plane distortions in the heterostructures under study and dis-
covered a correlation between the presence of such distor-
tions in the QWs and in the barrier layers, as well as the
effect of the type of substrate and of the buffer layer. A
quantitative analysis of the results, and especially the incon-
sistency between the values of the built-in polarization and
the transverse g factor of holes, has led us to the conclusion
that the distortions are directed randomly on a mesoscopic
scale.

In general, the theory developed withstands well the ex-
perimental tests and explains reasonably well the large
amount of data on the linearly polarized luminescence in
CdTe/ �Cd,Mn�Te and �Cd,Mn�Te/ �Cd,Mg,Mn�Te QWs.
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