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Experimental test of universal conductance fluctuations
by means of wave-chaotic microwave cavities
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The mathematical equivalence of the time-independent Schrodinger equation and the Helmholtz equation is
exploited to provide a means of studying universal conductance fluctuations in ballistic chaotic mesoscopic
systems using a two-dimensional microwave cavity. The classically chaotic ray trajectories within a suitably
shaped microwave cavity play a role analogous to that of the chaotic dynamics of noninteracting electron
transport through a ballistic quantum dot in the absence of thermal fluctuations. The microwave cavity is
coupled through two single-mode ports and the effect of nonideal coupling between the ports and cavity is
removed by a previously developed method based on the measured radiation impedance matrix. The Landauer-
Biittiker formalism is applied to obtain the conductance of a corresponding mesoscopic quantum-dot device.
We find good agreement for the probability density functions of the experimentally derived surrogate conduc-
tance, as well as its mean and variance, with the theoretical predictions of Brouwer and Beenakker. We also

observe a linear relation between the quantum dephasing parameter and the cavity ohmic loss parameter.
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I. INTRODUCTION

Much attention has been focused on the problem of me-
soscopic transport through a quantum dot in which a two-
dimensional electron gas system contained within an arbi-
trarily shaped potential-well boundary is connected to two
electron reservoirs through leads—the source (s) and drain
(d). Recently it has been possible to fabricate quantum dots
with low impurity content where the elastic mean free paths
of the enclosed electrons are typically much larger than the
physical size of the dot.! Electron transport through such
“ballistic dots” is governed by elastic collisions off the en-
closing potential-well boundaries. It has been observed that

the terminal conductance of such dots, defined as éz[ J (Vg
—V,) where I is the source current flowing into the dot and
(V,—V,) is the potential difference between these two leads,
exhibits strong, reproducible fluctuations on the order of the
quantum of conductance (Gy=e*/h) (Refs. 2—4). These fluc-
tuations arise from quantum-interference effects due to the
phase-coherent electron transport within such dots and have
been explained using the hypothesis that the fluctuations are
governed by random matrix theory.’> Similar universal con-
ductance fluctuations (UCF) were previously observed in
other systems such as quasi-one-dimensional metal wires.5-

In a quantum dot, this phase coherence is partly lost by
opening the system to the outside world during the process
of measurement of the conductance. Quantum phase deco-
herence (dephasing) can also be induced due to the presence
of impurities within the dot, thermal fluctuations, or electron-
electron interactions, all of which lead to more classical
properties for electron transport.’ Significant theoretical and
experimental effort has been devoted to studying the dephas-
ing of the transport electrons in quantum dots.'"'? One class
of theoretical dephasing models utilizes a “fictitious voltage
probe (¢)” attached to the dot that has a number of channels
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(modes) Ny, each of which contains a tunnel barrier with
transmission probability I',, for the electrons that enter the
channel from the dot. Electrons that enter one of the modes
of this probe are re-injected into the dot with a phase that is
uncorrelated with their initial phase, and there is no net cur-
rent through the fictitious probe. An alternative model of
electron transport employs a uniform imaginary term in the
electron potential,'>!# leading to loss of probability density
with time. It was shown in Ref. 15 that, as far as the con-
ductance is concerned, these two models yield equivalent
predictions in the limit when the number of channels in the
dephasing lead N,— and I',—0, with the product y
=Nyl',, remaining finite (“the locally weak absorbing
limit”).'® A similar idea exists for describing ohmic losses in
the microwave cavity in terms of nonideally coupled “para-
sitic channels.”'” Since the ohmic losses in the microwave
cavity are to good approximation uniformly distributed, we
can make use of the equivalence of the imaginary potential
and voltage leads models mentioned above to relate the
dephasing parameter 7y employed by electron-transport
theory'> to the loss parameter of our microwave cavity
[k2/(AkiQ)] (Refs. 18-21). Here, k=2mf/c is the wave
number for the incoming frequency f and Aki is the mean-
spacing of the adjacent eigenvalues of the Helmholtz opera-
tor, V2+k2, as predicted by the Weyl formula®? for the closed
system. The quantity Q represents the loaded quality factor
of the cavity. Using the prescription outlined by Ref. 15 we
can directly determine the analog of conductance for the mi-
crowave cavity and make detailed comparisons of data to
theory.

We use an electromagnetic analog of a quantum dot in the
form of a two-dimensional chaotic microwave resonator.2* In
the case of a cavity thin in one dimension, Maxwell’s equa-
tions reduce to a two-dimensional scalar Helmholtz equation.
Owing to the analogy between the scalar Helmholtz equation
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and the Schrodinger equation,” the chaotic microwave cav-
ity is an ideal surrogate for a ballistic quantum dot without
the complicating effects of thermal fluctuations,* Coulomb
interactions, or impurities. The microwave cavity is driven
by two ports, both of which support a single propagating
mode and are analogous to the source and drain leads in the
quantum dot. The microwave analog permits detailed mea-
surements of the eigenvalues,?7 eigenfunctions,®2 scat-
tering and reaction matrices,'*>!333% in a system where ev-
ery detail of the potential and the coupling channels can be
controlled.

Adopting a variant of the Landaeur-Biittiker formalism,

the normalized conductance (G= G/ 2G,) can be expressed in
terms of the scattering matrix Fz(:zll'i';) of a chaotic cavity
when the leads (ports) are perfectly coupled to the cavity,?’
i.e.,

2 2 2 2
(1= Jspal* = Is o)1 = |spo]* = |524])

2- |511|2 - |512|2 - |521|2 - |Szz|2

G=|sp)* + . (D)
where the first term describes the direct (phase coherent)
transport through the microwave cavity and corresponds to
the conductance of the quantum dot due to the electrons that
did not enter the fictitious voltage probe. The second term is
a correction that describes the conductance due to the elec-
trons that are re-injected into the dot from the phase-breaking
fictitious voltage probe, thereby ensuring particle conserva-
tion in the voltage-probe model."

In the time-reversal symmetric case with single-mode
leads, Ref. 15 has shown that as vy increases the probability
density function of G [i.e., P(G;y)] becomes more and more
sharply peaked around the classical value of G=1/2. In the
limit of large 7y, an asymptotic analytic expression for
P(G; ) is predicted to be (Ref. 15),

1
P(G;y) = 57(1 + |x| —x)eM with x= 29(G - 1/2).

2)

This yields a large-y asymptotic expression for the mean and
variance of G which are predicted to be (Ref. 15),

1 1

(G)= 2" 2—7 +0(y?), (3)
3

var(G) = — + 0(y ™). (4)

4y

This paper is divided into the following sections. In Sec.
II, we present a brief description of the experimental setup
and data analysis. In Sec. III, we present the experimental
results by first examining the relation between the dephasing
parameter () and the cavity loss parameter [k*/(Ak2Q)].
Section IV then uncovers the PDFs of the experimentally
determined universal conductance fluctuations for increasing
values of y and compares them with predictions from Ref. 15
and random matrix theory. In Sec. V, we experimentally test
the predictions from Ref. 15 for the mean and variance of
these universal conductance fluctuation PDFs as a function
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FIG. 1. (a) Top view of quarter-bow-tie microwave cavity used
for the experimental “cavity case.” The two perturbations are shown
as the gray shapes. The small, gray, uniformly spaced rectangles
lining the side walls of the cavity represent 2 cm-long strips of
microwave absorber which are used to control the loss in the cavity.
(loss case 0: O strips, loss case 1: 16 strips, loss case 2: 32 strips).
(b) The implementation of the experimental “radiation case” is
shown. The gray lining on the side walls is a homogenous layer of
microwave absorber about 2 mm thick. The physical dimensions of
the cavity are shown in the schematic. The approximate locations of
the two driving ports are also shown. (¢) Cross-section view of both
driving ports inside the cavity. The cavity is 7.87 mm in depth. The
diameter of the inner conductor is 2a (=1.27 mm for Port 1;
=0.635 mm for Port 2).

of v. Finally, Sec. VI concludes this paper with a summary
of our experimental findings and its implications.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The microwave cavity under study is a metallic, air-filled,
quarter bow-tie shaped chaotic resonator [Fig. 1(a)] which is
quasi-two-dimensional for frequencies below 19.05 GHz.
The cavity is driven by two single-mode, coaxial transmis-
sion lines whose inner conductor [diameters 2a=1.27 mm
for Port 1, 2a=0.635 mm for Port 2 as shown in Fig. 1(b)]
extends from the top plate of the cavity and makes contact
with the bottom plate [shown as a schematic in Fig. 1(c)]. An
ensemble data set of one hundred similar cavities with dif-
ferent internal field configurations is generated by rotating
and translating two metallic perturbations, each of which are
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roughly the size of a wavelength at 5 GHz [gray jagged
shapes in Fig. 1(a)], within the cavity volume. This approach
of configuration averaging to approximate a pure ensemble
average is similar in principle to deforming the shape of the
potential-well boundary of a quantum dot as performed by
(Ref. 4) although in our case the volume of the system is
fixed. In addition to the intrinsic ohmic loss in the cavity, the
degree of loss can be further increased in a controlled man-
ner by partially lining the inner side walls of the cavity with
2 cm-long strips of microwave absorber having uniform
spacing. This results in three experimental loss cases—loss
case 0: no absorbing strips, loss case 1: 16 absorbing strips,
loss case 2: 32 absorbing strips. A fourth experimental loss
case is created by placing the loss case O cavity in a bath of
dry ice (solid CO, at —78.5 °C). This has the effect of
slightly increasing the loss case 0 cavity Q value (by ~10%).
We refer to this case as the “dry-ice case.” A more detailed
explanation of our experimental setup and data analysis can
be found in Ref. 21.

For our investigation, we generate a large ensemble of 2

X2 cavity scattering matrices (S) for the four loss cases
through measurements for different configurations of the per-
turbers at many frequencies in a range from 3 to 18 GHz
(covering about 800 modes of the cavity). Using the “radia-
tion impedance” approach'3-2! [Fig. 1(b)], the nonideal cou-
pling details of the two ports are removed to yield an en-
semble of normalized 2X?2 scattering matrices (5°) from
which the conductance statistics are derived using Eq. (1).

Prior to reporting results for different “data sets” where
each data set corresponds to one of our four loss cases and a
frequency range typically spanning about 1 GHz, we esti-
mate the value of vy for each data set. We derive an analytic
expression for the mean value of the absorption probability
(T) in terms of y from Eq. (17a) of Ref. 15,

(T =(Ty) = (D)= 41—7{6?[4(&— V1) + 467272 — 42

+ ME=y) = 2’2+ Y y-2)) - 2]&(- v2)]},
(5)

where &(z)=- fzgdt is the exponential integral function.
Here 1-T, and 1-T, are the eigenvalues of 55, and (T,)
=(T,) since the joint PDF of T} and T, [Eq. (17a) of Ref. 15]
is symmetrically distributed. The inset in Fig. 2 shows the
relation between (T) and y on a semilogarithmic plot (gray
curve). By determining the value of (T) from the measured
data set, Eq. (5) then uniquely determines the corresponding
value of ¥(=yp).

To determine the cavity loss parameter k/ (AkﬁQ) for our
data sets, we employ one of two procedures. For data sets
with &%/ (AkﬁQ) <5, we numerically generate marginal PDFs
of the real and imaginary parts of the normalized impedance
[Z=(5+ f)(?— T)‘l] eigenvalues using random-matrix Monte
Carlo simulations with square matrices of size N=1000, and
the value of k%/ (AkﬁQ) in the simulations ranges from 0.1 to
5 in steps of 0.1. We determine the variance (0°) of these
numerically generated PDFs and fit it to a polynomial func-
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FIG. 2. The relation between the experimentally determined
value for 77y and kz/(Ak,ZlQ) corresponding to each 1 GHz wide
data set over the frequency range 3 to 18 GHz for the different
cavity loss cases—0, 1, and 2, is shown as the black circles. A linear
fit (black line) yields the empirical expression 7y
=(12.54_r0.1)k2/(AkiQ). Inset: The relation between (T) and vy as
expressed in Eq. (5) is shown as the gray curve on a semilogarith-
mic scale.

tion 0®=@[k*/(Ak*Q)] of high order. We then determine the
variances of the real and imaginary parts of each experimen-
tal data set and solve the inverse polynomial function
K*/(AK2Q)=07'(6?) to obtain a unique estimate of
k*/(Ak2Q) corresponding to each data set. For data sets with

k2/(AkiQ) > 5, we use the relation ﬁ:m (Refs. 18,

21, and 38) which has been validated experimentally in Ref.
19.

III. RELATIONSHIP BETWEEN THE DEPHASING
PARAMETER () AND THE CAVITY LOSS PARAMETER
[k*/(AK2Q)]

We begin by examining the relationship between the esti-
mated dephasing parameter 7,7y and the estimated cavity loss
parameter k>/(Ak’Q). By employing a sliding frequency
window 1 GHz wide that runs over each of the three loss
cases—O0, 1, 2, from 3 to 18 GHz, we estimate the value of
Y7y and the corresponding value of k?/ (AkﬁQ) for each win-
dow. The comparison is shown as the black circles in Fig. 2.
A linear fit (black line in Fig. 2) yields the empirical expres-
sion yry=(12.5 iO.l)kzl(Ak,%Q) for about 70 points with val-
ues for 7y ranging from about 11 to about 300. By compar-
ing the Poynting theorem for the electromagnetic cavity with
the continuity equation for the probability density in the
quantum system,”® we find y=47k*/(Ak2Q), with 47
=12.56---. This result can be considered an empirical confir-
mation of the proposed equivalence of the imaginary poten-
tial (uniform volume losses) and dephasing lead models in
the limit considered in Ref. 15. The 1 GHz width of our
sliding window was chosen to be large enough to overcome
the effects of short-ray paths (which are not removed by only
configuration averaging'®?!), but at the same time small
enough that the cavity losses can be assumed to be approxi-
mately constant over this frequency range.

195326-3



HEMMADY et al.

FIG. 3. (Color online) (a) PDFs for the normalized conductance
P(G;7y) obtained from a chaotic cavity for the dry-ice case:
4.1-4.7 GHz  (hexagons) (kz/(AkZQ)=0.9:O.1;'ymzll.ZtO.l)
and in (b) loss case 0: 16.8—17.6 GHz (stars) (kzl(AkiQ)
=2.8+0.1;y7y=35.1x0.1); loss case 1: 8.3-9.5 GHz (circles)
(kz/(AkﬁQ)=6,6iO.l ;¥n=82.2+0.1), and loss case 2
16.8-17.6 GHz (squares) (K1 (AK20)=21.7%0.15 .7
=272.1£0.1). The red (dark gray) error bars, which are roughly the
size of the symbols, are indicative of the typical statistical binning
error in the experimentally determined normalized conductance
PDFs. The solid curves [light gray in (a); black, light gray and gray
in (b)] are obtained from Eq. (2) and correspond to 7y values of 11.2,
35.1, 82.2, and 272.1, respectively. The dark-gray curve in (a) is
obtained from random matrix Monte Carlo simulation correspond-
ing to a 7y value of 11.2.

IV. UNCOVERING THE UNIVERSAL CONDUCTANCE
FLUCTUATION PDFs

In Fig. 3, the experimentally obtained histogram approxi-
mation (symbols) to the probability density functions (PDFs)
of the normalized conductance [P(G;7y)] derived from the
normalized scattering matrix 5 and Eq. (1) is shown for four
cavity data sets. The solid curves [light gray in Fig. 3(a);
black, light gray, and gray in Fig. 3(b)] are the asymptotic
analytic expression for P(G,7y) [Eq. (2)] with values of y
that correspond to the estimated 77y values obtained from
the four cavity data sets. The dark gray solid curve in Fig.
3(a) is a random matrix Monte Carlo simulation for values of
Y1y corresponding to the data set in Fig. 3(a). The red (dark
gray) error bars, which are roughly the size of the symbols in
Fig. 3, are representative of the typical statistical binning
error of the experimental histograms and show that the
agreement between the data (shown by the symbols) and the
theoretical predictions (shown by the solid curves) improves
as the value of 77y increases. This is to be expected as Eq.
(2) is valid only in the high dephasing limit (y>1). Similar
good agreement between the data and Eq. (2) is obtained for
all of the ~40 data sets that we examined in which the fre-
quency ranges and cavity loss cases resulted in the ypy pa-
rameter greater than ~18.

In order to bring out the universal scaling behavior of the
P(G;vy) distributions [Eq. (2)] and also to test that these
distributions remain strictly non-Gaussian for increasing val-

ues of vy (as predicted by Ref. 15), we rescale the P(G;vy)
P(Gsy)
distributions by plotting Log;, yy] versus x=2¥(G

—1/2) in Fig. 4 for three representative data sets (shown as
the symbols) with 7y7, ranging from about 56 to about 220.

We observe that the three data sets roughly fall on top of

PHYSICAL REVIEW B 74, 195326 (2006)

_ =
0- Loglo[(H | x| —x)e

x=29G-1/2)

FIG. 4. The universal scaling behavior of the conductance dis-

tributions is shown. The vertical axis represents Loglo[m] with
the corresponding x=2y(G—1/2) along the horizontal axis for three
representative data sets consisting of loss case 1: 5.01-6.08 GHz
(stars) (kzl(AkﬁQ)=4.510.l 3 ¥n=56.6x0.1); loss case I:
13.6—14.6 GHz (circles) (kz/(AkﬁQ)=7.3i0.l ;Y =91.6x0.1),
and loss case 2: 13.6-14.6 GHz (squares) (kz/(AkﬁQ)
=17.7+0.1;¥7,=220.5+0.1). The black curve is Eq. (2).

each other. The solid black curve is the theoretical predic-
tion, Eq. (2) which is in good agreement with the data. We
observe some deviation of the symbols from the theoretical
curve near x= +2. This is attributed to the lack of adequate
statistics in the tails of the experimentally determined histo-
gram approximations to the probability density functions of
the conductance. Overall, for values of x ranging from —4 to
+2, the agreement is qualitatively good and applies over
other data sets where y, ranges from about 18 to about 330.
The asymmetric (nonparabolic) nature of the experimental
data, represented by the symbols, confirms that the experi-
mentally obtained P(G;y) remains strictly non-Gaussian and
negatively skewed even for large values of vy as predicted by
Ref. 15.

Log,,[var(G)]

0 100 200 300
Yy

FIG. 5. The evolution of the variance of the experimentally
determined P(G;7y) distributions, i.e., var(G) (shown as the black
circles) for increasing values of 7y is plotted on a logarithmic
scale. Inset: The evolution of the mean of the experimentally deter-
mined P(G;y) distributions, i.e., (G) (shown as the black stars) for
increasing values of 7y is shown. The solid black lines represent
the leading terms in Eq. (3) and Eq. (4), and constitute zero-
parameter fits.
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V. TESTING PREDICTIONS FOR THE MEAN AND
VARIANCE OF THE UCF PDFs

In Fig. 5, we again employ the sliding frequency window
of width 1 GHz to test the asymptotic (y>1) relations for
the mean (G) [Eq. (3)] and variance var(G) [Eq. (4)] of
P(G;y) as a function of dephasing (loss) parameter y. As
before, we determine the value of . for each frequency
window data set that runs from 3 to 18 GHz for the three
loss cases—0, 1, and 2. We then determine the corresponding
values of the mean and variance of the corresponding con-
ductance distributions P(G; y) of each frequency window. In
the inset of Fig. 5, each black star indicates the experimen-
tally estimated mean value of G (i.e., (G)) for the corre-
sponding value of 77y. The standard deviation about the ex-
perimentally determined mean is of the order 107>. We
observe that as yp increases, the black stars asymptotically
approach the classical value of (G)=1/2. The solid black
curve represents the leading terms in Eq. (3).

The black circles in Fig. 5 show a similar analysis for the
variance [var(G)] of the normalized conductance distribu-
tions P(G;y) as a function of v. The solid black curve rep-
resents the leading term in Eq. (4). We observe that the black
circles closely follow the functional approximation for the
theoretical curve [Eq. (4)] for the range of vy values from

about 18 to about 330, with no adjustable parameters.

VI. SUMMARY AND CONCLUSIONS

The results discussed in this paper provide experimental
evidence in support of the theoretical arguments proposed by
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Ref. 15 and the hypothesis that random matrix theory pro-
vides a good description of the conductance fluctuation sta-
tistics in a ballistic chaotic quantum dot in the presence of
dephasing. We have shown that in the “locally weak absorb-
ing limit” as discussed in Ref. 15, the dephasing parameter
can be related to the cavity loss parameter. We have derived
an empirical linear relation between y and the cavity loss-
parameter k*/ (AkiQ) based on our experimental data. The
finite conductivity of the metallic walls of the cavity trans-
lates to a minimum-possible experimentally accessible 7y
value of about 11 for our experiments (at least for the present
cavity geometry and temperatures of —78.5 °C and above).
We have shown that our experimentally determined conduc-
tance distributions and the asymptotic analytic functional
forms for the PDF of G [P(G)], its mean value ({(G)) and
variance [var(G)] are in good agreement over a broad range
of large vy values. This also establishes the microwave analog
as a method to study detailed theories of noninteracting
quantum transport and decoherence in quantum coherent sys-
tems.
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