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We obtain pulse-driven population inversions in two-subband quantum wells �QW’s� with a time-varying
transition energy. We achieve this by using linearly chirped pulses with the center frequency given by a fit of
the time-varying transition energy obtained from the effective nonlinear Bloch equations. The coherent popu-
lation inversions �Rabi oscillations� are given for square QW’s and for dc-biased square QW’s. We further
verify that the time-dependent polarization of the intersubband transitions can also be controlled.
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I. INTRODUCTION

Two-level quantum systems driven at resonance by elec-
tromagnetic pulses give rise to coherent oscillations in the
populations known as Rabi oscillations �RO’s�.1 When the
pulse has a slowly varying envelope its area A�t�
=��−�

t F0�s�ds gives a measure of the coherent evolution on
the Bloch sphere, where � is the dipole moment and F0�s� is
the pulse envelope. If A��� is an even multiple of � there is
no energy absorption and the pulse propagates without decay
in a single-resonance two-level atomic medium—a result
known as self-induced transparency.2 On the other hand, if
the area is an odd multiple of � it causes population inver-
sion and the pulse is rapidly attenuated. This occurs only if
the pulse duration is shorter than the homogeneous depopu-
lation and decoherence times T1 and T2 and also any dephas-
ing time due to inhomogeneous broadening and detuning.
The RO concept provides the basis on which most theory
and experiment on coherent optical pulses interacting with
two-level atoms is done.3,4 The ability to produce RO’s in a
given system, moreover, indicates whether that system is a
candidate for more elaborate coherent manipulation, such as
in coherent control experiments or for quantum computing.

Semiconductors, however, provide only an approximate
realization of two-level systems. Nevertheless, phenomena
closely related to two-level RO’s have been observed. It has
already been shown experimentally in semiconductors that
RO’s can occur.5,6 More recently in heterostructures, �
pulses have been used to perform a single-electron coherent
turnstile in quantum dots under a dc bias.7 Theoretical stud-
ies of RO’s for interband transitions have also already been
made.8–11 Although they took into account the effect of
many-body interactions in the semiconductor Bloch equa-
tions �SBE’s� by setting up the pulse frequency with detun-
ing with respect to the unrenormalized energy gap, this fre-
quency was fixed in time and the pulse areas that achieved
the best results were not multiples of �. The general plan
was to choose simple pulse shapes and vary the area to
achieve the deepest RO’s subject to this constraint.

Theoretical work in quantum control in semiconductor
heterostructures is still a fledgling enterprise, but some rel-
evant research has been done such as in quantum-dot
turnstiles,12 optical bistability all-optical switches in quan-

tum wells �QW’s�,13 optimal control with interband transi-
tions in asymmetric double QW’s,14 and recently Paspalakis
et al.15,16 obtained intersubband population inversions with
pulsed THz fields with a time-varying phase in n-type doped
QW’s. All of them use electromagnetic pulses near resonance
as the control. Chirped pulses have been used to some extent
in quantum optics. For example, it has been proposed to use
linearly chirped ultrafast optical pulses to achieve some de-
gree of state trapping of interband excitation in quantum
wells11 in a fashion similar to what has been observed in
two-level atomic systems with frequency-modulated
pulses.17,18

We here further extend the application of quantum control
via chirped pulses in intersubband �ISB� transitions in two-
subband quantum wells that was introduced in Ref. 19. There
we predicted that substantial RO’s can be achieved in ISB
transitions of n-type doped QW’s provided the center fre-
quency of the terahertz driving pulse self-consistently tracks
the time-dependent renormalized ISB gap. The ability to
carry out such coherent control at THz frequencies is a po-
tential boon, since both the instantaneous amplitude and
phase of the time-dependent polarization can be detected in a
straightforward fashion—a task that may be considerably
more difficult at optical frequencies. The main novelty of the
present work, therefore, is that we show that a pulse whose
linear chirp is obtained by a best fit calculated from the fully
renormalized transition energy achieves deep Rabi flops,
which is a much simpler task than our previous proposal.19

Furthermore, we also provide results for the polarization
of the ISB transitions that were not previously given. The
measurement of polarization is also of fundamental impor-
tance to quantum control;20,21 it is even more important in
some cases than the ability to measure the population evolu-
tion. This is so because the polarization gives real-time evo-
lution information 22 and its measurement is a necessary con-
dition for carrying out quantum computation, while
population measurements are typically performed after inter-
action with external eletromagnetic pulses. Results are given
for unbiased and dc-biased square QW’s. With this study we
also fill a gap that was missing in our work, since we have
done calculations of quantum control using linear chirp for
three-subband QW’s,23 but had not done the same for two-
subband systems. Furthermore, the ability to perform quan-
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tum control using linear chirp and asymmetric QW’s shows
that the control scheme is robust.

II. MODEL

Suppose the energy gap of ISB transitions, ��t�=E1�t�
−E0�t�, varies with time. How can one find an effective �
pulse, i.e., the pulse that maximally inverts the population in
this system? We showed in Ref. 19 that one can use a pulse
that is suitably chirped �with a time-dependent center fre-
quency� to track self-consistently the renormalized subband
splitting in time induced by the pulse itself. The SBE’s in
GaAs/AlxGa1−xAs QW’s can be reduced to effective nonlin-
ear optical Bloch equations �OBE’s� because the conduction
subbands are approximately parabolic with little mass disper-
sion, i.e., the dependence on k of the transition energy and
the momentum matrix elements is small. This is an aid to the
treatment, since models based on the OBE will, to a large
extent, be applicable to the ISB transitions. Here we summa-
rize the method proposed in Ref. 19 for achieving RO’s in
systems with time-dependent energy gaps. Begin with the

free-carrier density-matrix equations �̇=4� Im �F�t� and �̇
= i��t��− i��F�t�, where � is the population difference be-
tween upper and lower levels, � is the off-diagonal element
of the density matrix in the basis of the two levels, and � is
the dipole moment. � is related to the polarization via the
dipole moment ��t�=Tr��̂�t��̂�. The driving field is chosen
to be F�t�=F0�t�exp�−i�0

t ��s�ds�+c.c. Then, as above, using
the transformation �= �̃ exp�i�0

t ��s�ds� followed by our

rotating-wave approximation �RWA� ansatz, we obtain �̇=

−2i���̃− �̃*�F0�t� and �̇̃= i��F0�t�, where without loss of
generality we assume the phase dependence of F0�t� to be
constant in time. Integrating the above equations yields

��t� = �0cos�2��
0

t

F0�s�ds� ,

��t� =
i�0

2
sin�2��

0

t

F0�s�ds�exp�i�
0

t

��s�ds� , �1�

where �0 is the equilibrium population difference between
the bottom and the upper level. The time-dependent induced
polarization is P�t�=−N��0sin	2��0

t F0�s�ds
sin�0
t ��s�ds,

which is a simple generalization of the polarization from the
usual RO’s in two-level systems.4 Once again, this discus-
sion shows that the envelope for a j� pulse, with its center
frequency varying in time, is the same as in the case where
the levels are time independent. This will now be applied to
RO’s in ISB transitions.

The resonant ISB THz response of modulation-doped
n-type QW’s is known to be highly nonlinear.24 As electrons
undergo transitions between the two subbands, the band
bending is modified dynamically. Other nonlinearities in-
clude time-dependent Pauli blocking and excitation-induced
dephasing. The result is that the ISB plasmon exhibits a sig-
nificant nonlinear response. �By ISB plasmons we mean the
long-wavelength electron oscillations as they collectively

perform ISB transitions driven by the THz field polarized
perpendicular to the QW plane.� Our approach is to apply the
time-dependent Hartree approximation �TDHA� to describe
the ISB response to a strong THz field. This has been used in
Ref. 25 to describe the experimentally observed nonlineari-
ties in QW’s.26,27 Li and Ning28 showed that the TDHA with
cw THz driving is valid for wide GaAs QW’s of 150 Å in
width at carrier densities �1012 e / cm2 since under these QW
parameters the depolarization effect was dominant in deter-
mining the absorbance line shape and peak position. As the
strength of the depolarization effect grows approximately
linearly with well width, we expect that in a wider well of
300 Å with a smaller carrier density of 3.0�1011 e / cm2 the
depolarization effect will still be dominant in determining the
optical properties of the QW; hence we expect the TDHA to
be valid then as well. For pulse durations of several picosec-
onds, the bandwidth is narrow enough that one can assume
the results are close enough to those of cw THz driving. The
cases we concentrate on fall well within this range of valid-
ity. As such, exchange and exchange-correlation effects are
expected to be small for the purposes of this study. Further-
more, for symmetric QW’s Olaya-Castro et al.29 showed they
are not relevant. Once one sums over momenta the exchange
terms of the density-matrix equations disappear. We use the
foregoing treatment of a two-level system to obtain effective
� THz pulses. Having obtained these pulses, we use them in
numerical computations based on the TDHA to calculate
��t� and thus the THz response of the QW.

The treatment of the nonlinear THz ISB response of QW’s
is discussed in depth elsewhere.30 Here, we quote the essen-
tial results. We have shown that the TDHA can be conve-
niently restated in terms of the density matrix.30 The density-
matrix equations for ISB transitions in an asymmetric QW
are

�̇ = − �1�� − �0� + 4 Im �V�t� ,

�̇ = i�10� − �2� − i�V�t�

− i��		
 Re � + ��� − �0�/4
 + F�t���11 − �00�� , �2�

where V�t�=�10F�t�+		Re �−
��−�0� /4
, �10 is the Har-
tree self-consistent QW ISB energy gap, �1=1/T1, and �2
=1/T2. The constant coefficients 	, �, and 
 are due to Cou-
lomb interactions. They are numerically calculated from the
Hartree approximation.30 �They are roughly proportional to
NsLQW, where LQW is the QW width.� In a symmetric QW the
effective Bloch equations �2� are further simplified since

=0 and �00=�11. Using our RWA ansatz we can recast Eq.
�2� in the free-carrier form if we take the pulse center fre-
quency as

��t� = �10 − 	�/2 − 	��� − �0�/4. �3�

But for asymmetric QW’s we find numerically that we obtain
more accurate control over the populations if we add the
asymmetric correction of the energy renormalization given in
Eq. �2� to the pulse center frequency. We use
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��t� = �10 − 	�/2 − 	��� − �0�/4 − 	
 Re � . �4�

This is likely so because our RWA ansatz starts to break
down at lower values of the THz field amplitude in asym-
metric QW’s as compared with symmetric QW’s, due to op-
tical rectification �zero-frequency response which generates a
dc polarization� and second-harmonic generation �second-
order responses not present in symmetric QW’s�. With the
information that we can recast Eq. �2� into the free-carrier
form and obtain Rabi oscillations, we can design � pulses on
demand for n-type doped QWs. This approach could in prin-
ciple be applied to more complex systems, such as to ISB
transitions with mass dispersion, exchange interaction, and
electron-electron scattering, and to interband transitions; in
such cases, we merely utilize the appropriate form of ��t�.
The two-level model should be accurate provided the renor-
malized energy does not depend too strongly on k.

III. NUMERICAL RESULTS

We now present numerical results of the action of appro-
priately designed � pulses on n-type modulation-doped
QW’s. The GaAs/AlxGa1−xAs square QW structure used for
our calculations is 300 Å wide and 200 meV deep. We take
T1=0.66 ns, T2=6.6 ps ��2=0.1 meV�, and the temperature
T=4 K. In all cases, the pulse envelopes F0�t� are Gaussian.
Equations �2� were integrated using the fourth-order Runge-
Kutta method with 2048 steps per cycle of drive. In the re-
sults for the unbiased QW that follow the pulse center fre-
quency was given by a linear fit of ��t� given by Eq. �3� for
the unbiased QW or by Eq. �4� for the biased QW.

The linear fit of ��t� given in Eq. �3� is basically the
interpolation between the ���0� given by the initial value of
the population difference �0=1 and ��� f� given by the final
value of the population difference � f we wish to achieve.
This final value is obtained from the results given by the full
numerical integration of Eq. �2� with the pulse center fre-
quency given self-consistently by Eq. �3� for the unbiased
QW. The time interval tf − ti is basically the pulse duration;
more precisely it is the interval that will give us the best
linear fit of Eq. �3� obtained self-consistently. For the biased
QW we just have to replace Eq. �3� by Eq. �4� in the reason-
ing above.

A. Unbiased quantum well

The QW ISB energy �10 is about 3.5 THz �14.4 meV�.
The coefficients in Eq. �2� are 	=−0.56, �=2.87, 
=0, �00
=�11, the equilibrium population difference �0=1, and the
dipole moment �10=61.5 Å.

In Fig. 1, we show that the usual unchirped � pulses do
not work well in inverting the populations once the time-
dependent depolarization-shift effects, expressed via the non-
linear terms of ��t�, become relevant; namely, we employ
naive � pulses, as shown in Fig. 1�a�. Figures 1�b� and 1�c�
show the linearly chirped center frequency and the chirped
pulse shape, respectively. Our prescription requires a
strongly chirped pulse �the blueshift of the initial frequency
is due to depolarization shift, which changes sign when there

is inversion�. The chirp in Fig. 1�b� is a linear best fit of the
time evolution of ��t� in Eq. �3� when its constituent density-
matrix elements are given by Eq. �2�. We now see whether
the inclusion of the time-dependent renormalization of the
subband gap within the pulse chirp achieves a higher degree
of inversion. In Fig. 4�d� we achieve substantial population
inversion after the interaction with the chirped � pulse. The
fast small-amplitude oscillations in ��t� indicate that our
RWA ansatz is not perfect, but as long as these oscillations
are relatively small it remains a good approximation. Note
that the pulse duration is about one-third of T2 so that
dephasing here does not place a large limitation on the great-
est inversion that can be obtained.

The pulses employed above have peak fields of 3 kV/cm.
Such large-amplitude pulses are difficult to obtain; however,
smaller peak fields imply longer pulse duration for a given
value of A. Chirped pulses with these amplitudes are likely
to be obtainable using optical rectification of ultrafast optical
pulses in suitably designed nonperiodically poled lithium
niobate,31 i.e., with linearly growing domain sizes. In Fig. 2

FIG. 1. �Color online� �-pulse-generated RO’s of ISB transi-
tions in an unbiased square QW. The density-matrix equations of
Eq. �2� are numerically integrated with 
=0, �00=�11, �1=1 �eV,
and �2=0.1 meV. The electron sheet density and QW size are indi-
cated in the figure. The time evolution of the populations driven by
pulses without chirp is given in �a�, where the inset shows the pulse
shape; in �b� we have the center frequency of the pulse, which is
given by the linear fit of Eq. �3�, in �c� we have the chirped pulse,
and in �d� we see that we obtain a fairly deep inversion when the
driving pulse is linearly chirped.
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we show that we can track the polarization of the ISB tran-
sitions. In Fig. 2�a� we have a fit of the amplitude of ��t�
provided by the solution of Eq. �2� by the analytically pre-
dicted result given in Eq. �1�. The kink in the smooth curve
occurs because the pulse area is slightly over �. Since in the
original Rabi solution given by Eq. �1� the state of the two-
level system can be taken anywhere on the Bloch sphere, that
implies we could also take the state of the two-subband QW
system anywhere we want; therefore, that implies we have
controllability. The phase could also be tracked by our
model, but since it is changing quickly in time it would be
hard to see the accuracy of the fitting. In Fig. 2�b� we plot the
polarization.

B. Biased quantum well

The QW ISB energy �10 is about 3.7 THz �15.1 meV�.
The coefficients in Eq. �2� are 	=−0.74, �=6.65, �0=0.94,

=−0.61, �10=58.8 Å, and the dc bias is 6.7 kV/cm. We
again find that unchirped � pulses are ineffective in generat-
ing population inversions and no carrier excitation is ob-
served. To achieve inversions now we use a linear fit of the
self-consistent gap ��t� as given in Eq. �4� for the pulse
center frequency. This linear fit is shown in Fig. 3�a� and the
pulse shape shown in Fig. 3�b�. Due to the asymmetric term
and the larger value of the coefficient �, as compared with
values for the unbiased QW, the numerical results deviate
further from what our RWA ansatz predicts �since we do not
obtain a slowly varying rotating frame on the Bloch sphere�,
but we nevertheless obtain deep inversions as shown in Fig.
3�c�. We again emphasize that our RWA ansatz is only used
as a guide to find the optimal linear chirp. These results were
obtained with five subbands included in the density-matrix
equations. As one can see from the near-zero excitation of

the third and higher subbands, the two-subband model is a
good approximation. The linear fit of the center frequency as
can be seen in Fig. 3 is possibly achievable in the laboratory
and similarly provides almost as deep population inversion
as in the self-consitent tracking of the gap �not shown here�.

In Fig. 4 we show the polarization of the ISB transitions
for a dc-biased QW. In Fig. 4�a� we have a fit of the ampli-
tude of ��t� provided by the solution of Eq. �2� by the ana-
lytically predicted result given in Eq. �1�. Here our ability to
track the polarization is smaller than in the unbiased case,
because the numerical results deviate further from our RWA
ansatz predictions than in the unbiased case; this is mainly
due to optical rectification and second-harmonic generation
as just described. In Fig. 4�b� we plot the polarization.

IV. CONCLUSION

We have demonstrated theoretically the application of lin-
early chirped pulses to generate RO’s of ISB transitions
when the ISB gap varies slowly with time. In a previous
paper19 we considered the case in which the ISB splitting and
the pulse center frequency depend self-consistently on the
optical pulse. We here demonstrate that effective � pulses
that are linearly chirped �a best fit of the self-consistent
chirp� can lead to substantial population inversions in sym-
metric and asymmetric �dc-biased� n-type QW’s. By doing

FIG. 3. �-pulse-generated Rabi flops of intersubband transitions
in the model of Eq. �2� with �1=1 �eV and �2=0.1 meV for a
dc-biased square QW with a dc field of 6.7 kV/cm. Five subbands
were included in this computation in order to verify the applicabil-
ity of the two-subband model. The electron sheet density and well
size are indicated in the figure. The results are obtained from nu-
merical integration of Eq. �2�. In �a� we have the center frequency
of the pulse which is given by a linear fit of Eq. �4�, in �b� we have
the chirped pulse, and in �c� we see that we obtain a fairly deep
inversion when the driving pulse is linearly chirped.

FIG. 2. Polarization data obtained for the square QW driven by
a linearly chirped pulse. In �a� we show that our model fits very
well the amplitude of the off-diagonal density-matrix element ��t�.
The solid line is obtained from integration of the free-carrier two-
level density-matrix equation, as shown in Eq. �1�. The dotted line
is obtained from integration of Eq. �2� with the center frequency of
the driving pulse given by a linear fit of Eq. �3�. The kink in the
solid line is due the pulse area being just over �. In �b� we plot the
polarization 	��t�=Tr��̂�t��̂�
 in units of the dipole moment �10

=61.5 Å.
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so, we show that our control mechanism is robust since the
chirp does not need to follow exactly the self-consistent so-
lution. Furthermore, we show that not only the populations
but also the polarization can be controlled. Moreover, the
QW need not be symmetric, which is an advantage to the
experimentalist since by applying a dc bias the ISB transition
can be tuned into resonance. We find that deep RO’s can be
achieved even in the presence of realistic values of dephas-
ing for moderate doping with peak fields on the order of
1.5 kV/cm. More broadly, the technique may be helpful in
generating RO’s in other systems exhibiting time-dependent
level renormalizations, and may find application in coherent
control and quantum information processing.21,20 Recently,32

phase-resolved experiments on ISB RO’s in QW’s in the tens
of THz have been carried out; in principle, the method pro-
posed here can be applied to this frequency range of ISB
transitions as well.
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