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At low temperatures and voltages tunneling transport through an interface between a superconductor and
hopping insulator is dominated by coherent two-electron tunneling between the Cooper-pair condensate and
pairs of localized states �Kozub et al., Phys. Rev. Lett. 96, 107004 �2006��. By detailed analysis of such
transport we show that the interface resistance is extremely sensitive to the properties of the tunneling barriers,
as well as to the asymptotic behavior of the localized states. In particular, a dramatic cancellation takes place
for hydrogenlike impurities and ideal barriers. However, some disorder can lift the cancellations, restoring the
interface transport. We also study the non-Ohmic behavior of the interface resistor and show that it is sensitive
to the Coulomb correlation of the occupation probabilities of the involved localized states. It is expected that
the non-Ohmic contribution to the I-V curve will experience pronounced mesoscopic �fingerprint� fluctuations.
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I. INTRODUCTION

Tunneling charge transport through a superconductor-
semiconductor interface has been extensively studied in con-
nection with hybrid devices. Since the seminal paper by
Blonder, Tinkham, and Klapwijk1 it is well known that two
mechanisms of charge transfer can be important. The fist
mechanism is single-electron tunneling while the second one
is due to Andreev reflection from the interface. Though the
Andreev transport is proportional to the tunneling transpar-
ency squared and seems to be less important than the contri-
bution of single-electron tunneling, at low temperatures it
can dominate. The reason is that the energy cost for transfer
of a quasiparticle is ��, and at low temperatures single-
electron transport is suppressed �e−�/T.2 Here � is the energy
gap in the superconductor while T is the temperature in en-
ergy units. Since quasiparticle transport is proportional to the
first power of the tunneling transparency, Andreev transport
will dominate when e−�/T is much less than the tunneling
transparency.

Extensive theoretical1,3–5 and experimental6–14 effort has
been focused on relatively low-resistive structures where the
semiconductor part of the device has metallic conductance.
This is natural having in mind coherent hybrid devices show-
ing the Josephson effect.

Contrary to these activities, in this paper we address co-
herent charge transfer through the interface between a super-
conductor �SC� and a hopping insulator �HI�—i.e., a system
where transport occurs via hops between localized �non-
propagating� single-particle states. This is the case, in par-
ticular, in many experiments aimed at studies of hopping
conductance where superconducting electrodes are conven-
tionally used; see, e.g., Ref. 15. Investigations of hopping are
usually conducted at low temperatures, much less than the
transition temperature of the leads, and in situations when
the tunneling barrier at the interface is not too strong. Con-
sequently, one can expect that single-particle transport is sig-

nificantly suppressed compared to Andreev-like charge trans-
fer.

The problem of charge transfer between a SC and a HI
was first addressed in Ref. 16, where it was shown that at
low temperatures transport is governed by time-reversal re-
flection, where electrons tunnel into the superconductor from
localized states in the hopping insulator located near the in-
terface. This process is similar to the so-called crossed An-
dreev charge transfer discussed previously in connection
with various mesoscopic systems.17,18 Electron hopping from
the superconductor to impurities near the surface of the in-
sulator and back again has been proposed as a source of
qubit decoherence for some systems.19 According to Ref. 16,
the interface resistance can compete with the bulk resistance
of the hopping insulator, and in this way can be important for
an interpretation of the experimental results on hopping con-
ductance. Since the time-reversal contribution disappears
when the leads are driven into the normal state, the interface
resistance of Andreev type can be removed by applying a
relatively weak magnetic field, causing a superconductor–to–
normal-metal transition in the leads.16 This anomalous mag-
netoresistance provides a natural way to separate the inter-
face contribution and compare it with the bulk resistance of
the hopping insulator.

In this paper we extend the analysis of Ref. 16 in two
directions. First, we consider the influence of the properties
of the tunneling barrier on the charge transfer, which turns
out to be surprisingly sensitive to the barrier roughness.
Namely, we found that interference effects in tunneling can
lead to a significant increase in the interface resistance due to
fine cancellations of the contributions to the two-particle tun-
neling probability. The roughness of the barrier suppresses
these effects, and in this way influences the interface resis-
tance. Second, we consider non-Ohmic transport through the
interface. We will show that the interface contribution to the
resistance can be strongly nonlinear and that the nonlinear
behavior is essentially related to the Coulomb correlation of
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the occupation numbers of the localized states adjacent to the
interface. One can expect a rich pattern of reproducible �fin-
gerprint� fluctuations in the I-V curve due to pronounced
non-Ohmic contributions of individual pairs. Thus, combined
studies of the linear interface resistance and average nonlin-
ear I-V curve and its fluctuations may tell a lot about barrier
details and about the formation of the depletion zone near the
barrier.

The paper is organized as follows. In Sec. II we set the
stage presenting the model of Ref. 16 for coherent charge
transport. Detailed calculations for the Ohmic case are pre-
sented in Sec. III where we show how interference-based
cancellations occur. In Sec. IV we discuss several generali-
zations of the model, including the effects of modification of
the tails of localized wave functions and barrier details. In
Sec. V, starting from calculation of the non-Ohmic contribu-
tions of the individual pairs, we demonstrate how an account
of the Coulomb correlations leads to non-Ohmic behavior of
the interface conductance.

II. MODEL

As shown in Ref. 16, contact resistance can be governed
either by the interface tunneling barrier or by deformation of
the hopping cluster in the HI in the vicinity of the interface.
Here, for brevity, we will focus on the situation where the
interface resistance is dominated by the barrier.

We start with the case of linear conductance where it is
natural to use the Kubo linear response theory.20 According
to this theory, the conductance G is expressed through the
susceptibility,

���� = i�
0

�

��Î†�t�, Î�0���ei�tdt , �1�

as G=lim�→0 Im ���� /�. Here Î�t� is the current operator
and we will use units where 	=1.

Let a superconductor and a hopping insulator occupy ad-
jacent three-dimensional �3D� semispaces separated by a tun-
neling barrier �TB�. The presence of the barrier simplifies
calculations which will be made in the lowest nonvanishing
approximation in the tunneling amplitude T0. This models
the Schottky barrier usually present at a semiconductor-metal
interface. Then the current operator is defined as21

Î�t� = ie� d2rd2r�T�r,r���a†�r,t�b�r�,t� − H.c.� ,

where r is the coordinate on the superconductor side of the
interface plane, r� is the coordinate on the semiconductor
side, a†�r , t� and b�r , t� are creation and annihilation opera-
tors in the semiconductor and superconductor, respectively,
and d is the electron localization length under the barrier.

The Matsubara formalism �see, e.g., Ref. 22� allows cal-
culation of the susceptibility by analytical continuation of the
so-called Matsubara susceptibility defined as

�M�
� = �
0

�

�T�Î���Î�0��ei
�d� .

Here T� means ordering in “imaginary time” �, ��1/T, and
the temperature T is measured in units of energy. Integration
over the imaginary time actually means the average over a
grand canonical ensemble with temperature T and chemical
potential 
.

The operators Î† and Î are time-dependent interaction pic-
ture operators. Changing to Schrödinger-type operators we
write

�M�
� = �
0

�

�T�I���I�0�e	HTd��ei
�d� ,

where HT is the tunneling Hamiltonian given by the expres-
sion

HT��� =� d2rd2r�T�r,r���a†�r,��b�r�,�� + H.c.� , �2�

where integration is performed along the interface. Here
T�r ,r�� is the tunneling amplitude which in general is depen-
dent on the coordinates for both entry to and exit from the
barrier.

Let us first assume that

T�r,r�� = T0��r − r�� , �3�

as was done in Ref. 16. Then

HT��� = T0� d2r�a†�r,��b�r,�� + H.c.� . �4�

Because single-electron transitions are forbidden by the en-
ergy gap, we have to expand the expression for � to second
order in HT. Of the many possible contractions, we are only
interested in two-electron transitions in both directions. We
get a total of 12 different contractions. Of these, half will be
only the Hermitian conjugate of the other half, and a sym-
metry consideration reduces the number of relevant contrac-
tions to 3. They are

One can show that the first one �A� is small at eV��—i.e.,
when the single-electron transport is suppressed—while the
two others B1 and B2 give equal contributions. We will
therefore follow only B1 through the further analysis. To
perform calculations we introduce Green’s functions in the
usual way:22

�T�b�r,��b�r�,���� = F�x − x�� ,
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�T�b
†�r,��b†�r�,���� = F†�x − x�� ,

�T�a�r,��a†�r�,���� = G�x,x�� .

Here xi��ri ,�i�, F�x−x�� is the anomalous Green’s function
in the superconductor, and G�x ,x�� is the Green’s function of
the insulator. We get

�T�Î���Î�0�� = e2T0
4� d2rd2r0dx1dx2

� F�x − x1�F†�x2 − x0�G�x0,x�G�x2,x1� .

�5�

Here dx�d2rd�. We then take the discrete Fourier trans-
forms of the Green’s functions to write them as functions of

 and �i rather than � and �i. In this case we will have to
require that 
 and � take discrete values of 
m=2�mT and
�n= �2n+1��T. Performing the integrations over �, �1, and
�2, we get � functions for the relations between the different
discrete frequencies, giving

��
m� = 2Te2T0
4


�n

�� d2riF�r − r1,�n�

�F†�r0 − r2,− �n�

� G�r0,r,�n − 
m�G�r2,r1,− �n� . �6�

The Feynman diagram corresponding to this expression is
shown in Fig. 1.

We assume the localized states to have hydrogenlike wave
functions, centered on impurities in positions rs, with ener-
gies �s and localization length a,

�s�r� = ��a3�−1/2e−�r−rs�/a, �7�

and the insulator Green’s function is

G�r,r�,�n� = 

s

�s
*�r��s�r��
i�n − �s

. �8�

For the anomalous Green’s function we use

F�R,�n� =� d3p

�2�	�3

�

�2 + �p
2 + �n

2e−ip·R/	

=
�gm�

2
�2 + �n
2

sin�RkF�
RkF

e−�R
�2+�n
2�/���. �9�

Here �p= �p2− pF
2� /2m, � is the coherence length in a super-

conductor and gm=mpF /�2 is the density of states in a metal.

III. CALCULATIONS

So far we just followed Ref. 16, but we will now demon-
strate how the oscillations of the anomalous Green’s func-
tions, �sin RkF, lead to a significant decrease of the result
compared to the simple estimates presented there. It turns out
that these oscillations give rise to pronounced cancellations
in the susceptibility for the case of a hydrogenlike impurity
state.

We now define rs and rl as coordinates of the impurities
contributing to G�r2 ,r1� and G�r0 ,r�, respectively. Then the
Matsubara susceptibility can be expressed as

�M�
m� =
Te2�T0�4gm

2

2a6 

sln

�2

�2 + �n
2

�
Isl

2

�− i�n − �s��i�n − i
m − �l�
, �10�

Isl =� d2rd2r1
sin kF�r − r1�

kF�r − r1�
exp�−

�r1 − rs� + �r − rl�
a

−
��r − r1��
�2 + �n

2

���
� . �11�

It is safe to assume that �r−r1� and �r0−r2� are of the order
of the distance �sl between the impurities projected onto the
interface, but with variations of the order of a, where kFa
�1. The localization length a can be estimated as the Bohr
radius a0=4��	2 /m*e2. Assuming m*�0.1me, where me is
the mass of a free electron, and ��10, we get kFa�100.
Since the superconductor localization length is much greater,
��a, we can safely replace �r−r1�→�sl in Eq. �11� in all
places except sin kF�r−r1�, which oscillates rapidly. Choos-
ing the coordinates as shown in Fig. 2 we obtain

Isl =
1

kF�sl
e−��sl/����
�2+�n

2�/�

�� d2rd2r1 sin kF�r − r1�e−��r1−rs�+�r−rl��/a.

FIG. 1. Diagram relevant for the Matsubara susceptibility.

FIG. 2. Coordinates for the spatial integration.
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As r and r1 are located in the interface plane, it is natural
to choose the origins for r and r1 to be at the projections of
rs and rl, respectively, into the interface plane of the. Then
d2ri=ridrid�i,

�r − rl� = 
r1
2 + zl

2, �r1 − rs� = 
r1
2 + zs

2,

�r1 − r2� = 
��sl + r sin � − r1 sin �1�2 + �r cos � − r1 cos �1�2,

where zs and zl are the distances from the impurities to the
interface.

The minimal distance between the impurities taking part
in the coherent transport, �sl

min, is limited by Coulomb corre-
lation. If a /�s,l

min� �kFa�−1, one can neglect the items contain-
ing cos �i in the above expression. Then �r−r1���sl
+r sin �−r1 sin �1 and the integrals over r and r1 can be
calculated exactly using the formula

�
−�

�

d� sin�kFr sin � + �� = Im �
−�

�

d�eikFr sin �+i�

= Im ei��
−�

�

d�eikFr sin �

= 2� sin���J0�kr� .

After integrating over both angles we get

Isl =
�2��2 sin kF�sl

kF�sl
e�−�sl/����
�2+�n

2�/�Ir�zs�Ir�zl� ,

Ir�z� = �
0

�

rdrJ0�kFr�e−
r2+z2/a. �12�

The integral Ir will be referred to extensively in later sec-
tions, as most of the modifications we will discuss change
this integral only, leaving all other calculations unaltered. We
can then use the following identity:23

�
0

�

xdxe−p
x2+z2
J0�cx� = p�p2 + c2�−3/2�1 + z
p2 + c2�

e−z
p2+c2
�Re�p� � �Im�c�� ,

Re�z� � 0.

Combining all integrals, this gives

Isl =
�2��2a4 sin kF�sl

kF�sl

F�zl�F�zs�

�1 + kF
2a2�3e�−�sl/����
�2+�n

2�/�,

F�z� = �1 +
z

a

1 + kF

2a2�e�−z/a�
1+kF
2a2

.

Using the assumption that kFa�1 the function F�z� simpli-
fies to

F�z� � �1 + kFz�e−zkF.

The essential observation here is that the expression for Isl
contains a factor e−�zl+zs�kF, which again should be squared for

the final result. This conclusion contradicts Ref. 16, where
the factor e−�zl+zs�/a was predicted. The strong decay of Isl as
a function of zl and zs means that only pairs very close to the
interface can contribute to the Cooper-pair transfer. This
means that the theory as presented above and in Ref. 16
proves its own inadequacy, since the assumption that the
wave functions of the localized states are bulk hydrogenlike
ones requires zl and zs to be at least of the order of a. For
closer impurities, the wave function is modified by the vicin-
ity of the surface, and the result becomes strongly dependent
on unknown properties of the surface states. In this paper we
will not consider these close impurities, but discuss how de-
tails of the barrier may change the above result back to the
e−�zl+zs�/a of Ref. 16 and thus allow the main contribution to
come from pairs farther from the barrier.

Note also the extreme accuracy to which the positive and
negative contributions to Ir�z� cancel. Between two adjacent
zeros of J0�kFr� the integral is of order 1 for small r �for r
�a it gets damped by the exponential�, yet the final integral
is of order e−kFz�e−kFa�10−44 if kFa=100.

A closer analysis of the integral over r shows that it ac-
cumulates a negative value of the order of e−z/a for small r,
which is almost canceled by an equivalent positive contribu-
tion for very large r. The cancellation is found to be strongly
dependent on the exact shape of the wave function. Conse-
quently, one may conclude that the cancellation can be lifted
by specific properties of the tunneling amplitude, which
could introduce an effective cutoff of the integration over r.
In the following Sec. IV several models will be discussed,
where the importance of hitherto ignored details in the tun-
neling barrier will be made clear and the importance of the
assumed wave function for the localized states will be dis-
cussed.

To complete the calculation of the conductance, we must
now perform a summation over the Matsubara frequencies in
the standard way, replacing

T

�n

f�i�n� = � d�

4�i
f���tanh

�

2T
.

Under the assumptions we have made, this integration is in-
dependent of the details of the spatial integration and will not
be affected by the modifications introduced in later calcula-
tions. Integrating over the contour shown in Fig. 3, we get an
expression for conductance depending on the discrete vari-
able 
m. Making an analytical continuation of this function
and taking the limit as 
m goes to zero, we finally get an
expression for the conductance:

G =
��2��4a2e2�T0�4gm

2

2�kFa�12T


s�l

sin2�kF�sl�
�kF�sl�2 e−2�sl/��

� F�zs�F�zl�n��l�n��s����s + �l� . �13�

Here n���= �e�/T+1�−1 is the Fermi distribution.
As shown in Ref. 16, it is important to include the effect

of Coulomb interaction between the occupied sites which
results in additional energy UC=e2a2��sl

3 . However, account-
ing for this interaction does not change the strong cancella-
tion. We will come back to the role of the Coulomb interac-
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tion in Sec. V where we discuss non-Ohmic conductance. In
the next section we discuss how robust the cancellation is
and how it is influenced by the properties of the tunneling
barrier.

IV. OHMIC CONDUCTANCE

To understand how robust the cancellation shown in the
previous section is, we will analyze several aspects of Ohmic
transport through the interface.

A. Importance of the impurity wave function

The hydrogenlike wave function is a typical approxima-
tion for shallow centers in semiconductors. However, crossed
Andreev transport can also take place in mesoscopic
devices—e.g., between a bulk superconductor and a pair of
quantum dots. This is, in particular, the case for the previ-
ously suggested spin entangler.18

If the above cancellation is correct also for that case, then
crossed Andreev transport would be hardly feasible since the
dots would have to be located virtually at the interface. How-
ever, the tails of the wave functions of the electrons localized
at quantum dots are far from being hydrogen like. In general,
they are dependent on the design of the quantum dots. In
particular, for the lateral quantum dots designed by a prop-
erly engineered gate potential one can expect parabolic con-
finement. In this case the wave function tail is Gaussian
rather than exponential.

To check whether the above cancellation exists in this
case we have repeated the calculations of Sec. III, but replac-
ing �s�r� with �G�r�= �2�a2�−1/2e−�r − rs�

2/2a2
. As a result, the

contribution of a given pair decays as e−�zs+zl�/a and one re-
turns to the estimates of Ref. 16. Thus the design of quantum
dots chosen for the spin entangler can be crucial for its po-
tential success.

B. Importance of barrier properties

In Sec. III we assumed that the tunneling amplitude is
local and coordinate independent, T�r ,r��=T0��r−r��. It
means that during tunneling an electron can transfer its mo-
mentum to some disorder-induced scatterers and the tunnel-

ing amplitude is independent of the incident angle. To study
the role of this simplification, we will proceed as follows.
First, we consider the case of an ideal barrier for which the
tunneling amplitude depends only on the incident angle. We
will show that such dependence does not remove the cancel-
lation and the decay �e−�zl+zs�kF persists. Then we will con-
sider the case of a barrier with fluctuating strength. We will
find that fluctuations of a scale �a can strongly facilitate
transport restoring the e−�zl+zs�/a dependence.

To make these consideration more specific let us assume
that the effective barrier thickness d fluctuates along the in-
terface. Then the tunneling amplitude is nonlocal and the
tunneling Hamiltonian acquires the general form of Eq. �2�.
Consequently, the coordinates of the Green’s functions for
the HI and SC sides are different and the proper diagram has
the form of Fig. 4 rather than that of Fig. 1.

For the following it is convenient to normalize the tunnel-
ing amplitude to T0,

T�r,r�� � T0f�r,r�� .

Then the spatial integral can be written as �cf. Eq. �5��

� � d2rid
2ri�f�r,r��f�r0,r0��f�r1,r1��f�r2,r2��

� 

�n

F�r − r1,�n�F†�r0 − r2,�n�G�r�,r0�,�n − 
m�

�G�r2�,r1�,�n� . �14�

Following the previous calculations, this can be split into
separate, identical integrations for each impurity. To separate
the roles of barrier thickness fluctuations and dependence of
the incident angle let us express the tunneling amplitude as

f�r,r�� = g�r�h�r� − r� , �15�

where g�r� describes spatial variations in the barrier, while
h�r�−r� accounts for the dependence on the incident angle.
Here both vectors r and r� belong to the interface plane. The
function h�r�−r� can be assumed to depend only on �r�−r�.

a. Smooth Barrier. Let us start with the case when g�r�
=g0=constant. The basic spatial integration is

I�r,r0,�n� � � d2r�G��r + r��,r0�,�n�h�r�� . �16�

Here we have taken into account that the Green’s function
G�r ,r1 ,�n� depends only on 
z2+r2 and 
z2+r1

2. Let us now
assume that h�r�� decays much more rapidly than G. That
allows us to expand the integrand in powers of x� and y�,
keeping only the second order �the first-order term vanishes
on integration�,

G��r + r��,r0�,�n� � G +
x�2

2

�2G

�x2 +
y�2

2

�2G

�y2 ,

with G�G�r ,r0� ,�n�. Now let us consider the simplest case
of a rectangular barrier for which the function h�r� can be

modeled as h�r�=d−2e−B�r / d�2
where B�1 is some dimen-

sionless constant. This model follows from an assumption
that the barrier is uniform along the surface and rectangular.

FIG. 3. Integration contour. The values �=�s and �l− i
m are
shown by circles ��� and the values �= ±� are shown by open
squares ���, while the poles of tanh�� /2T� are shown by solid
squares.
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Then the tunneling exponent can be written as

− d
2m�U − E�1 − k�
2/k2�� � − �0 − B�r/d�2,

where �0�d
2m�U−E�, B��0E /2�U−E�, and U is the
barrier height, while E is the electron energy. Using this
model and explicit expression �8� for the Green’s function
we obtain

I�r,r0,�n� = G�r,r0�,�n�c�r� ,

c�r� �
�g0

B �1 +
d2

4Ba2� r2

r2 + z2 −
2a


r2 + z2
+

ar2


r2 + z23�� .

The integral Ir, Eq. �12�, now changes to

Ir�z� = �
0

�

rdrJ0�kFr�e−
r2+z2/ac�r� .

At d�a the correction induced by the angular dependences
of the transmission is small, but in principle, it could be
sufficient to lift the cancellations that give the e−kFz depen-
dence. However, a combination of analytical and numerical
analyses shows that the additional terms also lead to the e−kFz

dependence. We therefore conclude that the dependence of
the tunneling transparency of a uniform barrier on the inci-
dent angle still leads to e−kFz decay of the crossed Andreev
transport.

b. Inhomogeneous barrier. We now turn to the situation
were we have fluctuations in the barrier strength that facili-
tate tunneling through the places where the barrier is thin.
Let us assume that the typical size of these regions, �, is
much less than the localization length a, but larger than kF

−1,

kF
−1 � � � a .

Now we cannot assume g�r� to be constant over the region
spread by the impurity potential. For simplicity, we will in
this case write h�r��=��r��, as we have previously shown

that these corrections do not change the principal behavior of
the transport. The shape of g�r� is dependent on the rough-
ness and on the relative positions of the barrier minimum and
the impurity center. For a barrier with a parabolic minimum
one can show that g�r� has a Gaussian shape,

g�r� = e−r2/a2�.

The general analysis of this situation is complicated, as the
impurity center may not coincide with the center of the bar-
rier minimum. Two simplified cases are still sufficient to
shed light on the situation.

Let us for simplicity start with the case when the mini-
mum in the barrier strength coincides with the projection of
the impurity center on the interface. In this case the integral
for Ir�z� similar to Eq. �12� can be analyzed in detail. It turns
out that with increasing z it crosses over from e−kFz to e−z/a at
some z* which depends on �. The quantity z* decreases with
decrease of �, z*=a at 1 /�=0.15. Thus the barrier inhomo-
geneity �modeled by small �� facilitates transport by elimi-
nating the cancellation �see Fig. 5�.

FIG. 4. Left panel: the diagram of Fig. 1 for the case of nonlocal tunneling transparency. Right panel: a more detailed sketch of the
coordinates.

FIG. 5. The dependence Ir�z� for kFa=20 and 1/�
=0.01,0.1,0.15,0.2.
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Now we can relax the previous assumption that the barrier
strength minimum occurs exactly at the projection point of
an impurity center and consider the situation where the mini-
mum is off center, but varies so fast that G�r� can be consid-
ered constant in comparison. In this case we can replace
G�r�=G�rmin�, rmin being the barrier minimum coordinate,
and move the origin of the integration to rmin. The integral
will then again give a simple e−z/a dependence. Thus we see
that the cutoff introduced by a clear minimum in the barrier
is sufficient to change the z dependence of the conductance
per impurity.

If there are several minima within one single impurity,
one could imagine that these could give new interference
effects. However, integration over several minima corre-
sponds to simply summing up the contribution from the
separate integrals. Each minimum will be coupled to a mini-
mum on another impurity, giving a prefactor of sin2 �sl.
When several sines are added at each impurity, we get

�sin �sl + sin �s�l��
2 = sin2 �sl + sin2 �s�l� + 2 sin �sl sin �s�l�.

When averaging over several pairs, the sin2 terms will sur-
vive, while the cross terms will average to zero. We therefore
assume several minima within the range of each impurity to
be equivalent to several separate pairs in the total averaging.
Considering the probability of a pair accepting a Cooper pair,
the effect on one minimum of the pair already being occu-
pied due to another minimum should be negligible.

The characteristic localization length of the electron under
the barrier we call �. In order for these considerations to be
relevant, the barrier thickness d must vary with several �
over a length scale much shorter than a. Changes in barrier
thickness that do not meet this condition are better analyzed
in terms of the following model.

c. Barrier with a blocklike disorder. The model discussed
above relies on a change in barrier thickness that is of the
order of �. Because of the very fine cancellations in the
integral Ir, Eq. �12�, much smaller changes in barrier height
can be important, provided they are on a length scale of the
order of a. This can be demonstrated using a simple model
based on an analysis of the integral

Ir�R,z� � �
0

R

rdrJ0�kFr�e−
r2+z2/a

as a function of the cutoff R. Obviously, Ir�z�
=limR→� Ir�R ,z�. By splitting the integration over x into in-
tervals divided by the zeros of the Bessel function, we get
successive contributions of alternating signs and close abso-
lute values. The result approaches the e−kFz behavior seen
before when X goes to infinity. The absolute value of the sum
S�n ,z� of an even number of the intervals defined as

S�n,z� = 

m=0

2n �
Rm

Rm+2

rdrJ0�kFr�e−
r2+z2/a

= �
0

R2n+2

rdrJ0�kFr�e−
r2+z2/a,

where Rm /a is the mth zero of the Bessel function, R0=0,

will therefore have a maximum for some n, as shown in Fig.
6.

This maximal value of S�n ,z� varies with z as e−z/a, and
the corresponding cutoff radius R*�Rnmax

is a slowly vary-
ing function of the ration z /a, corresponding to 20–100 zeros
of the Bessel function.

Based on this property we construct a simple model of a
barrier with a blocklike disorder assuming

g�r� = 1 + � �R* − r� , �17�

where  �r� is the Heaviside step function. Since this contri-
bution only slowly decays with z, even a small barrier varia-
tion � can give significant contributions. Since the first term
in Eq. �17� leads to a decay �e−kFz while the second contri-
bution decays �e−z/a, we only need ��e−�kF−1/a�z.

Figure 7 shows the optimal cutoff radius R* as a function
of z, as well as Ir�R* ,z�, compared to a graph showing e−z/a.

Obviously, small variations in inhomogeneity size R will
give large variations in the result; this can be remedied by
smearing the cutoff over a period or two of the Bessel func-
tion. If we assume the center of the barrier reduction to be
slightly displaced from the impurity center, the integration
over angles can probably be found to be some such smeared
step function. At some point, the smearing will be such that
the cancellation is no longer lifted and the barrier minimum
gives insignificant contribution.

FIG. 6. �Color online�S�n�, the integral cutoff after 2n zeros of
the Bessel function, kFa=100, z /a=1.

FIG. 7. �Color online�The functions nmax�z� �top line� and
Ir�R* ,z� �middle line� for kFa=100. The bottom line shows the
function e−z/a.
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Thus we see that a small variation in the barrier thickness,
as long as it is at the proper length scale and centered on the
impurity center, can drastically reduce the interface resis-
tance of the barrier.

V. NON-OHMIC CONDUCTANCE

Having established that there exists a range of applicabil-
ity of the underlying model we now address the non-Ohmic
behavior of the interface conductance. To figure out the non-
linear properties one has to compare eV with other relevant
energy scales: temperature T, intersite Coulomb repulsion
energy UC, and energy splitting �s−�l of a pair. In addition,
we have to consider the width of the � function in energy
that selects which pairs may contribute. This width can be
estimated as a typical inverse lifetime of an electron at a
localized site forming the pair. We always assume eV��,
excluding in this way the possibility of single-electron trans-
port.

The net current over the barrier can be seen as the differ-
ence between current from the superconductor to the insula-
tor, IS→I and current from the insulator to the superconductor
II→S. These currents are in turn determined by the transition
probability and the occupation probabilities for the involved
states. Following Ref. 24 we will assume all matrix elements
to be energy independent. Thus the only variations in the
transition rate are due to the occupation probabilities. We
must also remember the eV dependence of the � function,
describing the conservation of energy, which regulates which
pairs contribute to the transport.

Since the superconducting condensate has a macroscopic
number of states at the level of the chemical potential, the
current IS→I is only dependent on the probability of finding
an empty pair in the insulator, while II→S requires an occu-
pied pair. In both cases the relevant pair will have to satisfy
energy conservation.

To keep track of realistic situations we assume that the
entire voltage drop occurs at the barrier, but allow for a small
portion of the insulator near the interface to be filled up or
emptied by electrons due to the voltage drop over the barrier.
This region models the depletion zone of a semiconductor
heterojunction. For impurities outside the depletion zone, the
Fermi level is assumed to be fixed relative to the impurity
energy levels. In this case the � function in energy must be
chosen as ���s+�l+UC−2eV� and the occupancy numbers
are given as before, as n���. Very close to the barrier, inside
the depletion layer, we instead use a picture where we keep
the impurity energy levels constant relative to the supercon-
ductor condensate, but adjust the Fermi level to get
n�� ,eV�=n��+eV� �see Fig. 8�.

In both cases we have to consider the Coulomb energy
UC, and the simplest way of accommodating it is by describ-
ing each pair as a four-level system corresponding to the four
following configurations: �i� both sites are empty, �ii�, �iii�
one site is occupied, and �iv� both sites are occupied. The
configurations are shown in Fig. 9.

For simplicity we disregard Coulomb interaction with
charges outside the pair. We can then write a partition func-
tion for the four-level system and use this to find the prob-
abilities of a pair being empty, allowing a Cooper pair to fill
it, or if filled, allowing one Cooper pair to be created. Using
the energies defined in the figure, the partition function can
be written as

Z = 1 + e−��s−
�/T + e−��l−
�/T + e−��s+�l−2
+UC�/T

and the probabilities of the different configurations in similar
notation:

P00 = Z−1, P10 = Z−1e−��s−
�/T,

P01 = Z−1e−��l−
�/T, P11 = Z−1e−��s+�l−2
+UC�/T.

Here 
 is the chemical potential in the superconductor.
The current through the interface is proportional to the

difference

P00 − P11 = Z−1�e−��s+�l−2
+UC�/T − 1� . �18�

With the inclusion of the Coulomb energy this can no longer
be factorized into separate occupation probabilities of the
two impurities of the pair, but if we set UC=0, it can be seen
that the difference simplifies to the former results.

If we consider the pairs inside the depletion zone, we use

=−eV. Taking into account the energy conservation law
requiring �s+�l+UC=0 one can express the difference P00
− P11 as

1 − e2eV/kBT

1 + e�−�s+eV�/kBT + e��s+UC+eV�/kBT + e2eV/kBT .

In this case, the energy conservation law is independent of
eV, so the transitions are suppressed until the voltage reaches
��s�+UC; then, it rapidly rises, before P00− P11 saturates at
unity. For the pairs outside the depletion zone, we can write

=0 and the expression for P00− P11 is

FIG. 8. Electrochemical potential in HI �left� and SC �right� outside �left panel� and inside �right panel� the depletion zone.

FIG. 9. Energy levels for four configurations of the pair: �1=0,
�10=�s, �01=�l, and �11=�s+�l+UC.
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e2eV/T − 1

1 + e−�s/T + e��s+2eV+UC�/T + e2eV/T .

While these expressions are somewhat similar, the main dif-
ference lies in the eV dependence of the conservation law,
which means that as the voltage changes, the choice of pairs
satisfying energy conservation will change, so a single pair
will pass into and out of the allowed range instead of satu-
rating.

In the following we assume the Fermi level in a semicon-
ductor to be located inside the impurity band, which is suf-
ficiently larger than ��eV. Therefore, when performing the
summation over all pairs, we choose a uniform distribution
of �s. In this case, both expressions will give exactly the
same results, although the physics behind them are slightly
different. Neglecting the Coulomb interaction between the
components of the pair, we simply get a linear relation in
both cases. Thus Ohmic behavior would persist even though
eV can exceed the temperature T. For pairs inside the deple-
tion zone, this is due to inclusion and saturation of more
pairs as eV becomes larger than the energy splitting of the
pairs. If a given pair has started contributing, one channel
has been opened and it will not terminate with increasing eV.
Outside the depletion zone, pairs will only contribute for the
width of the � function, so as voltage rises, other pairs will
take over the transport, but the number of pairs that can
contribute will rise linearly with the voltage.

A typical I-V curve is shown in Fig. 10. This curve is
calculated under a simplifying assumption that the Coulomb
correlation energy UC is kept constant of the same order as
the temperature T since the contribution of the sl pair is
��sl

−2e−�sl/� and cut off at small � by the requirement UC
�T.16 For these pairs the Coulomb interaction is essentially
screened and does not block two-electron tunneling. This
assumption significantly simplified the calculation compared
with averaging over all correlation energies, but does not
change the conclusion. As we see, the transport is suppressed
at eV�UC, while for eV�UC transport will return to a
Ohmic behavior, as shown in Fig. 10.

Thus we predict a rather unusual situation when the con-
ductance evolves for a low-field Ohmic to a high-field
Ohmic regime through an intermediate non-Ohmic one. Such
behavior is a hallmark of the Coulomb correlation between
the occupation numbers of the pairs responsible for crossed
Andreev reflections.

VI. CONCLUSIONS

In conclusion, we have shown that the pair tunneling
through a barrier at the interface between a superconductor

and hopping insulator is extremely sensitive to the properties
of the tunneling barrier. This sensitivity is due to rapid oscil-
lations �at scale �kF

−1� of the electron wave functions in a
superconductor compared to the characteristic scale a of
variation of the localized wave function in a hopping insula-
tor. These oscillations cause dramatic cancellations in the
tunneling probability if the barrier is uniform. However, this
cancellation of the interference origin can be suppressed if
the barrier is inhomogeneous, as was demonstrated for dif-
ferent models of a barrier. In particular, the fluctuations in
the barrier strength of the scale � falling within the window
1/kF��!a suppress the cancellations and restore the trans-
port even if their relative amplitude � is very small. For a
barrier with a blocklike disorder with the scale �a we ob-
tained an estimate for suppression of the oscillations �
�e−kFa for the pairs located at the distance �a from the
interface. This happens if the beneficial barrier fluctuations
must coincide with particularly positioned impurities with
the right energies and means that the number of impurities
contributing to conductance will be relatively small and the
relative importance of “successful” pairs will increase. Con-
sequently, one can expect pronounced mesoscopic—sample-
specific and reproducible—fluctuations in both Ohmic and
non-Ohmic conductance. Such fluctuations will be especially
pronounced when the barrier contains large transparency
fluctuations �punctures�. One can expect that the fluctuations
will have different behavior depending on the location of the
relevant pairs with respect to the position of the depletion
zone near the interface. We plan to study mesoscopic fluc-
tuations of the Andreev transport between a superconductor
and a hopping insulator in more detail as a separate project.

Another specific feature of the two-electron charge trans-
fer is sensitivity of non-Ohmic transport to Coulomb corre-
lation in the occupation numbers of the relevant pairs. This
correlation leads to non-Ohmic behavior at low voltages,
eV�UC ,T, while at higher voltages the transport turns out to
be Ohmic. This reentrant behavior is a hallmark of the Cou-
lomb correlation.

The experimental relevance of these calculations is
mainly for the study of hopping systems connected by super-
conducting leads. In such experiments the temperature is of-
ten less than 1 K and quasiparticle conduction is exponen-
tially suppressed. So while we get a result proportional to
�T0�4, this may still easily be greater than the quasiparticle
contribution ��T0�2e−�/T. If we also include cancellations
from a perfect barrier, we get an additional factor of the
order of e−kFa. Under such conditions quasiparticle conduc-
tion may dominate over Andreev transport down to tempera-
tures T"� / �ln T0

−1+kFa�, ignoring preexponential factors.
The roughness of the barrier makes Andreev transport more
favorable and decreases the interface resistance.
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FIG. 10. Current-voltage curve for UC /T=0, 1, and 2.
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