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We present a theory of thermoelectric transport in nanowire-composite matrix �ncm� systems, which incor-
porates a complete solution of the multi-subband Boltzmann equation for inelastic carrier-phonon scattering
with full calculations of the ncm electronic band structure. This theory is used to investigate the thermoelectric
power factor, Pncm, of ncm systems composed of InSb and PbTe. We find that Pncm can be enhanced signifi-
cantly compared to the bulk material, but that this enhancement depends sensitively on the carrier effective
mass, on the height of the confining potential barrier that separates the ncm from the nanowires, and on the
cross-sectional size of the ncm relative to that of the nanowires. These results suggest that care must be taken
in the choice of ncm material as well as that of the nanowires in order to optimize the thermoelectric power
factor of nanowire-composite structures.
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I. INTRODUCTION

Intense research has been ongoing in recent years to iden-
tify nanostructured materials for thermoelectric
applications.1–18 Among the systems being investigated are
confined systems such as nanowire superlattices,6,7,15,16 in
which periodically arranged wire conducting regions are
separated by a matrix material. The matrix provides required
stability for the nanowire array, and it produces confinement
effects that can enhance the thermoelectric properties of the
nanowires. In some previous theoretical work,2,8,14,17 only
the thermoelectric properties of individual nanowires were
studied, and the supporting matrix structure was not consid-
ered. In other work,10,11,15,16 the matrix was taken to be an
insulator with poor thermoelectric properties. Compared to
the free-standing wires, this matrix, therefore, had a parasitic
effect on the thermoelectric efficiency of the full nanowire-
composite structure, which could in fact be lower than that of
the corresponding bulk thermoelectric material. An alterna-
tive approach would be to use a matrix that is itself com-
posed of an optimized thermoelectric material. By optimiz-
ing the thermoelectric properties of both the nanowire and
the surrounding matrix in a nanowire-composite structure,
the thermoelectric properties of this structure could be
significantly improved compared to either bulk constituent.

The thermoelectric power factor, P, is a key determinant
of the efficiency of a material for thermoelectric applications.
It is the product of the electrical conductivity, �, and the
square of the Seebeck coefficient, S: P=�S2. With increasing
carrier density, � increases while S decreases so that for a
given material system P exhibits a peak at the optimum car-
rier density. This optimized P has been studied theoretically
in a variety of nanoscale structures.13–16,18 Recent work18 fo-
cused on calculations of the power factor for a nanowire-
composite matrix perforated by a periodic array of nanowire
pores. That work clarified the qualitative dependence of the
power factor for such matrix structures and estimated the
enhancements due to confinement effects. In that study, the
interfaces between the matrix material and the empty space

in the nanowire pores was represented by infinite potential
barriers. In addition, the scattering of carriers was taken to be
represented by a constant relaxation time. While that work
demonstrated significant increases in the power factor, it
raises the question of the robustness of this enhancement
when a more realistic microscopic treatment is used.

In the present work, we develop and examine the results
of such a treatment. Specifically, we take the potential barrier
experienced by carriers in the matrix material to be finite
rather than infinite. This allows the carrier wave functions to
penetrate into the nanowire pores. In addition, instead of
using the constant relaxation time approximation �CRTA� for
the carrier scattering, we employ an accurate treatment of the
dominant scattering mechanisms for electrons at room tem-
perature. We develop a theory of thermoelectric transport in
nanowire-composite matrix structures that includes inelastic
carrier scattering by polar optic phonons through the
Fröhlich interaction and the elastic scattering of carriers by
acoustic phonons through the deformation potential interac-
tion. We calculate the power factor of nanowire-composite
matrix structures composed of two thermoelectric materials,
InSb and PbTe, which we find to represent a range of behav-
iors, described in detail below. We examine the size and
temperature dependence of the power factor in these matrix
systems. We demonstrate important features of the power
factor of nanocomposite matrix structures that emerge from
the rigorous treatment presented here. We show that through
judicious choice of materials and structures the power factor
of the nanowire nanocomposite matrix itself can be enhanced
compared to the bulk thereby adding to potential power
factor increases in the nanowires themselves.

II. THEORY

We focus on the thermoelectric properties of the matrix
portion of a nanowire-composite structure. We consider a
nanocomposite matrix material penetrated periodically by
nanowire pores with square cross-section. A cross-section of
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such a structure is shown in Fig. 1�a�. The period in each
direction is d, while the separation between nanowire pores
is �. In the matrix region, we take the potential energy seen
by a conduction electron to be zero,19 while the nanowire
pores are taken to produce a potential barrier of height, V0.
The potential profile is then that of a two-dimensional
Kronig–Penney model, illustrated schematically in Fig. 1�b�.
A conduction electron moving through the matrix will expe-
rience confinement effects. The state of such an electron is
specified by a subband index, n, and by a wave vector, k.

We consider thermoelectric transport in the matrix along
the axis of the nanowire holes and perpendicular to the cross
section in Fig. 1�a�. A small electric field, E=Ezẑ, and tem-
perature gradient, �T= �dT /dz�ẑ, are taken to be applied
along this direction, which we define as the z-direction. The
Boltzmann equation that describes this transport is
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Here, fn�k ,r� is the distribution function for electrons in

nanocomposite matrix state �n ,k�, Wnn��k ,k�� is the scatter-
ing rate taking electrons from state �n ,k� to state �n� ,k��,
and �n�k� is the electron energy. The collision operator,
�fn /�t�coll, accounts for intra- and inter-subband elastic and
inelastic scattering into and out of the state �n ,k�.

The distribution function for the nth nanocomposite ma-
trix subband can be expressed in terms of its deviation, �fnk,
from the equilibrium �Fermi� distribution, f0: fnk= f0+�fnk,
with20
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The scattering functions, �1n�k� and �2n�k�, are anisotropic
reflecting the anisotropic and non-parabolic matrix band
structure. Substituting Eq. �3� into the Boltzmann equation
leads to two sets of coupled equations for these scattering
functions. These equations can be solved iteratively, as de-
scribed in detail in Ref. 16 for given electron dispersions and
scattering mechanisms.

We consider matrix materials with isotropic and parabolic
bulk electron dispersions. The energies for electrons in the
matrix structure are then

�n�k� = �n�kx,ky� +
�2kz

2

2m* �4�

where �n�kx ,ky� is the non-parabolic and anisotropic part of
the dispersion resulting from the two-dimensional periodic
nanowire pore potential shown in Fig. 1�b�. We obtain
�n�kx ,ky� along with the corresponding Bloch functions by
solving the Schrödinger equation for this two-dimensional
Kronig-Penney potential with offset V0. We write the carrier
Bloch functions as �nk�r�=eikzz�nk�

��� where �nk�
���

=eik�·�unk�
���, with �= �x ,y�. The periodic part of the Bloch

function, unk�
���, is expanded in a basis of products of

Bloch states for the one-dimensional Kronig-Penney model:
unk�
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can be expressed analytically.21

The dominant scattering mechanisms for carriers around
room temperature in many semiconductors are: �1� Carrier–
Polar optic phonon scattering �pop� through the Fröhlich in-
teraction and �2� Carrier-acoustic phonon scattering �ac� via
the deformation potential interaction. We take the phonons to
be unaffected by the matrix potential. In confined systems
the scattering rates by optic phonons have been shown to be
given to a good approximation by bulk plane waves for the
phonons,22,23 and the matrix potential structuring has only
small effects on the acoustic phonons. We take the optic
phonon branch to be dispersionless and given by its zone
center value, ��0, and the acoustic branch is taken to be
linear with an averaged isotropic velocity, v0. Then the pop
electron-phonon scattering rate for the nanowire-composite
matrix is24
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pop�k,k�� =

2�

�
	n0 +

1

2
±

1

2

Cpop

2 Mnn�
pop�k,k�����n��k��

− �n�k� ± ��0� , �5�

FIG. 1. �a� Cross section of a nanowire-composite matrix struc-
ture. The shaded square regions represent nanowire pores, while the
white regions show the matrix cross section. In each direction, d is
the period and � is the separation between nanowire pores. �b�
Potential energy profile for a carrier in the matrix. Nanowire pores
produce periodic potential barriers of square cross section and of
height, V0.
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Here, Cpop
2 =2�e2�0 /
*V measures the strength of the

pop scattering, the ���� sign is for pop phonon emission
�absorption�, the 	ki=ki�−ki with i=x ,y ,z reflect the change
in the electron wave vector in the scattering process,
K= �Km1

,Km2
� with Km=2�m /d is the reciprocal lattice

vector of the ncm, 1/
*=1/
�−1/
0, with 
0 �
�� being
the static �high frequency� dielectric constant,
n0=1/exp����0 /kBT�−1�, and V is the crystal volume. The
overlap factor is
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For scattering of electrons by acoustic phonons we exploit
the fact that the average electron energy around room tem-
perature is considerably larger than that of acoustic phonons
involved in the deformation potential scattering. Thus, the
scattering rate for this mechanism is, to good approximation,
elastic, and takes on the high temperature form16
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Here the deformation potential scattering strength
Cac

2 =E1
2kBT /2Vv0

2 depends on the deformation potential of
the material, E1, the density, , and the averaged acoustic
velocity, v0.

For each matrix structure considered, we calculate the
scattering rates from Eqs. �5�–�9�. Using these, we convert
the multi-subband inelastic Boltzmann equation, Eqs. �2� and
�3� into a set of coupled equations for the scattering
functions, �1n�k� and �2n�k�, which we solve iteratively.
Details of this iterative procedure have been described
previously.16 This allows us to calculate the power factor for
the nanowire-composite matrix structure, which we can
express as

P��� =
kB

2

m*�d2	2m*kBT

�2 
1/2 I1
2

I0
, �10�

I0 =
1

�2�
n
�

0

�

d�x�
0

�

d�y�
0

�

dx
− df0

dx
x1/2�1n

�	�x

d
,
�y

d
,
2m*x

�2�

dx , �11�

I1 =
1

�2�
n
�

0

�

d�x�
0

�

d�y�
0

�

dx
− df0

dx
x1/2�x − �n��1n

�	�x

d
,
�y

d
,
2m*x

�2�

dx , �12�

where �x=kxd, �y =kyd, x= ��−�n�kx ,ky���, f0

= f0�x ,�n�kx ,ky��, and where �n�kx ,ky�= ��-�n�kx ,ky��� is the
scaled chemical potential. We note that only the scattering
functions, �1n, are needed to calculate the power factor. The
functions �2n enter in the calculation of the electrical com-
ponent of the thermal conductivity, which is not considered
here. We also note that the power factor, P, is a function of
the chemical potential, �, and so of the carrier density. In all
cases considered below, we calculate the �=�max that gives
the maximum power factor, Pncm= P��max�.

III. RESULTS AND DISCUSSION

We examine the thermoelectric power factor of nanowire-
composite matrix structures composed of InSb and PbTe.
These materials provide a range of effective masses and rela-
tive strengths of the two electron-phonon scattering mecha-
nisms considered. InSb has a single isotropic conduction
band valley, which we take to be parabolic.25 We take the
following material parameters for InSb: m*=0.0155,
E1=9.5 eV, ��0=24.0 meV, �0=17.64, ��=15.75,
v0

2=524 meV Å3.26 The conduction band of bulk PbTe has
four equivalent anisotropic valleys along the �111� directions.
The material parameters for PbTe are taken to be m�=0.35,
mt=0.034, and E1=25 eV, ��0=14 meV, �0=414, ��=33,
and v0

2=486.27,28 Here, m� and mt are the longitudinal and
transverse masses for the �111� valleys. We consider the ori-
entation of the ncm so that the confinement directions are
along �100� and �010�. The confinement masses along these
two directions are both equal to 0.049 so that the valley
degeneracy is retained for all ncm subbands.16 We take the
same effective mass along the z direction. It has been ob-
served that the effective mass of electrons in PbTe exhibits a
strong temperature dependence,29 increasing by roughly 25%
per 100 K in the temperture range of interest. When consid-
ering the temperature dependence of the power factor of
PbTe �see Fig. 8 and accompanying discussion�, we incorpo-
rate this behavior in the following way. At 300 K, we take
the mass determined above of 0.49. At 200 and 400 K we
take the effective masses to be 0.049/1.25=0.039 and
0.049�1.25=0.061.

For each material we fix a cross-sectional ratio, d /�, and
we choose a barrier height, V0, and a temperature, T. The
power factor is then optimized as a function of carrier den-
sity for each d. For simplicity, the nanowire barrier region is
taken to have the same material parameters as the matrix
region. Roughly, this amounts to taking the nanowire pores
to be filled with a high-barrier material. Since we are inter-
ested in the thermoelectric properties of the matrix material,
we multiply our calculated power factor for the full structure
whose volume, Vbulk, includes the high-barrier region by
VBulk/Vncm, where Vncm is the volume occupied by just the
matrix. For the two cases considered below of d /�=2 and
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d /�=4 the volume scaling factors are VBulk/Vncm=4/3 and
VBulk/Vncm=16/7, respectively.

To better understand the interative approach used here, we
first discuss the behavior of the scattering functions, �1. Fig-
ure 2 compares the bulk InSb scattering function with the
zone center scattering function for the first subband of an
InSb nanowire nanocomposite structure, �11 �kx=0, ky =0, ��,
with T=300 K, V0=3 eV, and d=2�=120 nm. This choice
of parameters corresponds to relatively strong confinement,
in which the lowest subband provides the dominant contri-
bution and a large power factor is achieved, as seen below in
Fig. 5. The effect of the composite structure on the scattering
function is evident: �11 �kx=0, ky =0, �� is relatively flat for
low energy, similar to the bulk case, but then increases at
high energy. This reflects the fact that at lower energy, the
electronic dispersion of the ncm is three-dimensional �3D�,
but at higher energy, it becomes one-dimensional, and the
lack of intersubband scattering gives a higher �11 at high
energy than is the case for the bulk �1. We note that as
discussed below, bulk-like behavior is expected for both
large and small d, and for small confinement, V0. For small
d, barrier penetration causes the dispersion to be 3D for even
high energies yielding a bulk-like �11; for large d, the sub-
bands overlap, intersubband scattering becomes significant
and again the bulk-like behavior is recovered.

Figure 3 shows the electronic density of states �solid line�
for the first subband of the InSb nanowire nanocomposite
structure considered in Fig. 2, compared to that of bulk InSb
�dotted line� and that for fully one-dimensional confinement,
corresponding to �n�kx ,ky�=�n=constant �dashed line�. As
we have taken the bulk material to have isotropic and para-
bolic dispersion, the bulk density of states is proportional to
�1/2 while the one-dimensional density of states is propor-
tional to �−1/2. The ncm density of states exhibits a more
complex structure. For low energy it matches that of the bulk
material reflecting the initial parabolicity of �n�kx ,ky�. For
increasing energy, the nonparabolic flattening of �n�kx ,ky�
causes the density of states to increase above the bulk value.
For energy increasing above �n�kx ,� /d� the dimensionality

is reduced, and the density of states approaches the one-
dimensional case until the energy of the next subband is
reached. The maximum power factor for this case occurs for
a chemical potential around ��150 meV. The enhancement
in the ncm density of states for energies below this compared
to the bulk case offsets the reduction in the ncm scattering
function observed in Fig. 2 and leads to an increase in the
electrical conductivity and the consequent increase in power
factor illustrated in Fig. 5.

It is of interest to consider the dependence of the scatter-
ing functions on the strength of the two electron scattering
mechanisms �ac and pop�. The pop scattering strength is gov-
erned by the optic phonon energy, ��0, while the ac scatter-
ing strength depends on the deformation potential, E1. Figure
4 shows the zone-center scattering function from the first
subband �11 �kx=0, ky =0, �� calculated for the InSb ncm
with T=300 K, V0=3 eV, and d=2�=120 nm �the same pa-
rameters used in Fig. 2�, but for the two cases: �1� no ac
scattering: ��0 unchanged, E1=0 �solid line�, and �2� no pop

FIG. 2. Scattering function for the first subband of an InSb
nanowire nanocomposite structure, �11�kx=0,ky =0,��, with
T=300 K, V0=3 eV, and d=2�=120 nm compared to the scatter-
ing function for bulk InSb.

FIG. 3. Electronic density of states for an InSb nanowire nano-
composite structure with V0=3 eV, and d=2�=120 nm �solid line�
compared with that for bulk InSb �dotted line� and that for strictly
one-dimensional confinement �dashed line�.

FIG. 4. Scattering functions for the first subband of an InSb
nanowire nanocomposite structure, �11�kx=0,ky =0,��, with
T=300 K, V0=3 eV, and d=2�=120 nm; solid line is calculated
ignoring pop scattering; dashed is calculated ignoring ac scattering.
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scattering: ��0=0, E1 unchanged �dashed line�. For InSb, ac
scattering is weak, and the behavior of the power factor is
dominated by the pop scattering. This is evidenced by the
fact that the �11 for case 2 is considerably larger than it is for
case 1, with �11 for case 1 being quite close to the combined
�11 in Fig. 2.

The form of �11 for case 2 can be understood as follows.
For the elastic ac scattering, �11 scales inversely with the
density of states �DOS� of the first subband, D1.18 At low
energy electron experiences a roughly 3D DOS as seen in
Fig. 3. Since the 3D DOS is proportional to �1/2, �11��−1/2,
which is the low energy behavior exhibited in Fig. 4. At
higher energy, above �1�� /d ,� /d�, the DOS becomes one-
dimensional, scaling as �−1/2 and giving �11��1/2 as seen in
Fig. 4. For case 2 �ac scattering only�, we find a much
weaker dependence of the power factor, pncm on d, and much
smaller enhancement in pncm over the bulk value compared
to that seen in Fig. 5 below. This is because the electrical
conductivity, �, scales as ��D1�11 as does �S, so that
Pncm= ��S�2 /��D1�11. In the limit of full confinement
��n�kx ,ky�=�n=constant� the dispersion becomes purely one-
dimensional so that D1�1/d2. Since �1�1/D1, pncm is then
independent of d in this limit.18 Such full confinement is in
fact not achieved in the ncm thus allowing pncm for this case
exhibit a weak dependence on d.

Figure 5 shows the optimized power factor Pncm for an
InSb nanocomposite matrix plotted as a function of d for
V0=3 eV, T=300 K and for the two cross-sectional ratios
d /�=2 �solid line� and d /�=4 �dashed line�. The power fac-
tors are scaled to the optimized room temperature power fac-
tor calculated for bulk InSb. For large d, Pncm is near the bulk
value for both cases. This is expected because for sufficiently
large d, the mean free path of the carriers becomes larger
than �, and the power factor of the matrix material should
converge to the bulk value. In our previous work within the
CRTA,18 we have found that this limit is achieved for d
�100 nm. The complexity of the model considered in the
present work precludes our calculating Pncm for such large
values of d.30

For decreasing d, Pncm first increases and then exhibits a
peak. The increase in Pncm occurs because as d is reduced the

separation between electronic subbands increases, intersub-
band scattering becomes negligible and the system begins to
take on quasi-1D behavior, with properties dominated by a
single subband with small kx–ky dispersion. The carrier den-
sity of states then scales roughly as 1/d2, and this causes the
electrical conductivity and so the power factor to increase
with decreasing d. We note that this enhancement is the
fortuitous result of the weakness of the ac scattering com-
pared to the pop scattering. The ac scattering rate scales in-
versely with the density of states causing the ac scattering-
limited electrical conductivity not to increase with
decreasing d.16 However, since the ac scattering is signifi-
cantly weaker in InSb than the pop scattering this limit cor-
responds to extremely large values of the power factor,
which are never reached because of the decrease in Pncm
observed for small d in Fig. 5.

This small d behavior occurs for two reasons: First, the
ncm Brillouin zone size scales as 1 /d, and for small d, the
band width of the lowest subband, �1�kx=� /d ,ky
=� /d�–�1�kx=0,ky =0�, is so large that the carriers essen-
tially sample a three-dimensional band structure leading to a
reduction in Pncm. Second, as d→0, barrier penetration of
the carrier wave functions in the ncm into the nanowire pore
regions becomes significant. This causes the power factor to
decrease. For sufficiently small d, the charge density is able
to spread throughout the whole structure as if the barriers
were not present, so that the bulk power factor is recovered.
In Fig. 5, in the d→0 limit, Pncm converges to 4/3 for
d /�=2 and 16/7 for d /�=4. If we divide these values by the
corresponding volume scaling factors defined above, we see
that in both cases the bulk result is indeed obtained.

We note that there is a significant enhancement in the
peak value of Pncm when the cross-sectional ratio, d /�, is
doubled with the peak value for d /�=4 being about 1.7 times
that for d /�=2 and more than three times larger than the
bulk value. To understand this we note that for given d, the
cross-sectional ratio is increased by reducing �. The onset for
quasi-one dimensional behavior and corresponding power
factor enhancement is determined by �, so that, in principle,
as d /�→� the peak in Pncm can be made very large. We
have verified this behavior in our previous work for infinite
barriers.18 However, we note that for the realistic finite bar-
rier case considered here, wave function penetration into the
barrier region strongly suppresses Pncm. This is evident by
noting that for the infinite barrier case, V0=�, the peak
power factor obtained for d /�=4 is about 3.3 times larger
than for d /�=2. This is roughly twice that obtained here for
V0=3 eV.

The sensitivity of the peak value of Pncm to barrier height
is highlighted further in Fig. 6, which shows the optimized
Pncm for InSb with d /�=2, T=300 K and for three different
barrier heights, V0=3 eV, V0=1 eV, and V0=0.5 eV.
With decreasing barrier height, the peak value of Pncm drops
precipitously. This reflects the fact that with decreasing
V0, the density of states and the scattering functions approach
their bulk form. This suggests that large barriers between
the matrix material and the nanowires is essential in
order to maximize enhancement of the power factor in
nanowire-composite structures.

In Fig. 7�a�, the optimized Pncm for InSb is plotted versus
d for d /�=2, V0=3 eV, and for three different temperatures.

FIG. 5. Power factor of nanowire nanocomposite matrix struc-
tures composed of InSb for T=300 K, V0=3 eV, and for two values
of d /� as a function of the period, d.
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Note that the three curves are almost identical, with the peak
positions exhibiting little temperature dependence. This is to
be contrasted with Fig. 7�b�, which shows the nanowire-
composite matrix power factor calculated in the constant

relaxation time approximation. Here, a strong temperature
dependence is evident with the peak shifting to lower d. The
reason for the shift in the curves with temperature has been
explained18 through a universal scaling relation of the ncm
power factor depending on d, carrier effective mass, and
temperature. This scaling relation is well fit for the large d
portion of the curves beyond the peak positions. This relation
predicts that the same value of Pncm should be obtained when
d1 /d2=T1 /T2.18 The intersection of the three curves in Fig.
7�b� with the thin horizontal line indeed follow this relation
closely. However, around and below the peak positions, this
is no longer true because wave function penetration into the
barrier region decreases the power factor for small d, thus
producing a premature peak of reduced height and at larger d
than would be obtained from an infinite barrier theory. When
the dominant scattering mechanism for carriers in InSb �in-
elastic pop scattering� is introduced, the universal scaling
behavior is no longer obeyed for any value of d.

Figure 8 shows the optimized power factor Pncm for an
PbTe�100�-oriented nanocomposite matrix plotted as a func-
tion of d for V0=3 eV, T=300 K, and for the two ratios
d /�=2 �solid line� and d /�=4 �dashed line�. Note that the
curves exhibit peaks at smaller values of d than occurs for
the case of InSb shown in Fig. 5. This shift occurs because of
the larger effective mass in PbTe. With increasing carrier
effective mass, the value of d, below which a single subband
dominates the transport, decreases, and it is this region in
which the density of states and the scattering functions ac-
quire their quasi-one-dimensional form, and the resulting en-
hancement in Pncm occurs. For d /�=4, the enhancement in
the peak value of Pncm is considerably reduced compared to
that for InSb observed in Fig. 4. This can be understood as
follows. For the infinite barrier case,18 the peak position in
Pncm shifts to lower d with increasing d /�. Because of wave
function penetration into the barriers, the peak for d /�=4 is
not able to fully form, as was also the case for InSb �see Fig.
5�. This effect is more exaggerated for PbTe than for InSb
because the barrier penetration effects are more strongly de-
pendent on d for small d. We note here that GaAs has a
larger effective mass than either InSb or PbTe, and our cal-
culated power factors for GaAs ncm’s �not shown here�

FIG. 6. Power factor of nanowire nanocomposite matrix struc-
tures composed of InSb for d /�=2, T=300 K, and for three values
of barrier offset V0 as a function of the period, d.

FIG. 7. �a� Power factor of nanowire nanocomposite matrix
structures composed of InSb for d /�=2, V0=3 eV, and for three
different temperatures, as a function of the period, d. �b� Power
factor as in �a� but calculated within the constant relaxation time
approximation.

FIG. 8. Power factor of nanowire nanocomposite matrix struc-
tures composed of PbTe for T=300 K, V0=3 eV, and for two
values of d /� as a function of the period, d.
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exhibit peaks below 5 nm and peak values of Pncm that are
noticeably lower than those for InSb and PbTe, consistent
with the above reasoning.

Figure 9 shows the optimized power factor Pncm for an
PbTe�100�-oriented nanowire-composite matrix plotted as a
function of d for V0=3 eV, and for three different tempera-
tures. Note that in contrast to the case of InSb shown in Fig.
7�a�, in PbTe the peak position exhibits a noticeable tempera-
ture dependence. In InSb, the inelastic pop scattering is
stronger than the ac scattering and so dominates the behavior
of the power factor around room temperature. In PbTe, the
large dielectric constants and small zone center LO phonon
energy weaken the inelastic pop scattering, while the large
deformation potential strengthen the elastic ac scattering.
This produces a noticeable temperature dependence closer to
that predicted from the CRTA.18 In addition, the strong tem-
perature dependence of the effective mass in PbTe29 shifts
the curve for 400 K slightly to smaller d and that for 200 K

to larger d, thus enhancing the temperature dependence of
Pncm.

IV. SUMMARY AND CONCLUSIONS

We have developed a theory of the thermoelectric power
factor of nanowire-composite matrix systems. Our theory in-
corporates both inelastic scattering of carriers by polar optic
phonons and elastic scattering of carriers through the defor-
mation potential interaction, which are the dominant carrier
scattering processes in many semiconductor materials around
room temperature. We find that under appropriate conditions
the power factor of the ncm can be substantially enhanced
compared to the bulk material. Materials with small effective
mass such as InSb give peak enhancement at larger ncm
period, d, thereby minimizing detrimental barrier penetration
effects. We show that for materials in which inelastic pop
scattering is dominant, such as InSb, the position and mag-
nitude of the peak are stable against changes in temperature.
We find that larger potential barriers, V0, separating the ncm
from the nanowire pores yield larger peak power factors. We
note that such large confinement may be produced by a thin
layer of high-potential barrier material such as an oxide
layer.31 In addition, we show that larger cross-sectional ra-
tios, d /�, can produce significantly larger peak power fac-
tors. However, we note that samples with large d /� and with
d in the region of peak Pncm are more difficult to fabricate
because they require very small �. Furthermore, in real sys-
tems large cross-sectional ratio can be achieved only if the
nanowire pores are themselves large. This would mean that
in the full nanowire-composite structure the power factor of
the nanowire material filling the pores would not benefit
from any confinement-induced enhancement. This suggests
that an optimum cross-sectional ratio must be found to maxi-
mize power factor enhancement in both the nanowires and in
the surrounding matrix region.
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