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The dynamic, nonlocal, and spatially inhomogeneous polarizability and dielectric function are discussed in
this paper for a Coulomb-coupled system of a periodic lateral superlattice array of one-dimensional quantum
wire plasmas in the vicinity of a semi-infinite bulk plasma. The space-time matrix inverse of the dielectric
function, i.e., the dynamic, nonlocal, inhomogeneous screening function of this system, is determined analyti-
cally here in closed form solving a random-phase-approximation type integral equation in position represen-
tation. We treat both cases wherein the lateral quantum wire superlattice is outside the semi-infinite plasma as
well as inside. We also determine the exact coupled plasmon dispersion relation for the combined system for
both the “outside” and “inside” cases: in this, we examine the band and gap structure of the spectrum due to
periodicity of the quantum wire superlattice in the first Brillouin zone as a function of reciprocal-lattice wave
number p, and also as a function of wave vector qx along the wire direction of full translational invariance.
Furthermore, we analyze the spectrum of the combined system as a function of the period of the superlattice,
showing that the detailed variation of the band-structure spectrum and gaps reflects on the period of the
superlattice, opening the possibility of using surface plasmon resonance as a mechanism for optical sensing of
nanostructure geometry. We also determine the dependence of the spectrum on distance of the superlattice from
the bounding surface of the semi-infinite plasma, for both outside and inside cases. In the outside case, we
show that at large distances the surface plasmon decouples from the superlattice plasmon band, while for short
distances the two are fully coupled. For the inside case, they are similarly fully coupled for short distances, but
for large distances, the surface plasmon decouples while the wire-superlattice plasmon band couples to the bulk
plasmon deep in the semi-infinite medium.
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I. INTRODUCTION

Surface plasmon resonance, which has been well under-
stood for about half a century,1–3 has come to play an impor-
tant role in chemical sensing and biotechnological measure-
ments over the past 20 years.4–16 Its utility is rooted in the
fact that it is based on boundary conditions, so that the sur-
face plasmon spectrum sensitively reflects features of an ad-
sorbate material introduced outside the surface. In this paper,
we focus attention on the interaction of surface plasmons
with those of a lateral quantum wire-like superlattice17–20

structure parallel to the surface. The coupling of these
modes, and associated modifications of the spectrum, change
the joint optical response and reflectivity of the combined
system in a way that provides detailed information about the
wire-like superlattice. Such information includes the normal-
mode frequency spectrum of the superlattice itself, and its
geometric parameters, a point that we emphasize here as a
step in the determination of the geometric structure of a na-
nomolecular architecture in the vicinity of a surface.

Our analysis of the coupled spectrum is presented in
terms of the inverse dielectric function �“screening” func-
tion� of the combined system composed of a semi-infinite
plasma and a lateral quantum-wire-like superlattice plasma,
with Coulombic coupling between the two systems as well as
within each individually. The frequency poles of this func-
tion provide the coupled plasmon frequency spectrum, and
the residues at these frequency poles describe the oscillator
strengths �excitation amplitudes� with which they respond to

excitation. In Sec. II we formulate the integral equation for
the screening function of the combined system, employing
the known screening function for the semi-infinite plasma
alone. In Sec. III the polarizability of the lateral quantum
wire superlattice, which is the kernel of the integral equation,
is described in detail. The integral equation for the combined
system screening function is solved explicitly in Sec. IV, and
the coupled mode spectrum is examined in Sec. V. Conclud-
ing remarks are presented in Sec. VI.

II. FORMULATION OF THE INTEGRAL EQUATION FOR
THE SCREENING FUNCTION OF A LATERAL

QUANTUM WIRE SUPERLATTICE COUPLED TO A SEMI-
INFINITE SEMICONDUCTOR PLASMA

In this section we formulate the integral equation involved
in the determination of the spatially inhomogeneous, nonlo-
cal frequency-dependent screening function of a periodic lat-
eral quantum wire superlattice parallel to the surface of a
semi-infinite plasma at a distance �z0� from the interface. This

screening function, K�1,2�, �1=r1
� , t1� is the space-time ma-

trix inverse of the direct dielectric function ��1,2�, written
explicitly as

� d43��1,3�K�3,2� = ��4��1 − 2� = ��t1 − t2���3��r1
� − r2

� � ,

�1�

or, in space-time matrix notation,
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�K = 1. �2�

Considering a planar interface and quantum wires in a par-
allel planar arrangement in the x direction, we employ an
x-spatial Fourier transform �x1−x3→qx� as well as a time
transform �t1− t3→�� to write the inversion condition of Eq.
�1� as a y-z matrix inversion. The frequency poles of
K�y3 ,z3 ;y2 ,z2 ;qx ,�� define the coupled plasmons of the lat-
eral wire superlattice and semi-infinite medium, and the resi-
dues at these frequencies provide the relative excitation am-
plitudes �oscillator strengths� of the coupled modes. The
spectrum of these Coulomb coupled electrostatic oscillations
will be examined here in regard to its dependencies on qx and
z0, the distance of the plane of the wires from the interface
bearing semi-infinite surface plasmons in interaction with the
wire superlattice plasmons. Furthermore, the wires are lo-
cated periodically in the y direction with period a, giving rise
to band structure in the spectrum, and we also examine its
dependence on period and on the conjugate Fourier series
variable p in the first Brillouin zone, −� /a� p�� /a.

In analyzing this system, we will add the polarizabilities
of the constituent parts, namely �semi of the semi-infinite me-
dium and �SL of the lateral quantum wire superlattice, with

� = 1 + �semi + �SL = �semi + �SL. �3�

This simple addition of polarizabilities is valid provided that
electron states in the quantum wire lattice subbands do not
significantly overlap the electron states of the semi-infinite
bulk plasma.21 The inversion relation then takes the form

��semi + �SL�K = 1. �4�

Acting from the left with Ksemi �which satisfies Ksemi�semi=1�,
we have

K = Ksemi − Ksemi�SLK . �5�

This is the integral equation that we analyze to solve for the
joint screening function K of the combined parts of the
whole system:

K�y1,z1;y2,z2;px,�� = Ksemi�y1,z1;y2,z2;px,��

−� dz4� dy4� dz3� dy3

�Ksemi�y1,z1;y4,z4;px,��

� �SL�y4,z4;y3,z3;px,��

�K�y3,z3;y2,z2,px,�� . �6�

It is equivalent to the random-phase approximation �RPA�
integral equation in the absence of overlap as cited above.21

In earlier work22,23 we determined the screening function
of the semi-infinite semiconductor medium occupying the
half space z�0 having a dynamic �but local� dielectric func-
tion, �=����, with the other half space z	0 having dielec-
tric function ��. The result for Ksemi, expressed in terms of
the x1−x2→qx spatial Fourier transform in the direction of
translational invariance and �-frequency variables �sup-
pressed�, is given by

Ksemi�y1,z1;y2,z2� =
1


+�z1�
��y1 − y2���z1 − z2�

− ��z2��

−�z1�

+�z1� � dqy

2�
eiqy�y1−y2�e−�z1��qx

2+qy
2
,

�7�

where � is the image strength factor,

� =
�� − �

�� + �
, �8�

and ���z� is the Heaviside unit step function�


−�z� = ��z� − ��− z�; 
+�z� = ���z� + ����− z� . �9�

To accommodate the study of interaction with quantum wires
in the x direction the qy integration is carried out, yielding

Ksemi�y1,z1;y2,z2� =
1


+�z1�
��y1 − y2���z1 − z2�

− ��z2��� �qx��z1�
�

	
−�z1�

+�z1�

�
K1��qx���y1 − y2�2 + z1

2�
��y1 − y2�2 + z1

2
, �10�

where K1�z� is the MacDonald function of order 1.

III. DIELECTRIC POLARIZABILITY OF LATERAL
QUANTUM WIRE SUPERLATTICE

Taking the lateral periodic superlattice of identical quan-
tum wires to be parallel to the x direction and equally spaced
at y=na �n=−
 , . . .−1 ,0 ,1 , . . . ,
� on the plane z=z0, its
polarizability may be written �in the absence of wave func-
tion overlap between the wires� as

�wires�y1,z1;y3,z3� = 

n=−





�n�y1,z1;y3,z3� , �11�

and assuming no tunneling or interwire transitions,

�n�y1,z1;y3,z3� = −� dy2�dz2�v�y1 − y2�,z1 − z2��

�R�n��y2�,z2�;y3,z3� , �12�

where v is the Coulomb potential and R�n��y2� ,z2� ;y3 ,z3� is the
RPA ring diagram of the nth wire, both in qx-� representa-
tion. The one-dimensional qx-Fourier transform of the Cou-
lomb potential is

v�y1 − y2�;z1 − z2�;qx,��

= 2e2K0��qx���y1 − y2��
2 + �z1 − z2��

2�1/2� , �13�

where K0�z� is the MacDonald function of order 0. The in-
dividual wire ring diagrams may be written in terms of single
wire y-z subband eigenfunctions denoted by � ,� as
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R�n��y1,z1;y2,z2� = 

�,�

R��
�n��qx,�����

n �y1,z1;y2,z2� , �14�

where we assume a single populated y subband, ��y1�, and
the possibility of several z subbands, ��

�n��z�, which are real,
with discrete energy eigenvalues E�n and ��

�n��y1 ,z1�
=��z1���

�n��y1� with

R��
�n��qx,�� = 2� dqx�

2�

f0��qx�−qx
+ E�n� − f0��qx�

+ E�n�

� + �qx�−qx
− �qx�

+ �E�n − E�n + i0+�
,

�15�

and �f0 is the Fermi distribution�

���
n �y1,z1;y2,z2� = ��

�n��y1,z1���
�n��y2,z2�

���
�n��y1,z1���

�n��y2,z2� . �16�

�The factor of 2 comes from the spin sum over electron
states; �qx

=�2qx
2 /2m.� In summary,

�wires�y1,z1;y3,z3� = − 2e2

�,�



n=−





R��
�n��qx,��V��

�n��y1,z1�

���
�n��y3,z3���

�n��y3,z3� , �17�

where

V��
�n��y1,z1� =� dy2�� dz2���

�n��y2�,z2��

�K0��qx���y1 − y2��
2 + �z1 − z2��

2�1/2���
�n��y2�,z2�� .

�18�

Alternatively, taking the wires to be extremely narrow, we
have ���z��2=��z−z0� and ���

�n��y��2=��y−na� �normaliza-
tion�, and neglecting intersubband transitions that involve
relatively large energy denominators �with E��E�� in
R�

�n��qx ,��, we write R��
�n��qx ,��=R�

�n��qx ,�����, obtaining
�as the wires are identical, R�

�n�→R� actually has no depen-
dence on the wire index n�

�wires�y1,z1;y3,z3� = − 2e2��z3 − z0�

n

A�n��y1,z1���y3 − na� ,

�19�

where

A�n��y1z1� = K0��qx���y1 − na�2 + �z1 − z0�2�1/2�

�

R��qx,�� .

�20�

Substituting Eqs. �19� and �20� into the integral equation
�6�, we obtain �suppressing qx ,��

K�y1,z1;y2,z2� = Ksemi�y1,z1;y2,z2�

+ 2e2

n

C�y1 − na;z1�K�na,z0;y2,z2� ,

�21�

where �put Y =y4−na below�

C�y1 − na;z1� = �

�

R��qx,��	 � dz4� dy4

�Ksemi�y1 − y4;z1,z4�

�K0��qx���y4 − na�2 + �z4 − z0�2�1/2�

= �

�

R��qx,��	 � dz4� dY

�Ksemi�y1 − na − Y;z1,z4�

�K0��qz��Y2 + �z4 − z0�2�1/2� . �22�

IV. SCREENING FUNCTION OF THE COMBINED
SYSTEM: DISPERSION RELATION AND LATERAL

PLASMON BAND STRUCTURE

To solve Eq. �21� for the screening function
K�y1 ,z1 ;y2 ,z2� it is necessary to determine K�na ,z0 ;y2 ,z2�
on the right-hand side. Therefore we set y1=ma, z1=z0 on
the left-hand side, obtaining

K��ma,z0;y2,z2�� = Ksemi�ma,z0;y2,z2�

+ 2e2 

n=−





C�ma − na;z0�

�K�na,z0;y2,z2� . �23�

Considering the lattice translational symmetry due to period-
icity in the y direction, we employ a Fourier series analysis
as in earlier work.24 Suppressing the explicit appearance of
y2, z2, and z0 for the moment, we write

K�ma� = Ksemi�ma� + 2e2 

n=−





C�ma − na�K�na� �24�

and

K�ma� =
a

2�
�

−�/a

�/a

dpe−2pmaK̃�p�; K̃�p� = 

r=−





K�ra�eipra,

�25�

with

C�ma − na� =
a

2�
�

−�/a

�/a

dpe−ip�ma−na�C̃�p� . �26�

The use of the Poisson sum formula in the form



n=−





ei�p−p��na =
2�

a



n=−





��p − p� −
2�n

a
	 , �27�

in which only the ��p− p�� term on the right-hand side con-
tributes in the fundamental interval, − �

a � p�
�
a , yields

K̃�p� =
K̃semi�p�

1 − 2e2C̃�p�
, �28�

with the result
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K�y1,z1;y2,z2�

= Ksemi�y1,z1;y2,z2� + 2e2 

n=−





C�y1 − na;z1�

�
a

2�
�

−�/a

�/a

dpe−ipna K̃semi�p,z0;y2,z2�

1 − 2e2 

r=−





eipraC�ra,z0�

,

�29�

where

K̃semi�p,z0;y2,z2� = 

r=−





eipraKsemi�ra,z0;y2,z2� , �30�

and Ksemi�ra ,z0 ;y2 ,z2� is given by Eq. �10� with C�y1 ,z0�
given by Eq. �22�.

The dispersion relation for the plasmons related to the
presence of the lateral superlattice at distance z0 from the
interface is given by

1 − 2e2 

r=−





eirpaC�ra,z0� = 0. �31�

To proceed, we evaluate C�ra ,z0� using Eqs. �22� and �7� for
Ksemi, obtaining



r=−





eirapC�ra,z0�



�

R��qx,��
=

1


+�z0� 

r=−





eirapK0��rqxa�� − �

−�z0�

+�z0�

�� dY� dqy

2�
e−iqyYe−�z0��qx

2+qy
2

�K0��qx��Y2 + z0
2�1/2� 


r=−





eira�p+qy�.

�32�

Again invoking the Poisson sum rule, Eq. �27� and carrying
out the qy integration, we have



r=−





eirapC�ra,z0�



�

R��qx,��
=

1


+�z0� 

r=−





eirapK0��rqxa��

− �

−�z0�

+�z0� 


n=−





e−�z0��qx
2+�2�n/a − p�2

��
−





dYeiY�p−2�n/a�K0��qx��Y2 + z0
2�1/2� .

�33�

The Y integral yields an elementary function,25 and the re-
sulting dispersion relation is given by

FIG. 1. �± /�s as functions of p �1/m� for z0=−1 nm, a
=20 nm, qx=0.1qF.

FIG. 2. �± /�s as functions of a �m� for z0=
−1 nm, p=4�108/m, qx=0.1qF.
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1 = 2e2�

�

R��qx,��	� 1


+�zo� 

r=−





eirapK0��rqxa��

−
��

a


−�z0�

+�z0� 


n=−




e−2�z0���p − 2�n/a�2+qx

2

��p − 2�n/a�2 + qx
2� . �34�

The last sum is periodic under p→p± 2�
a . The r=0 term on

the right-hand side of Eq. �34� involves Coulombic self-
interaction of a wire internally, and its apparent divergence is
abated by recognizing that we must consider its small, but
finite, width b setting K0�0�→K0�qxb�. With this, we have



r=−





eirapK0��rqxa�� = K0�qxb� + 2

r=1




cos�rpa�K0��rqxa�� ,

�35�

which is easily approximated for qxa�1.25 �The case qxa
�1 essentially corresponds to the case of a single wire that is
not of interest here.26� Furthermore, for low wave number

�m�qxqF� we have 
�R��qx ,��→ n1Dqx
2

m�2 where n1D=
2qF

� is
the one-dimensional �1D� wire electron density per unit
length and qF is the Fermi wave number.

Considering that Eq. �34� is periodic in the reciprocal-
lattice wave number, p→p±2� /a, it is clear that the plas-
mon spectrum will involve bands that we will examine in the
first Brillouin zone, � /a� p�� /a.

V. PLASMON SPECTRA

To start, we consider z0	0 with a periodic lattice struc-
ture in the nature of quantum wires situated outside the semi-
infinite bulk medium, with background dielectric constant
��=1. In this case, Eq. �34� becomes

1 =
2e2n1Dqx

2

m�2 
 

r=−





eirapK0��rqxa��

+
�

a
� 


n=−




e−2�z0���p − 2n�/a�2+qx

2

��p − 2n�/a�2 + qx
2� , �36�

where �, the semi-infinite plasma image strength function, is
given by

FIG. 3. �± /�s as functions of negative z0 �m�
for a=10 nm, p=108/m, qx=0.1qF.

FIG. 4. �± /�s as functions of qx �1/m� for
z0=−1 nm, a=10 nm, p=108/m.
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� =
�p

2

2�2 − �p
2 , �37�

with �p as the classical plasma frequency of the semi-infinite
bulk taken in the local limit for illustrative purposes. As Eq.
�36� is quadratic in �2, it can be solved exactly with the
result �subject to �±

2 �0�,

�±
2 =

1

2

AB +

�p
2

2
±�A2B2 + 2AC − AB�p

2 +
�p

4

4
� ,

�38�

where

A =
2e2n1Dqx

2

m
, �39�

B = 

r=−





eirapK0��rqxa�� , �40�

C =
�

a
�p

2 

n=−




e−2�z0���p − 2n�/a�2+qx

2

��p − 2n�/a�2 + qx
2

. �41�

This spectrum contains two bands of plasmon modes in the
first Brillouin zone, −� /a� p�� /a. The gap separating the
two bands may be described in terms of

���2� � �+
2 − �−

2 =�A2B2 + 2AC − AB�p
2 +

�p
4

4
. �42�

These bands and the gap between them are exhibited as func-
tions of p in the first Brillouin zone in Fig. 1 for superlattice
period a=20 nm with � normalized to the surface plasmon
frequency, �s=�p /�2 and z0=−1 nm, qx=0.1qF �qF is the
Fermi wave number; qF=1.7�108/m for a 1D quantum wire
of density n1D=108/m�.

The dependence of the spectrum on the period a of the
quantum wire superlattice is shown in Fig. 2 over the range
0	a�200 nm. The parameters here are z0=−1 nm, p=4
�108/m, qx=0.1qF.

FIG. 5. �± /�s as functions of p �1/m� for
z0=1 nm, a=10 nm, qx=0.1qF.

FIG. 6. �± /�s as functions of a �m� for z0

=1 nm, p=2�108/m, qx=0.1qF.
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The spectrum may be seen as a function of negative z0 in
Fig. 3 over the range 0�z0�−25 nm, with parameters a
=10 nm, p=108/m, qx=0.1qF.

The coupled plasmon mode dependence on qx is exhibited
in Fig. 4 over the range 0	qx	8�107/m, with parameters
z0=−1 nm, a=10 nm, p=108/m.

It is, of course, of interest to examine the coupled plas-
mon spectrum with z0�0, so that the quantum wire super-
lattice is embedded within the semi-infinite bulk plasma me-
dium. In this case the dispersion relation �Eq. �34�� is given
by

1 −
�p

2

�2 =
A

�2
B −
C

2�2 − �p
2� . �43�

Again, this is a quadratic equation with the solution

�±
2 =

1

2
�AB + �s

2 ± �A2B2 − 2AC + AB�p
2 + �s

4� , �44�

and the spectrum again contains two bands �which differ
from those of Eq. �38�� and the gap between them is given by

���2� = �A2B2 − 2AC + AB�p
2 + �s

4. �45�

The two bands are exhibited as functions of p in the first
Brillouin zone in Fig. 5 for z0=1 nm, wire superlattice pe-
riod a=10 nm, qx=0.1qF.

The dependence of the spectrum on superlattice period a
is shown in Fig. 6 over the range 0	a	200 nm. The pa-
rameters are z0=1 nm, p=2�108/m, qx=0.1qF. In Fig. 7,
the coupled plasmons may be seen as functions of positive z0
over the range 1	z0	25 nm, with parameters a=10 nm,
p=108/m, qx=0.1qF. Finally, the spectrum as a function of
qx is illustrated in Fig. 8 over the range 0	qx	8�107/m,
with parameters z0=1 nm, a=10 nm, p=8�107/m.

Coupled plasmonic band structure in the first Brillouin
zone is evident in Figs. 1 and 5 for z0	0 and z0�0, respec-
tively, along with the band gaps. Figures 2 and 6 �z0	0 and
z0�0� are particularly interesting because the variation of
the spectrum �and gaps� clearly reflects on the period of the
quantum wire superlattice, opening the possibility of using
surface plasmon resonance as a mechanism for optical sens-
ing of nanostructure geometry. Figures 3 and 7 exhibit the
dependence of wire-lattice-plasmon coupling to surface plas-
mons as a function of separation z0: In Fig. 3 for z0 negative,
it is clear that the lower mode approaches the decoupled

FIG. 7. �± /�s as functions of positive z0 �m�
for a=10 nm, p=108/m, qx=0.1qF.

FIG. 8. �± /�s as functions of qx �1/m� for
z0=1 nm, a=10 nm, p=8�107/m.
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surface plasmon for �z0� large �large separation�, but that this
mode certainly couples to the wire-lattice plasmon for �z0�
small, when the two component subsystems are in close
proximity. Again, in Fig. 7, the lower mode simply decouples
the surface plasmon from the distant wire-lattice plasmon for
�z0� large, while the upper mode couples the latter to the bulk
plasmon deep in the medium. Finally, Figs. 4 and 8 illustrate
the mode-mode repulsion as a function of qx commonly ex-
perienced in the “crossover” region of interacting modes.

VI. CONCLUDING REMARKS

We have carried out a fully analytic determination of the
dynamic, nonlocal, inhomogeneous screening function of a
semi-infinite plasma-like semiconductor in the presence of a
lateral quantum wire-like superlattice. This was done by the
explicit inversion of the Coulomb coupled system’s direct
dielectric function viewed as a matrix in its space-time indi-
cies, formulating and solving the associated RPA-type inte-
gral equation for the screening function. The coupled
surface-plasmon and wire-superlattice spectrum has been
fully analyzed, determining its band and gap structure and
dispersion. Our results also show that the coupled spectrum
provides information about the geometric parameters of the
system, the superlattice period a, and zo, for the case at hand,

which could also be applied to a lattice of long, thin, parallel
molecules having mobile carriers capable of conduction.
Moreover, the technique employed here can also be extended
to providing information about the geometric structure of a
molecular architecture through its Coulombic interaction in
modifying the spectrum of nearby surface plasmons, in ad-
dition to reflecting on the normal-mode frequencies of the
molecular structure itself. These considerations open the pos-
sibility of further enhancing the already fruitful and effective
surface plasmon resonance technique that has been employed
in real-time biotechnological measurements of the kinetics of
label-free biomolecular interactions �DNA, for example�
with high sensitivity.4–16 Furthermore, our results not only
provide the coupled plasmon mode spectrum in terms of the
frequency poles of the screening function, but its residues at
the pole positions also describe the relative excitation ampli-
tudes �oscillator strengths� of the modes.
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