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We introduce and analyze a class of one-dimensional insulating Hamiltonians that, when adiabatically varied
in an appropriate closed cycle, define a “Z, pump.” For an isolated system, a single closed cycle of the pump
changes the expectation value of the spin at each end even when spin-orbit interactions violate the conservation
of spin. A second cycle, however, returns the system to its original state. When coupled to leads, we show that
the Z, pump functions as a spin pump in a sense that we define, and transmits a finite, though nonquantized,
spin in each cycle. We show that the Z, pump is characterized by a Z, topological invariant that is analogous
to the Chern invariant that characterizes a topological charge pump. The Z, pump is closely related to the
quantum spin Hall effect, which is characterized by a related Z, invariant. This work presents an alternative
formulation that clarifies both the physical and mathematical meaning of that invariant. A crucial role is played
by time reversal symmetry, and we introduce the concept of the time reversal polarization, which characterizes
time reversal invariant Hamiltonians and signals the presence or absence of Kramers degenerate end states. For
noninteracting electrons, we derive a formula for the time reversal polarization that is analogous to Berry’s
phase formulation of the charge polarization. For interacting electrons, we show that Abelian bosonization
provides a simple formulation of the time reversal polarization. We discuss implications for the quantum spin
Hall effect, and argue in particular that the Z, classification of the quantum spin Hall effect is valid in the

presence of electron electron interactions.
DOI: 10.1103/PhysRevB.74.195312

I. INTRODUCTION

In recent years, the advent of spintronics has motivated
the search for methods of generating spin currents with little
or no dissipation. One class of proposals involves designing
an adiabatic pump in which the cyclic variation of some
control parameters results in the transfer of spin across an
otherwise insulating structure.!* Such a spin pump has been
realized in quantum dot structures.’> A second class of pro-
posals involves using the spin Hall effect to generate a spin
current using an electric field.®” Interest in this approach has
been stimulated by the experimental observation of spin ac-
cumulation induced by the spin Hall effect in doped GaAs
structures.®? In these experiments, the spin current is accom-
panied by a dissipative charge current. This motivated Mu-
rakami, Nagaosa, and Zhang!? to propose an interesting class
of “spin Hall insulator” materials, which are band insulators
that have, according to a Kubo formula, a large spin Hall
conductivity. However, the spin current that flows in the bulk
of these materials is not a transport current, and cannot be
simply measured or extracted. A crucial ingredient for the
generation of transport currents is the existence of gapless
extended edge states. Such states are generically not present
in the spin Hall insulators.!!

Motivated by the spin Hall insulator proposal, we intro-
duced a model of graphene in which the symmetry allowed
spin-orbit interactions lead to a quantum spin Hall effect.!>!3
A related phase has been proposed for GaAs in the presence
of a uniform strain gradient.'* This phase is characterized by
a bulk excitation gap and gapless edge excitations. In the
special case where the spin S, is conserved, this phase can be
viewed as two copies of the quantum Hall state introduced
by Haldane.'> The phase persists, however, in the presence of
spin nonconserving interactions as well as disorder.!?!316
Time reversal symmetry protects the gapless edge states
when electron interactions are weak, though strong interac-
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tions can open an energy gap at the edge accompanied by
time reversal symmetry breaking.!”!8 We argued that the
quantum spin Hall phase is distinguished from a band insu-
lator by a Z, topological index,'? which is a property of the
bulk system defined on a torus. We suggested a formula for
this index in terms of the Bloch wave functions. However,
the physical meaning of this formula and its relation to the
edge states was not explicit.

When placed on a cylinder (or equivalently a Corbino
disk), the quantum spin Hall system defines a kind of adia-
batic pump as a function of the magnetic flux threading the
cylinder. In the case in which S, is conserved, advancing the
flux by one flux quantum results in the transfer of spin AS,
=# from one end of the cylinder to the other. This is a spin
pump, whose operation is analogous to a charge pump that
could be constructed with a quantum Hall state on a cylinder.
As envisioned by Thouless and co-workers in the 1980s,'%%°
the adiabatic charge pumping process is characterized by a
topological invariant—the Chern number—which is an inte-
ger that determines the quantized charge that is pumped in
the course of a cycle. Equivalently, the Chern number pro-
vides a topological classification of the two-dimensional
quantum Hall state.?!~2* When S is conserved, similar ideas
can be used to describe a quantized adiabatic spin pump.*

A local conservation law is essential for this type of topo-
logical pumping process. For a finite system with closed
ends, the eigenstates before and after a complete cycle must
be distinct. This means that two energy levels must cross in
the course of the cycle. In the case of the charge pump, that
level crossing is protected by local charge conservation be-
cause the two states differ in their eigenvalue of the charge at
each end. In the absence of a conservation law there will, in
general, be no level crossings, and the system will be in the
same state before and after the cycle.

Unlike charge, spin does not obey a fundamental conser-
vation law, so unless spin nonconserving processes can be
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made very small, it is not possible to define an adiabatic spin
pump that works analogously to the Thouless charge pump.
Nonetheless, in Ref. 13 we argued that time reversal symme-
try introduces a conservation law that allows for a topologi-
cal pumping process. Specifically, we showed that for a
quantum spin Hall state on a cylinder, the eigenstates before
and after adiabatic flux insertion are orthogonal, and cannot
be connected by any local time reversal invariant operator.
When a second flux is added, however, the system returns to
its original ground state. In this sense, the quantum spin Hall
effect defines a “Z, pump.” In one cycle, there is no charge
transferred between the two ends. Since spin is not con-
served, the two states cannot be distinguished by a spin
quantum number (though the expectation value of the spin at
the end changes by a nonquantized amount). The following
question therefore arises: What is it that is pumped between
the ends of the cylinder?

In this paper, we examine this issue carefully and intro-
duce a class of one-dimensional models that exhibit a similar
pumping behavior that is protected by time reversal symme-
try. The “Z, spin pump” is analogous to the quantum spin
Hall effect in the same sense that the charge pump is analo-
gous to the ordinary quantum Hall effect. We introduce the
concept of the time reversal polarization, a Z, quantity that
signals whether a time reversal invariant one-dimensional
system has a Kramers degeneracy associated with its ends.
We show that the change in the time reversal polarization in
the course of an adiabatic cycle is related to a Z, topological
invariant that distinguishes a Z, spin pump from a trivial
cycle of an insulator that pumps nothing. This Z, invariant is
equivalent to the invariant introduced in Ref. 13 to charac-
terize the quantum spin Hall effect. The present work, how-
ever, provides an alternative formulation that clarifies both
the physical and mathematical meaning of the invariant.

We study a family of one-dimensional Hamiltonians that
have a bulk energy gap and a length that is much larger than
the exponential attenuation length associated with that gap.
We suppose the Hamiltonian depends continuously on a
“pumping parameter” f, satisfying the following properties:

H[t+ T]=Hl[1], (1.1)

H[-t]=0H[1]07!, (1.2)

where O is the time reversal operator. ¢ should be viewed as
a variable that parametrizes the instantaneous Hamiltonians
in an adiabatic cycle. In order for ¢ to be interpreted as the
physical time, the adiabatic condition dH/dt<< HAE/# must
be satisfied, where AE is a characteristic energy gap.

In the case in which the one-dimensional system corre-
sponds to a two-dimensional system on a cylinder, /T may
be viewed as the magnetic flux threading the cylinder in
units of the flux quantum. In the course of the cycle, time
reversal symmetry is broken. However, the second constraint
ensures that the system passes through two distinct points
£,=0 and 7,=T/2 at which the Hamiltonian is time reversal
invariant. Condition (1.2) may be relaxed somewhat, but it is
essential that there exist two distinct time reversal invariant
points 7, and £, where Eq. (1.2) is locally valid. The existence
of two such points plays a crucial role in the topological
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classification of the pumping cycle. In particular, we will
show that pumping cycles in which H[z,] and H[z,] have
different time reversal polarization are topologically distinct
from trivial cycles.

We will begin in Sec. II by introducing a simple one-
dimensional tight-binding model that exemplifies the Z, spin
pump. This model is closely related to a model of a spin
pump that was recently introduced by Shindou*, which may
be applicable to certain spin-% quantum spin chains, such as
Cu-benzoate and Yb,Ass. This tight-binding model incorpo-
rates spin nonconserving spin-orbit interactions and provides
a concrete illustration of the Z, pumping effect.

In Sec. III, we provide a general formulation of the time
reversal polarization for noninteracting electrons. Our dis-
cussion closely parallels the theory of charge
polarization,>=2° in which the charge polarization is related
to Berry’s phase of Bloch wave functions. We show how the
change in the time reversal polarization defines a Z, topo-
logical invariant characterizing the pumping cycle.

In Sec. IV, we argue that the notion of time reversal po-
larization and the topological classification that follows from
it can be generalized to interacting systems. We describe an
interacting version of our 1D model using Abelian bosoniza-
tion. This provides a different formulation of the time rever-
sal polarization, which is well defined in the presence of
interactions.

In Sec. V, we conclude by addressing two issues. In Sec.
V A, we discuss the implications of the time reversal polar-
ization for the quantum spin Hall effect. We argue that the
two-dimensional quantum spin Hall phase is a distinct phase
from a band insulator even in the presence of electron elec-
tron interactions. We then prove that this phase either has
gapless edge excitations or exhibits a ground-state degen-
eracy associated with time reversal symmetry breaking at the
edge. We also comment on a proposal by Sheng, Weng,
Sheng, and Haldane® to classify the quantum spin Hall ef-
fect in terms of a Chern number matrix.

In Sec. V B, we ask whether the Z, spin pump we have
defined can actually pump spin. Despite the fact that the
isolated pump returns to its original state after two cycles, we
argue that when connected weakly to leads, the Z, pump
does pump spin, although the amount of spin pumped in each
cycle is not quantized.

In the Appendix, we relate different mathematical formu-
lations of the Z, topological invariant. We begin by showing
that, like the Chern invariant, the Z, invariant can be inter-
preted as an obstruction to globally defining wave functions,
provided a constraint relating time reversed wave functions
is enforced. We then prove that the invariant derived in this
paper is equivalent to the one introduced in Ref. 13.

II. TIGHT-BINDING MODEL

In this section, we introduce a one-dimensional tight-
binding model of the Z, spin pump. This model is closely
related to a model introduced by Shindou as an adiabatic
spin pump.* Shindou considered an antiferromagnetic spin—%
Heisenberg chain to which two perturbations that open a gap
in the excitation spectrum are added. The first term is a stag-
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FIG. 1. (a) Schematic representation of the
ground state of Egs. (2.1)—(2.5) for various values
of the pumping parameter ¢. The ground states at
the time reversal invariant points =0 and ¢
=T/2 are distinguished by the presence of Kram-
ers degenerate end states. (b) Single-particle en-

ergy levels E,(r) for a 24-site chain with Atg[/ to

=04, h2/1,=0.8, and &,,/1y=0.15. (c) Single-

particle energy levels E,(r) for a 24-site chain
with 12 extra sites added at each end. (d) Low-
energy many-body energy levels associated with
one end of the chain. The degeneracy at r=T7/2
and t=3T/2 is protected by time reversal symme-
try. The inset shows how electron electron inter-
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gered magnetic field A that locks the spins into a Neel or-
dered state. The second is a staggered component to the ex-
change interaction AJ, which leads to a dimerized state.
Interestingly, Shindou suggested that this model may be rel-
evant to certain $=5 quantum spin chains, such as Cu-
benzoate and Yb,Ass, in which spins reside at two crystallo-
graphically inequivalent sites. He argued that in these
systems &g can be controlled by applying a uniform magnetic
field, and AJ can be controlled with a uniform electric field.

Shindou showed that a cycle in which AJ and hgy are
adiabatically varied defines a topological spin pump, which
transfers S,=7 in each cycle. The topological quantization of
Shindou’s pump requires the conservation of S,. In general,
however, S, nonconserving processes are allowed by symme-
try. In particular, the Dzyaloshinskii-Moriya interaction,
d- (S, X8S,), is allowed, and will inevitably lead to the vio-
lation of S, conservation. We will argue, however, that pro-
vided the system retains time reversal invariance when /g
=0, this system remains a Z, spin pump even in the presence
of the Dzyaloshinskii-Moriya interaction.

We study a noninteracting electron version of the Shindou
model, where in addition to the spin degree of freedom we
allow charge fluctuations. Consider a one-dimensional tight-
binding model with a staggered magnetic field, a staggered
bond modulation, as well as a time reversal invariant spin
orbit interaction,

H=Hy+V,+V,+V,, (2.1)
where
HO = tOE (c;‘acl}la + C;+1acia) > (22)
Vi=hy 2 (= 1) 0% el cip. (2.3)
i,af
Vt = Atstz (_ l)i(cj-acl#la + Cj':i—lacia) s (24)
and

actions lift the degeneracy at =0, 7, and 27.

Vo= 2 iéy, &aﬂ(cjaciﬂﬁ_ Civ1aCip)- (2.5)

Lo,

Here ¢, is an arbitrary vector characterizing the spin-orbit
interaction. This term explicitly violates the conservation of
S, playing a role similar to the Dzyaloshinskii-Moriya inter-
action in Shindou’s model. We consider an adiabatic cycle in
which

(Aty,h) = (AL cos2mt/T), b, sinRwt/T)).  (2.6)
For ¢,,=0, the energy gap is AE= \f”hft+4Atfl, so the adia-

batic condition is satisfied for 7> %/min(h%,2A:%). Since V,
is odd under time reversal, while V, is even, condition (1.2)
is clearly satisfied. At r=0 and 7/2, the Hamiltonian is time
reversal invariant.

In Fig. 1(a), we depict ground states in the strong-
coupling limit at representative points along the adiabatic
cycle. At t=T/4 and 3T/4, V, dominates and locks the spins
into a Neel ordered state. At =0 and 7/2, V, dominates, and
the system is dimerized with singlet pairs of electrons occu-
pying alternate bonds. Importantly, the ground state at ¢
=T/2 is distinguished from the ground state at =0 by the
presence of unpaired spins at each end.

When V=0, S, is conserved, and this model describes a
spin pump. In this case, V;,+V, can be decomposed into two
independent periodic potentials that lock the densities of the
up and down spin particles and slide in opposite directions as
a function of z. As ¢ evolves from 0 to 7, the periodic poten-
tials slide by one lattice constant. Provided there is “space”
for the added spin at the ends, spin # will accumulate at the
end following each cycle.

We wish to understand how this spin pump is modified
when V #0, so that S, is not conserved. In Fig. 1(b), we
plot the single-particle energy levels for a 24-site chain as a
function of ¢ for nonzero V,,. The bulk energy gap can be
clearly seen with continuum states above and below. The
energy levels that cross the gap are end states. Each line
consists of two states that are localized at opposite ends. The
crossing of the end states at t=7/2 will play a critical role in
what follows. When V,=0, the degeneracy at 7/2 is pro-
tected by spin conservation because the two states at each
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edge have S.==+#%/2. Nonzero V, does not lift the degen-
eracy provided the Hamiltonian remains time reversal invari-
ant at 7/2. The two end states form a Kramers doublet whose
degeneracy cannot be broken by any time reversal invariant
perturbation.

Because of the level crossing at t=7/2 it is clear that a
system that starts in the ground state at r=0 will be in an
excited state at t=T7. However, since the end states merge
with the continuum, the excitation will not be localized near
the edge, and bulk particle-hole pairs will be excited. This is
because there is no “space” to put the excitations at the ends.
In Sec. V B, we will discuss the effect of connecting this
pump to reservoirs that allow the end states to be “emptied”
without exciting bulk particle-hole pairs. For the purpose of
this section, however, we will study the operation of an iso-
lated pump by adding several sites at the ends of the chain
for which V), and V, vanish. This introduces additional mid-
gap states localized at each end, allowing the cycle to pro-
ceed without generating bulk excitations.

Figure 1(c) shows the energy levels as a function of ¢ with
the extra sites added at each end. There are now several
midgap states at each end. Since all of the midgap states are
localized at one end or the other, the low-energy excitations
of the system can be factorized as a product of excitations at
each of the two ends.

In Fig. 1(d), we plot for 0<<z<<2T the energies of the
lowest few many-body eigenstates associated with a single
end, obtained by considering particle-hole excitations built
from the single-particle states localized at that end. Though
this picture was computed for noninteracting electrons, it is
clear that the Kramers degeneracy of the ground state at ¢
=T/2 and 37/2 will be robust to the addition of electron-
electron interactions. The first excited state at 7=0, T, and
2T in Fig. 1(d) is fourfold degenerate (the middle level com-
ing into that point is doubly degenerate). This degeneracy,
however, is an artifact of noninteracting electrons. The de-
generacy is present because there are four ways of making
particle-hole excitations with two pairs of Kramers degener-
ate states. Electron-electron interactions, however, will in
general split this degeneracy, as shown in the inset, so there
will be no level crossing at r=T.

We thus conclude that when the isolated pump starts in its
ground state at =0, it arrives in an excited state after one
complete cycle at t=T. After a second cycle, however, at ¢
=2T the system returns to its original state. For this reason,
we call it a “Z, pump.” It is possible that by coupling to other
degrees of freedom, an inelastic process (such as emitting a
phonon) could cause the excited state to relax back to the
ground state. Nonetheless, there is an important distinction
between this adiabatic process that generates an excited state
and one that does not. In Sec. V B, we will return to this
issue when we discuss connecting the pump to leads. The
nontrivial operation of a single cycle depends critically on
the time reversal symmetry at t=7/2. Breaking time reversal
symmetry at that point leads to an avoided crossing of the
energy levels, so that the system returns adiabatically to its
original state at t=T.

From the point of view of the end states, the nontrivial
pumping effect arises because there exist Kramers degener-
ate end states at r=7/2, but not at 7=0. In the next section,
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we show that this property is determined by the topological
structure of the bulk Hamiltonian, H(z).

III. TIME REVERSAL POLARIZATION AND Z,
INVARIANT

In this section, we introduce the time reversal polarization
for noninteracting electrons and show that changes in it de-
fine a topological invariant. Our discussion will parallel the
theory of charge polarization in insulators.”>>° In order to
establish this connection and to define our notation, we will
therefore begin by reviewing that theory, which relates the
charge polarization to the average center of Wannier orbitals,
which in turn are related to Berry’s phase of the Bloch wave
functions. We next consider the role of Kramers’ degeneracy
in time reversal invariant systems and define a corresponding
time reversal polarization in terms of the difference between
the Wannier centers of Kramers degenerate bands. Finally,
we show that the change in the time reversal polarization
between =0 and 7/2 of the pumping cycle defines a Z,
topological invariant that distinguishes a nontrivial Z, pump
from a trivial cycle.

A. Review of theory of charge polarization

Consider a one-dimensional system with lattice constant
a=1, length L=N_ with periodic boundary conditions and 2N
occupied bands. The normalized eigenstates for the nth band
can then be written in terms of cell periodic Bloch functions
as

1 .
|¢n,k>= ,’_elkx|un,k>‘ (3.1)
N,
\J

c

We may define Wannier functions associated with each unit
cell associated with lattice vector R as

|R.n) = 1 f dk e "Ry, Y. (3.2)
2 ’

The Wannier functions are not unique because they depend

on a gauge choice for |uk,n). In addition to changing the

phases of the individual wave functions, the wave functions

can be mixed by a general U(2N) transformation of the form

it = 2 U () 1ty - (3.3)

After this transformation, |u; ,) need no longer be the indi-
vidual eigenstates of the Hamiltonian, but rather should be
interpreted as basis vectors spanning the space spanned by
the 2N occupied eigenstates. The Slater determinant of the
2N wave functions is unchanged up to a phase.

Marzari and Vanderbilt> have provided a prescription for
choosing U, (k) to optimally localize the Wannier wave
functions. Here, however, we are concerned with the total
charge polarization, which is insensitive to the details of
U,,.(k). The polarization is given by the sum over all of the
bands of the center of charge of the Wannier states associated
with R=0, and may be written?>2°
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1
P,= > (0,n|r|0,n) = P 3@ dkA(k), (3.4)
N T
where the U(1) Berry’s connection is given by
A(k) = 12 <uk,n|Vk|uk,n>' (35)

n

The integral is over the Brillouin zone from k=—1 to . If
we require that the wave function |i, ;) be defined continu-
ously in the reduced zone scheme, so that |, _.)=|, ).
then A(—7)=.A(), and the integral may be considered to be
on a closed loop, despite the fact that |u,, ;) is discontinuous
from — to 7.2° Under a U(2N) transformation that pre-
serves this continuity P, is invariant up to a lattice constant.
For a transformation in which the U(1) phase of U,,,(k) ad-
vances by 27rm when k advances around the Brillouin zone,
P,— P,+m. This reflects the fact that the polarization can
only be defined up to a lattice vector.

Changes in the polarization induced by a continuous
change in the Hamiltonian H[7] are, however, well defined.
Thus, if the wave functions |u, (1)) are defined continuously
between ¢, and t, for all k in the Brillouin zone, then we may
write

Pt,]-P[1]= il§ dkA(t,k) - 39 dkA(t,k)} ,

(3.6)

where ¢y is the loop k=— to 7 for fixed 1=¢,(;). Using
Stokes theorem, this can be written as an integral of the
Berry curvature,

Ft,k) = i 2 [Vt (1) Vst (1)) = ..

n

(3.7)

over the surface 7, of the cylinder spanned by k and ¢
bounded by c; and c,,

1
Pt,]-P)[t;]= ;TJ dt dkF(t,k). (3.8)

For a periodic cycle H[t+T]=H][t], the change in the po-
larization over one cycle, P,(T)—P,(0), is given by the inte-
gral in Eq. (3.8) over the entire torus defined by ¢ and k. This
quantity is an integer and defines the first Chern number
associated with the wave function |u,(#)) on the torus. The
Chern number characterizes the charge pumped in each
cycle. For a cycle that satisfies the time reversal constraint in
Eq. (1.2), F(-t,—k)==F(t,k), so the Chern number is equal
to zero.

B. Time reversal polarization for Kramers degenerate bands

Consider now a time reversal invariant system. The time

reversal operator has the form
0 ="K, (3.9)

where S is the spin operator and K is complex conjugation.
Since ©%=-1 for spin—% electrons, it follows from Kramers’
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FIG. 2. Schematic one-dimensional band structure with spin-
orbit interactions. The energy bands come in time reversed pairs
which are degenerate at k=0 and 7.

theorem that every Bloch state at wave vector k is degenerate
with a time reversed Bloch state. Therefore, the energy bands
come in pairs, which are degenerate at the two time reversal
invariant points k=0 and , as shown in Fig. 2. Note that in
the presence of spin-orbit interactions, these bands cannot be
labeled with spin quantum numbers.

In Sec. IIT A, we related the charge polarization as the
sum of the Wannier centers of all of the bands. Kramer’s
theorem guarantees, however, that the Wannier states come
in Kramer’s degenerate pairs, in which each pair has the
same center. The idea is therefore to keep track of the center
of one of the degenerate Wannier states per pair by defining
a “partial polarization.” This will contain more information
than Eq. (3.4), which is the sum over both states.

For simplicity we assume that there are no degeneracies
other than those required by time reversal symmetry. There-
fore, the 2N eigenstates may be divided into N pairs that
satisfy

|Ml—k,a> == eiXk'a|uE,a>

|uI_Ik’a = e"X*k’a®|u,I€,a), (3.10)
where a@=1,...,N. The second equation follows from the
first, along with the property ®>=—1. As shown in Fig. 2,
these bands are defined continuously at the degeneracy
points k" =0, 7. This representation is not invariant under the
general U(2N) transformation (3.3). However, that invari-
ance will be restored below.

We define Wannier states associated with these two sets of
bands along with the corresponding Wannier centers. By
analogy with Eq. (3.4), the partial polarization associated
with one of the categories s=1I or II may then be written

1 m
P = —f dkA*(k), (3.11)
2w)_,

where
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A() = 25 | Vil - (3.12)

The partial polarizations are clearly invariant (up to a lattice
translation) under changes in the phases of |u,£’a> and |u£a>.
However, they appear to depend on the arbitrary choice of
the labels I and II assigned to each band. We now show that
the partial polarizations (3.11) can be written in a form that is
invariant under a general U(2N) transformation of the form
(3.3). To make this invariance explicit for P, we treat the
portions of the integral for positive and negative k separately,

P'= ZL f de[Al(k) + Al(=K)]. (3.13)
mJo

For the second term, we use the time reversal constraint
(3.10) along with the fact that (Ou}|V,|Ou,)
=—(up | Vilui ) to write

A= k) = ANK) = X Vi o (3.14)
It then follows that
1 am
P'= Py [J dkA(k) - 2, (Xma= Xo.0) (3.15)
™ 0 a

The first term is expressed in terms of Berry’s connection
A=A+ A", However, since the path of integration is not
closed, the second term is necessary to preserve gauge in-
variance. The second term can be rewritten in a suggestive
manner by introducing the U(2N) matrix, which relates the
time reversed wave functions,

Wmn(k) = <u—k,m||uk,n>~ (3 16)

In the representation (3.10), w,,, is a direct product of 2
X 2 matrices with eXke and —eX-+« on the off-diagonal. At
k=0 and m, w,,, is antisymmetric. An antisymmetric matrix
may be characterized by its Pfaffian, whose square is equal
to the determinant. We then find that

Pifw(m)]
Pi{w(0)]

Thus, the second term in Eq. (3.15) can be expressed in
terms of Pf{w]. This leads to

oL f” : (M)
P _277'[ . dk A(k) +ilog P (0] ) | (3.18)

Using the identity PA{XAX"]=det[X]Pf[A], it can be shown
that under the U(2N) transformation (3.3), Pflw]
—Pf{w]det[U]. Both terms in Eq. (3.18) are thus clearly
SU(2N) invariant. Moreover, under a U(1) transformation,
the two terms compensate one another, so P' is U(2N) in-
variant. Like the charge polarization (3.4), P! is only defined
modulo a lattice vector. This is reflected in the ambiguity of
the imaginary part of the log in Eq. (3.18) as well as the
dependence of gauge transformations where the phase of
|ur .y advances by 27 for 0 <k <.

= exp(ig (X - xO,a)). (3.17)
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A similar calculation can be performed for P, and it is
clear from time reversal symmetry that P"=P' modulo an
integer, reflecting Kramers’ pairing of the Wannier states.
From Egs. (3.4) and (3.11), the charge polarization is given
by the sum of the two partial polarizations,

P,=P'+P". (3.19)

We now define the time-reversal polarization as the differ-

ence
Py=P' - P"=2P' - P, (3.20)

This then has the form

L[ ' - M)
P,y= 277{,[0 dk.A—f_wdkA+21log(Pf[w(O)] }

(3.21)

This may be written more compactly in terms of w,,, as

o Pilw(m)]
Py= - {fo dk Tr{w'V,w] -2 log< PIw(0)] )} .

(3.22)

This can be simplified further by noting that the first term
gives the winding of the U(1) phase of w,,, between 0 and 7r.
Thus,

1
Py=—
’ 2771‘[

Since det[w]=Pf[w]? this quantity is an integer, and due to
the ambiguity of the log, this integer is only defined modulo
2. Even and odd integers are distinct, however, and deter-
mine whether Pf{w(k)] is on the same branch or opposite
branch of \det[w(k)] at k=0 and 7. An alternative way of
writing it is thus,

Pf[w(w)])}
Piw(0)]/ |’
(3.23)

f dk Vi log det[w(k)] -2 log(
0

vdet[w(0)] Vdet[w()]
Pilw(0)] Pflw(m)] ~

where the branches of +y/det[w] are chosen such that the
branch chosen at k=0 evolves continuously along the path of
integration in Eq. (3.23) into the branch chosen at k=,
eliminating the ambiguity of the square root.

Equations (3.21)—(3.24) are among the principal results of
this paper, and can be regarded as a generalization account-
ing for time reversal symmetry of Berry’s phase formulation
of the charge polarization.?® The Z, time reversal polariza-
tion P, defines two distinct polarization states. In the next
section, we will argue that the value of Py is related to the
presence or the absence of a Kramers degenerate state at the
end of a finite system. As is the case for P, the value of P,
is not meaningful by itself, because a gauge transformation
|u£>—>e"‘|u}<> changes its value. Equivalently, the presence or
absence of a Kramers degeneracy at the end cannot be deter-
mined from the state in the bulk, since it will depend on how
the crystal is terminated. Nonetheless, the two values of Py
are topologically distinct in the sense that the value of P,

(_ 1)P9=

(3.24)
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FIG. 3. (a) Schematic diagram showing the evolution of the
centers of the time reversed pairs of Wannier states as a function of
t. Between t=0 and 7/2, the Wannier states “switch partners,” re-
sulting in the appearance of unpaired Wannier states at the end. (b)
The torus defined by k and 7, with the four time reversal invariant
points I'; connected by paths ¢, and ca4.

cannot be altered by a continuous change in the Hamiltonian
that preserves time reversal symmetry. However, in the next
section we will argue that an adiabatic change in the Hamil-
tonian that preserves time reversal symmetry at the end
points—but not in between—Ieads to a well defined change
in P, This change defines a topological classification of dis-
tinct pumping procedures.

C. Z, invariant

In the previous subsection, we focused on a time reversal
invariant Hamiltonian, which occurs at r=0 and 7/2 in our
pumping cycle. We now consider the continuous evolution of
the Hamiltonian through the cycle and show that the change
in the time reversal polarization which occurs in half the
cycle defines a Z, topological invariant, which distinguishes
a Z, spin pump from a trivial cycle.

This physical meaning of this invariant is easiest to see
pictorially by considering the shift in the Wannier centers in
the course of one cycle. Figure 3(a) depicts the centers of the
occupied Wannier orbitals as a function of 7. At =0, 7/2,
and 7, time reversal symmetry requires that the Wannier
states come in time reversed pairs. However, in going from
t=0 to T/2, the Wannier states “switch partners.” In this
process, the time reversal polarization, which tracks the dif-
ference between the positions of the time reversed Wannier
states, changes by one. In addition, this switching results in
the appearance of an unpaired occupied Wannier state at each
end. Since the Wannier states come in pairs, there must be
twofold Kramers degeneracy associated with each end, re-
sulting in a total degeneracy of four.

When the system evolves from r=7/2 to T, there is an-
other switch, and the time reversal polarization returns to its
original value. However, since H[f]=O@H[T-1]®!, the sys-
tem with open ends does not return to its original state at ¢
=0 but its ends are in an excited state because of the level
crossing at t=T7/2.

We now relate the occurrence of this nontrivial pumping
cycle to a topological property of the bulk ground state as a
function of . We thus consider the change in the time rever-
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sal polarization, Py(r), between r=0 and 7/2. Note that
though P, is not gauge invariant, the change in P, is gauge
invariant. This difference

A=P,(T/2) - P,(0) mod 2 (3.25)

defines a Z, topological invariant that characterizes the map-
ping from the torus defined by k and ¢ to the wave functions:
|tz (2)). From Eq. (3.24), we may write this invariant as
4 [ r /11
Vdet[w(I')]
Enr=TT——
io1 Piw(I)]

Here T'; are the four “time reversal invariant points” on the
torus shown in Fig. 3(b). The branches of the square root are
chosen as in Eq. (3.24) by continuously evolving
Vdet[w(k,7)] along the paths ¢, and c34. In order to apply
this formula, it is crucial for the wave functions to be defined
continuously on the torus. It is always possible to find such
smoothly defined wave functions via a transformation of the
form (3.3) because the Chern number, which is the obstruc-
tion to doing so, is equal to zero.

In the Appendix, we will relate different mathematical
formulations of this invariant. We will first show that it can
be interpreted as an obstruction to defining continuous wave
functions provided an additional constraint relating the wave
functions at time reversed points is enforced. This leads to a
different formula for the invariant, which can be expressed in
terms of Berry’s curvature F and Berry’s connection .4. We
will then prove that Eq. (3.26) is equivalent to the formula
for the invariant introduced in Ref. 13.

(3.26)

IV. ELECTRON INTERACTIONS AND BOSONIZATION

The preceding discussion has focused on noninteracting
electrons. An important question is therefore whether these
ideas apply to interacting systems. The presence or absence
of a ground-state Kramers degeneracy associated with the
ends of a finite interacting time reversal invariant system is
clearly a well-posed yes or no question. This suggests that
the time reversal polarization is a well defined quantity, at
least for nonfractionalized phases for which the ground state
with periodic boundary conditions is nondegenerate. There-
fore, we believe the topological distinction of the Z, pump is
still present with interactions.

Calculating the time reversal polarization for interacting
electrons is more subtle than for noninteracting electrons.
One possible approach would involve characterizing the en-
tanglement entropy, as in Ref. 31, which is sensitive to the
presence or absence of end states. In this section, we adopt a
simpler approach by studying an interacting version of the
model introduced in Sec. II using Abelian bosonization. We
find that bosonization provides a natural description of the
time reversal polarization.

We begin with a continuum version of Eq. (2.1) described
by the Hamiltonian density,

H= ' (ivpTo, + hyT'o + Aty P +ieg, - o). (4.1)

Here ¢,, is a four-component field, where the left and right
moving fields a=L,R are specified by the eigenvalues of 75,
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and the spin =T by o-f_yﬁ. We now bosonize according to

1
waa =

==
V27X,

¢'faa, (4.2)
where x, is a short-distance cutoff. Define charge/spin vari-
ables so that ¢/ =P .t dgq, and charge/current variables
(with  wu=p,0) as ¢, r=¢,x0,  These obey
[0,0,(x), ¢, (x")]=i(7/2)8,, Sx—x").

The bosonized Hamiltonian then has the form (2.1) with

v
Ho= 7 2[00, + (3,0, + (0.0, + (2,0,°). (43)

h
V== sin 20, sin 20, (4.4)
X,
At
V,=——" sin 26, cos 26, (4.5)
X,
and
€ o
Vio="0,0,+ sin 26, cos 2¢,,
T 2mx,
&’
+ —=sin 26, sin 2¢,,. (4.6)
X

c

In the absence of the spin-orbit term, the spin sector of this
Hamiltonian (when 6, is pinned at 7/4) is equivalent to
Shindou’s model.* This Hamiltonian describes an insulating
phase in which both 6, and 6, are pinned.

First focus on the case hy =0, where the Hamiltonian is
time reversal invariant. If we choose a gauge such that
OyO~'=7¢"y", the behavior of these operators under time
reversal can be deduced,

06,07 =9,

-1_
p ®()Dp® - ()Dp7

00,07'=-6,, OO0 '=q, +u/2. (4.7)

The time reversal invariance of the Hamiltonian when hgy
=0 can easily be verified. It is now straightforward to con-
sider time reversal invariant interaction terms, such as
(0,0,)%, (3,6,), cos48, cos4f,, cosde,, ctc. Provided
these interaction terms (as well as V,, defined above) are not
too large, the system will retain its bulk gap and be in a
phase in which ¢, and 6, are pinned.
We now identify the time reversal polarization with

Py=26,/m7 mod 2. (4.8)

The apparent dependence of P4 on the spin quantization axis
is an Artifact of Abelian bosonization. In fact, P4 is SU(2)
invariant. This can be seen by noting that global spin rota-
tions are generated by S°~[dxd.0, and S*
~ [dx expx2i¢,. The latter obeys [6,,5%]=+m7S*, so that
[Py,5*]=0. It can further be seen that even in the presence of
spin nonconserving terms in V,, as well as the interaction
terms discussed above, [Py,H]=0. Since OP,07!
=—P,mod 2, there are two distinct possible values for the
time reversal polarization: (P =0 or 1. Thus P, can be used
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to classify time reversal invariant insulating states.

Consider a finite system with ends. We now argue that the
value of P, determines the presence or absence of Kramers
degenerate states at the ends. The end of a one-dimensional
system at x=0 must be characterized by a boundary condi-
tion for 6,(x=0). Time reversal symmetry limits the possible
values to 6,(x=0)=n1r. The value of n, however, depends on
how the lattice is terminated. First suppose that n=0. Then,
when P, =1, the pinning of 6, in the bulk is not consistent
with the boundary condition. The closest it can be is (6,)
=+ 1. Thus, near the end there must be a kink of =7 in 6, at
the end. Time reversal symmetry requires these two possi-
bilities to be degenerate, so there is a Kramers degeneracy of
two at the end. On the other hand, when P, =0, the bulk
energy gap is “consistent” with the boundary condition, al-
lowing for 6,(x)=0 everywhere. The ground state in this
case is unique.

We thus conclude that bosonization provides an alterna-
tive approach for formulating the time reversal polarization
in terms of 6, just as it allows for a formulation of the
charge polarization P,=6,/. This suggests that the topo-
logical distinction of the Z, spin pump remains in the pres-
ence of electron interactions.

V. DISCUSSION
A. Relation to the quantum spin Hall effect

The quantum spin Hall phase introduced in Ref. 12 is a
phase of a two-dimensional electron system. In a manner
analogous to Laughlin’s construction for the quantum Hall
effect,’ this phase, when compactified onto a cylinder, de-
fines a Z, pump of the sort studied in this paper. In this
section, we outline the implications of the present work for
the quantum spin Hall effect. We begin by relating the Z,
index introduced in Sec. III to the index that distinguishes
the quantum spin Hall phase from a band insulator. We then
discuss the presence or absence of gapless edge states in the
quantum spin Hall effect. Finally, we comment on an alter-
native topological characterization of the quantum spin Hall
effect in terms of a “Chern number matrix” that has recently
been proposed by Sheng et al.”

1. Z, classification of the quantum spin Hall phase

For noninteracting electrons, the electronic phase of a
two-dimensional system with a bulk gap is characterized by
the wave functions defined on the Brillouin zone torus,
|, (k.. k,)). The relationship between the one-dimensional Z,
pump and the two-dimensional quantum spin Hall effect can
be established by the identification of (k,r) with (k,,k,).
Equation (1.2) then reflects the time reversal invariance of
the two-dimensional Hamiltonian. As we prove in the Ap-
pendix, the Z, topological index introduced in Ref. 13 is
equivalent to the Z, index characterizing the pump. The con-
siderations of this paper provide a natural physical interpre-
tation of this index in terms of the change in the time rever-
sal polarization in half of the cycle.

In addition, our observation that the time reversal polar-
ization is related to the presence or absence of a Kramers
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FIG. 4. Schematic plots of the many-particle eigenstates of a
cylindrical quantum spin Hall system of radius R as a function of
the magnetic flux threading the cylinder. In each case, there is a
Kramers degeneracy when the flux ® is equal to h/2e. (a) There
exist gapless edge excitations, whose energy level spacing goes to
zero for R—. (b) There is an edge excitation gap that remains
finite for R— oo, but the ground state is doubly degenerate.

degeneracy at the end suggests that the Z, classification of
time reversal invariant two-dimensional ground states tran-
scends the noninteracting model for which it was derived.
This means that the quantum spin Hall effect describes a
phase that is distinct from a band insulator even in the pres-
ence of electron-electron interactions.

2. Edge states or not?

In the regular quantum Hall effect, the topological struc-
ture of the bulk state guarantees the existence of gapless edge
excitations. The nontrivial Z, invariant, however, does not
guarantee gapless edge states. As shown by Wu et al.'” and
Xu et al.,'8 when the interactions at the edge are sufficiently
strong, the edge can undergo a transition that opens a gap.
The considerations of this paper allow us to prove that either
there are gapless edge excitations or there is a ground-state
degeneracy at the edge associated with the breaking of time
reversal symmetry.

To establish this proposition, consider the many-particle
eigenstates of the quantum spin Hall phase on a cylinder as a
function of the magnetic flux through the cylinder. When the
radius R of the cylinder is large, then the O(1/R) change in
the energy of the many-particle eigenstates when one-half of
a flux is inserted will be much less than any energy gap. But
in the quantum spin Hall state, the nontrivial Z, index re-
quires the ground state to have a Kramers degeneracy at
either ®=0 or ®=¢y/2, but not both. Thus there are two
possibilities as schematically illustrated in Fig. 4. Either
there are edge states with energy O(1/R) that become gap-
less for R— o, or the ground state is degenerate for R —
and split by at most O(1/R) by the magnetic flux.

This required ground-state degeneracy distinguishes the
quantum spin Hall phase from that of a band insulator. Un-
like a band insulator, the quantum spin Hall state in a system
with edges cannot have a unique ground state with a gap for
all excitations.

3. Other proposed classifications of the quantum spin Hall effect

We now comment on a different topological classification
of the quantum spin Hall effect proposed by Sheng et al.’®
These authors defined a matrix of Chern numbers by consid-
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ering a system with a generalized class of periodic boundary
conditions. Specifically, they considered boundary conditions
of the form @(..,r;,+L;, ...)=exp(i0f)(l)(...,ria, ),
where L;_, , define the periodicity and Gj?‘zm are independent
phase twists for the up and down spins. They then character-
ized the topological classes of the ground-state wave func-
tion as a function of these phase twists, and defined a matrix
of Chern numbers, C*#,

Sheng et al. argued that this classification contains more
information than the Z, classification because it distinguishes
quantum spin Hall states which belong to the same Z, class.
This can be illustrated by looking at the continuum version
of the graphene model introduced in Ref. 12, described by
the Hamiltonian

H= [~ ivp(o,7.0,+ 0,0y) + A0, 7,5 |1 (5.1

Here, in the notation of Ref. 12, o, describes the sublattice of
the honeycomb lattice, 7, describes the two inequivalent val-
leys at the corners of the Brillouin zone, and s, describes the
spin. When A, is nonzero, the system is in a quantum spin
Hall phase and belongs to the nontrivial Z, class. Sheng et
al.’® argued that the sign of A, defines two distinct phases
that are distinguished by the matrix of Chern numbers.

When s, is conserved this is certainly correct, and the
Chern number matrix can be viewed as independent Chern
numbers for the up and down spins. However, when spatial
symmetries are relaxed and spin is not conserved, this dis-
tinction is no longer meaningful. The two phases discussed
above are in fact the same phase because they can be con-
tinuously transformed into one another without closing the
gap. Specifically, consider the more general spin-orbit inter-
action that preserves the energy gap,

(5.2)

o.7.5, — o, 7.(5 - ).

When the unit vector 72 is continuously varied from +Z to —Z,
the two “phases” are connected. Of course, the process of
connecting these phases requires the breaking of the Cj lat-
tice symmetry of graphene. But in general, disorder will
break all spatial symmetries, so one cannot rely on a spatial
symmetry to protect a topological property.

This presents a conundrum because the Chern matrix for-
mulation distinguishes the two states with distinct topologi-
cal integers, even when the C; symmetry is explicitly vio-
lated. What happens to these integers when the continuous
path in Eq. (5.2) is adiabatically followed? The answer is
that somewhere along the path the energy gap must vanish at
the edge where the twisted spin boundary condition is
imposed.??

The spin phase twist imposed by Sheng et al. can be
decomposed into a U(1) part §,=6,+6 and a “spin” part
0,=0;—6,. The spin phase twist 6, is fundamentally differ-
ent from ¢, when the bulk Hamiltonian does not commute
with the S,. The boundary where the spin phase twist is im-
posed is physically different from the rest of the system, and
the spectrum of the Hamiltonian will in general be different
for different values of 6,. In contrast, the location of the
charge phase twist 6, introduced by Niu and Thouless®* can
be moved around by performing a local gauge transforma-
tion without changing the spectrum. Since the vector poten-
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FIG. 5. Evolution of one end of a Z, pump that is weakly con-
nected to a lead as shown in the inset. For t=T/2, the excited state
of the pump can relax by creating an odd under time reversal exci-
tation in the lead, which generically will change the spin of the
reservoir.

tial can be spread out over the circumference 27R of the
torus, the change in the spectrum due changing 6, can be at
most O(1/R). In contrast, if the spin phase twist is spread out
over the circumference, changing 6, changes the Hamil-
tonian by an amount of order 1. The spectrum need not be
close to that of the physical Hamiltonian.

We conclude that the additional topological structure im-
plied by the Chern number matrix is a property of the bound-
ary where the twisted phase condition is imposed rather than
a property of the bulk two-dimensional phase. The bulk
quantum spin Hall effect is classified by the Z, invariant
alone.

B. Can the Z, spin pump pump spin?

Is the Z, pump we introduced a spin pump? Since an
isolated Z, pump returns to its original state after two cycles,
the simple answer to this question is no. However, any func-
tioning pump must be connected to reservoirs into which the
pump can pump. In this section, we briefly consider the ef-
fect of connecting the Z, spin pump to reservoirs. We con-
clude that the Z, pump does pump spin, though the spin
pumped per cycle is not quantized. Moreover, we argue that
when the coupling to the reservoirs is weak, the Z, topologi-
cal structure of the pump is essential for a nonzero spin to be
pumped. For stronger coupling, however, the Z, structure is
not essential.

We consider a simple case where the reservoirs can be
described by noninteracting electrons with vanishing spin-
orbit interaction. We first suppose the coupling to the reser-
voir is weak, so that the level width I" induced in the pump
due the coupling is small compared to the energy gap A.
However, we require the coupling I" to be large compared to
the pumping rate, as well as any inelastic scattering rate for
the end states. In the limit

T, hiT,<T <A, (5.3)
the eigenstates of the pump maintain their integrity, though
coupling to the reservoirs allows transitions between differ-
ent states.

As illustrated in Fig. 5, there is a point in every cycle ¢
=(n+1/2)T where the ground state of the pump becomes
degenerate. This degeneracy is due to the end states, which
are in proximity to the reservoir. For 1= (n+1/2)T, the pump
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is in an excited state. Coupling to the reservoir, however,
allows the pump to relax back to its ground state. This relax-
ation, however, must involve a process in the reservoir that is
odd under time reversal. Generically, this will involve chang-
ing the expectation value of the spin of the reservoir. The
spin transferred to the reservoir need not be quantized, be-
cause the end states are not necessarily spin eigenstates and
the coupling to the reservoirs need not conserve spin. The
expectation value of the transferred spin could even be equal
to zero, but generically, it will be of order #.

In this weak-coupling limit, it is clear that the Z, structure
of the pumping cycle is essential because it guarantees the
level crossing in the end states. If the end states did not cross,
then there would be no transitions, and the spin in the reser-
voirs would be unchanged after a complete cycle. However,
finite coupling to the leads relaxes this requirement. Suppose
that the time reversal symmetry is weakly broken at =772,
so that there is a small anticrossing of magnitude &. In this
case, the Z, character of the cycle is lost. But if §<I', then
the states have no way of “knowing” about the anticrossing,
and the pump proceeds as if 6=0.

This reflects the fact that spin can be introduced into a
reservoir that is connected to an insulating material when the
insulator is deformed through a periodic cycle. The spin in-
jected can be expressed in terms of the unitary reflection
matrix 7(#) for electrons at the Fermi energy in the
reservoir,* which in general depends on the Hamiltonian
H(t) of the insulator,

. L dF
Asz—édﬁr{sﬁ—r}.
217l dt

In general, this quantity is nonzero. The difficulty is coming
up with a cycle in an insulating material for which AS is not
very small. The Z, pump accomplishes this by guaranteeing
that there is a resonance in the reflection matrix, which oc-
curs when the Kramers degenerate end state appears. Note
that this resonance need not involve charge transfer between
the reservoir and the insulator. Indeed, if charge fluctuations
are suppressed, then the coupling between the end states and
the reservoir will resemble the coupling between an impurity
spin and the conduction electrons in the Kondo problem. In
this case, the resonance in the reflection matrix is analogous
to the Kondo resonance in the scattering matrix of an impu-
rity, which occurs precisely at the Fermi energy, and signifies
the entanglement between the Kramers degenerate impurity
spin and the reservoir electrons.

It should be emphasized that the spin added to the reser-
voir is not a property of the bulk Hamiltonian of the pump,
but rather it depends on how the pump is connected to the
reservoir. The spin transferred to the reservoirs at the two
ends of the pump need not be related. Thus, one cannot view
the spin as being pumped along the length of the pump.
However, the presence of the end state resonance, which
follows from the change in the time reversal polarization, is
a property of the bulk insulating state. In this sense, the Z,
pump is a pump for spin.

(5.4)
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APPENDIX A: EQUIVALENT FORMULATIONS
OF THE Z, INVARIANT

In this appendix, we relate different mathematical formu-
lations of the Z, invariant A. Our starting point is Eq. (3.25)
along with Egs. (3.21)—(3.24), which express the invariant in
terms of the change in the time reversal polarization between
t=0 and T/2. We will first show that A can be interpreted as
an obstruction to defining wave functions continuously, pro-
vided a time reversal constraint is enforced. This will lead to
a formula for A in terms of the Berry curvature and Berry
connection, which will be shown to be equivalent to Eq.
(3.25). We will then show that Eq. (3.25) is equivalent to the
Z, invariant proposed for the quantum spin Hall effect in
Ref. 13.

We will use a notation appropriate for the Z, pumping
problem and consider Bloch wave functions defined continu-
ously on the torus defined by —m<k<<m and 0<r<<T. For
the two-dimensional quantum spin Hall effect, we should
identify k, with k and k, with 277¢/T.

1. Z, invariant as an obstruction

It is well known that a nonzero value of the Chern invari-
ant is an obstruction to smoothly defining the wave function
throughout the entire torus.”>> Instead, wave functions must
be defined on overlapping “patches,” which are related to
each other by a gauge transformation called a “transition
function.” The Chern number is then related to the winding
number of the phase of the transition function around a non-
contractable path. For the problem studied in this paper, the
Chern number is zero, so there is no obstruction to finding a
transformation of the form (3.3), which makes the wave
functions smoothly defined on a single patch. However, we
will show in this section that if we enforce the fime reversal
constraint

|ul(~ k,— 1)) = Oulk(k, 1)),

Jug(= k= 1)) = = Blug(k,1), (A1)

then a nonzero value of the Z, invariant is an obstruction in
a manner precisely analogous to the Chern number. This con-
straint means that the gauges for the wave functions at +(k, )
are not independent. At the four time reversal invariant
points (k,7)=I;, the allowed transformations of the form
(3.3) are restricted to be symplectic, U,,,(I';) € Sp(N). That a
nonzero value of the Z, invariant A is inconsistent with this
constraint is easy to see because it implies that det{w(k,7)]
=1 for all k and r and Pflw(I";)]=1, so Eq. (3.26) trivially
gives A=0.
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FIG. 6. The torus defined by k and ¢ divided into two patches A
and B. The boundaries of the regions 7; and 7, are shown as well as
the boundary of the shaded region, 7.
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We will now relate the Z, invariant to the winding of the
phase of transition functions relating the wave functions on
different patches. In addition to establishing the connection
between the Z, invariant and the Chern invariant, this ap-
proach will derive a formula for the Z, invariant which ex-
presses it in terms of Berry’s connection and curvature. The
similarity between the Z, invariant and the Chern invariant
has been emphasized by Haldane.® The formulation of the
Z, invariant as an obstruction has also been discussed by
Roy,*” though that work did not establish a formula for the
invariant.

Suppose that we have wave functions obeying (Al) de-
fined smoothly on two patches in the torus labeled A and B
in Fig. 6. In patch A, the wave functions |u}(k,t)), are
smoothly defined everywhere in the upper left and lower
right quadrants of Fig. 6, while for patch B, |u}(k,1))p are
defined in the upper right and lower left quadrants. In the
overlapping regions these different wave functions are re-
lated by a U(2N) transition matrix

|, (k1) 4 = |, (ks 1)),

where m and n are shorthand for s and a. Consider the
change in the U(1) phase of 48 around the closed loop 7, in
Fig. 6,

(A2)

dt T APTV 48],

a7y

1
D=—
Tl

(A3)

This will clearly be an integer because it is equal to the
winding number of the phase of det[4#] around the loop d7,.
If D is nonzero and cannot be eliminated by a gauge trans-
formation, then there is an obstruction to smoothly defining
the wave functions on a single patch. In what follows, we
show that D mod 2 is precisely equal to the Z, invariant
defined in this paper.
From Eq. (A3), we may write

1
D=—0Q¢ dt(A%- A%,

™ a7

(A4)
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where A*=3, ,i(u,|V|u,), and likewise for AZ. Since |u,,), is
smoothly defined in the interior of 7|, we may write it in
terms of Berry’s flux,

jg d{AAzf dr F*.
aT T

1 1

(A5)

This cannot be done for |u,)z, which is not necessarily de-
fined continuously inside 7;. However, it can be related to
Berry’s flux through 7,

jg deBz—jg de%f at AP (A6)
aTy %53 Ty
=— f dr F2 + 3€ de AB. (A7)
) )

Combining these, we thus find the winding number for the
transition function can be expressed as an integral involving
the Berry connection and the Berry curvature,

5|t

The patch labels can be safely removed because F is gauge
invariant, and the line integral is gauge invariant modulo 2. It
is essential that the time reversal constraint (A1) be enforced
for this equation to have meaning. If not, then a gauge trans-
formation on patch B can change the line integral by 1, mak-
ing the formula vacuous. When Eq. (A1) is enforced, an odd
value of D cannot be gauged away because the phases of |u")
and |u'"y cannot be independently changed. Thus, D=1 mod
2 presents an obstruction to defining wave functions on a
single patch.

We now show that this winding number is precisely the
same as the invariant A. To this end, we rewrite A in terms of
the partial polarization P' defined in Eq. (3.11). Using P,
=2PI—PP, we have

A =2[PY(1/2) - P(0)]-[P,(T/2) - P,(0)] mod 2.  (A9)

When Eq. (A1) is enforced, Eq. (3.18) for the partial polar-
ization implies that

d€A—f dr}"]modZ. (A8)

712 712

2[PY(T/2) - P(0)] = 1 dt A.

v

(A10)
Equation (3.4) shows that

P(T/2) - P,(0) = %T f dr F.

712

(A11)

Combining the two terms thus establishes that A=D. The
two terms in Eq. (A8) thus acquire physical meaning: The
line integral gives twice the change in the partial polarization
between r=0 and 7/2, while the surface integral gives the
change in the total polarization.

2. Zeros of the Pfaffian

In Ref. 13, the Z, invariant was introduced by considering
the matrix elements of the time reversal operator,

PHYSICAL REVIEW B 74, 195312 (2006)

myi(k,1) = (ui(k,1)|Olu,(k,1)). (A12)

This should be contrasted with the matrix w;;(k,) introduced
in Sec. III, which can be generalized as a function of 7 to be

wij(k,1) = (= k= )| Ol (k. 1) (A13)

At the four time reversal invariant points (k,r)=I";,34
=(0,0), (7,0), (0,7/2), (m,T/2), w;; and m; coincide, but
in general they are different. w;; is unitary with |det[w]|=1,
while m;; is not unitary. Since 02=-1, m;; is antisymmetric.
The Pfaffian of m is therefore defined for all k and . In Ref.
13, we argued that the Z, invariant could be determined by
counting the number of zeros of the Pfaffian in half the torus,
modulo 2.

To establish the equivalence of this with Eq. (3.25), we
begin by rewriting the time reversal polarization P, in terms
of Pf{m(k,t)]. The key observation to be made is that

Pi{m(k.1)]
detlw(k,t) | = ———, Al4
cllwln)])= e P (A14)
which can be proved by noting that m(—k,—t)

=w(k,t)m(k,t)*w(k,f)” and using the identity Pf{XAX']
=det[X]Pf[A]. Introducing p(k)=Pf[m(k,t")] for £'=0,T/2,
it follows that logdet{w(k,t")]=log p(k)—log p(~k)*
=i Im[log p(k)+log p(=k)]. Thus we may rewrite Eq. (3.23)
as

[ -2 27
Pg—zmljo dkV [log p(k) +log p(- k)] 210g(p(0) ],

(A15)

where we have used the coincidence of w and m at k=0 and
ar, along with the fact that [p(0)|=|p(s)|=1. This may be
simplified further by changing variables k— —k in the middle
term and writing the last term as an integral from O to .
This gives

1 m
Py= 2—[ dk V; log Pflm(k,0)] mod 2, (A16)
mi)_,

where the integral is now over the closed loop =0, —7m<<k
<. This expression is only defined modulo 2 because of the
ambiguity of the imaginary part of the log in Eq. (A15).

Thus, we have established that P, is given by the phase
winding of the Pfaffian, p(k) around the 1D Brillouin zone
modulo 2. While this quantity is not gauge invariant, the
change in it due to continuous evolution between =0 and
T/2 is gauge invariant. This defines the Z, topological invari-
ant, which, as in Ref. 13, may be written

1
— dt V log Pf{m(k,1)] mod 2,

TS omyp

(A17)

where d7y,, is the boundary of half the torus defined by —7
<k<aand 0<r<T/2 (see Fig. 6). If Pf{m(k,?)] has point
zeros, then this quantity counts the number of zeros in 7,
modulo 2.
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