
Numerical method for determination of the NMR frequency of the single-qubit operation
in a silicon-based solid-state quantum computer

H. T. Hui
School of Information Technology and Electrical Engineering, University of Queensland, QLD 4072, Australia

�Received 31 May 2006; revised manuscript received 18 September 2006; published 8 November 2006�

A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor �31P�
doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been
suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation
of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally
applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To
realize the selection function, it is required to know the relationship between the applied electric field and the
change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions
obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the
donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the
perturbed system under the influence of an electric field. In order to calculate the potential distributions inside
the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green’s
functions and solve an integral equation by the moment method. This enables us to consider more realistic,
arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we
have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the
donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.
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I. INTRODUCTION

Quantum computers have been proposed to possess enor-
mous computation power over conventional computers for
certain types of problems.1 Since then, a large amount of
research interest has been found in the realization and design
of quantum computers.2–9 Recently, the realization of quan-
tum computers by solid-state materials has gained consider-
able attention because of the possibility of designing scalable
quantum computers. Proposals have been found on realizing
the qubit �the basic operation unit in a quantum computer�
using nuclear spins in atoms4–6 and electron spins in quan-
tum dots.7 In 1998, Kane4 proposed to use the nuclear spin of
a phosphorus atom �31P� embedded in a silicon substrate as a
qubit for quantum computing. In Kane’s original idea, the
operation of the qubit is achieved by a combination of the
rotation of the phosphorus nuclear spin through a globally
applied magnetic field and the selection of the phosphorus
nucleus through a locally applied electric field. The local
electric field is applied through a metallic gate, called the A
gate, which is a metallic strip laid on top of the silicon sub-
strate. As the magnetic field is applied globally, all the phos-
phorus nuclei �qubits� in the quantum computer will be af-
fected. Hence it is important to be able to bring only a
specific phosphorus nucleus into magnetic resonance with
the magnetic field, i.e., the addressing function. This address-
ing function is accomplished by applying a voltage to the A
gate to change the nuclear magnetic resonance �NMR� fre-
quency of the phosphorus nucleus. The applied voltage
changes the hyperfine interaction between the phosphorus
nucleus and the outer valence electron. This in turn changes
the magnetic resonance frequency of the nucleus. Therefore
it is important to know the relationship between the applied
voltage on the A gate and the change of the NMR frequency.
To obtain this relationship is actually divided into two prob-

lems. The first is to obtain the wave functions of the donor
electron, and the second is to determine the potential distri-
bution inside the silicon substrate. Research on the first prob-
lem started several decades ago from Kohn and Luttinger’s
effective-mass theory.10–13 In order to obtain the correct
value of the wave function at the donor nucleus, Kohn13

introduced a “central-cell correction” technique. Subsequent
modifications14–17 to the effective-mass theory have greatly
improved its accuracy in calculating the energy levels. How-
ever, to obtain the accurate values of the wave functions at
the donor nucleus still posed a challenging problem. To
tackle the second problem, several attempts have been re-
ported in the literature.4,18–20 Kane4 obtained the potential
distribution due to the voltage on the A gate and its relation-
ship to the nuclear magnetic resonance frequency by follow-
ing estimates of Kohn of shallow donor Stark shifts in
silicon.13 Larionov et al.18 considered simplified A gate ge-
ometries and obtained an analytical expression for the poten-
tial function. Kettle et al.19 used a computer-aided design
�CAD� tool to model the qubit structure as a two-
dimensional �2D� device and Koiller et al.20 considered a
uniform potential distribution.

In this study, we will address both these problems. To
tackle the first problem, we introduce an empirical correction
factor to the wave functions obtained by Ning and Sah16 at
the donor nucleus. This correction factor accounts for the
rapid fluctuation of the wave functions from their �averaged�
values at the donor nucleus predicted by the effective-mass
theory. To tackle the second problem, we use the multilay-
ered Green’s functions and solved an integral equation by the
moment method.21 We use the complex image method22 to
calculate the spatial domain Green’s functions from the spec-
tral domain multilayered Green’s functions, and this enables
us to consider more realistic, arbitrary shape, and three-
dimensional �3D� structured A gates. Using the corrected
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wave functions and the numerical values of potential distri-
bution, we are able to formulate a first-order perturbation
theory for the perturbed system under the influence of an
electric field. Results obtained on the change of the NMR
frequency due to the applied voltage on the A gate will be
compared with those obtained by previous approximation
methods.

II. FIRST-ORDER PERTURBATION THEORY FOR THE
DONOR ELECTRON WAVE FUNCTION UNDER

THE INFLUENCE OF THE GATE VOLTAGE

Consider the structure of the single qubit proposed by
Kane4 as shown in Fig. 1. It is a phosphorus atom �isotope
31P� doped in a silicon substrate �isotope 28Si�. On top of the
silicon substrate is an insulating layer of silicon dioxide. Be-
low the silicon substrate is a grounding layer at 0 potential.
On top of the silicon dioxide layer is a metallic strip, called
the A gate, with a control voltage V. The electron cloud of
the phosphorus atom can be drifted by applying a voltage on
the A gate. The drift of the electron cloud can change the
hyperfine interaction between the phosphorus nucleus and
the outermost valence electron, and hence can change the
nuclear magnetic resonance frequency of phosphorus. The
Hamiltonian equation for the electron wave function is given
by

H�� = E���, �1�

where the total Hamiltonian H is

H = H0 + HV = H0 + eV . �2�

In Eq. �2�, H0 is the Hamiltonian of the donor �phosphorus
31P� electron inside the silicon substrate, HV is the additional
electron Hamiltonian due to the potential V excited by the
voltage on the A gate, and e is the electron charge. Larionov
et al.18 has attempted to solve Eq. �2� by using the perturba-
tion theory under idealistic assumptions. In the following
analysis, we treat eV as a perturbation to the unperturbed
system described by H0.

A. Wave functions of the phosphorus „

31P… donor electron in a
silicon host from the effective-mass theory

Using the effective-mass theory proposed by Kohn and
Luttinger10–13 and the subsequent modifications by several
authors,14–17 the problem of the unperturbed system, i.e., a

phosphorus donor atom in the silicon host, can be solved.
Particularly, the donor energy levels can be obtained accu-
rately and the donor electron wave function can be predicted
accurately outside the donor nucleus.16 In this study, we use
the results obtained by Ning and Sah16 on the electron wave
functions. But we note that although these wave functions
can yield very accurate results on energy levels, they fail to
indicate the strength of the hyperfine interaction between the
donor electron and the phosphorus nucleus, i.e., the value of
the magnitude square of the wave function at position of the
phosphorus nucleus ��A1

�0��2, where the A1 subscript indi-
cates the ground state of phosphorus in silicon. Actually this
value is only about 44% of the experimental value.23,12

Hence, we need to make a modification to these wave func-
tions at the position of the donor nucleus in order to calculate
the hyperfine interaction accurately at this position. Accord-
ing to the effective-mass theory,13 the electron wave func-
tions ��r� for the unperturbed phosphorus in silicon consist
of two parts, the Bloch wave function ��k ,r� and the hydro-
genic wave function F�r�. That is,

�A1
�r� =

1
�6

FA1

1s �r����kx,r� + ��− kx,r� + ��ky,r� + ��− ky,r�

+ ��kz,r� + ��− kz,r�� , �3�

�2s�r� =
1
�6

F2s�r����kx,r� + ��− kx,r� + ��ky,r� + ��− ky,r�

+ ��kz,r� + ��− kz,r�� , �4�

�3s�r� =
1
�6

F3s�r����kx,r� + ��− kx,r� + ��ky,r� + ��− ky,r�

+ ��kz,r� + ��− kz,r�� , �5�

where the hydrogenic wave functions are, respectively,

FA1

1s �r� =
1

��
� 1

aA1

�3/2

e−r/aA1, �6�

F2s�r� =
1

4�2�
� 1

a*�3/2�2 −
r

a*�e−r/2a*
, �7�

F3s�r� =
1

81�3�
� 1

a*�3/2	27 − 18
r

a* + 2� r

a*�2
e−r/3a*
. �8�

The Bohr radii, aA1
and a*, in these hydrogenic wave func-

tions were obtained by a variational method16 to minimize
the energy levels. Their values are

aA1
= 23.1 a.u. = 12.22 � 10−10 m, �9�

a* = 39.7 a.u. = 21.00 � 10−10 m. �10�

Note that we have not listed the other two 1s state wave
functions, i.e., the 1s�E� and the 1s�T2� states. These two
states are orthogonal to the 1s�A1� state by means of the
Bloch wave functions associated with them, and hence they
have no contribution to the first-order perturbation terms.
Also we will not consider the valley-orbit splitting of the 2s

FIG. 1. The single-qubit structure of the silicon-based solid-state
quantum computer proposed by Kane �Ref. 4�.
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or 3s state as the splitting is not of a significant type as that
in the 1s state.13 All the 2p and 3p wave functions have no
contribution at the donor site, and hence they are not consid-
ered. We also ignore all excited states higher than n=3 as
their contributions are negligible.

As noted by Ning and Sah,16 the effective-mass theory is
correct only outside the central-core region, i.e., for r�Rz
=6.79�10−11 m. This is due to the inability of the effective-
mass theory to model the rapidly fluctuating donor potential
accurately near the donor nucleus, i.e., r�Rz. Currently, a
viable theory that can accurately predict the wave function
inside the central-core region is still lacking. But in view of
the accurate predictions of the energy levels and the values
of the wave function outside the central-core region by the
effective-mass theory, we use a correction factor c to account
for the rapid fluctuation of the wave functions from their
�averaged� values at the donor nucleus r=0 predicted by the
effective-mass theory. This correction factor is obtained by

c =
measured value of ��A1

�0��2

value of ��A1
�0��2 based on the effective-mass theory

= 1.54. �11�

We assume that this correction factor applies also to the ex-
cited states. The use of this correction factor is to be justified
from a comparison with the results obtained by other meth-
ods.

B. First-order perturbation theory

With the wave functions �Eqs. �3�–�8�� of the unperturbed
system H0, we can solve Eq. �1� using the perturbation
theory. We write Eq. �2� as

H = H0 + �W , �12�

where �W=eV represents a small perturbation and

H0�n = En�n, �13�

where �n and En are, respectively, the wave function and the
energy of the n state of the unperturbed system. Consider the
first-order perturbation to the ground state �A1

�0�. We obtain
the ground-state wave function ��A1

�0,V� of the perturbed
system as

��A1
�0,V�

� c�A1
�0�

+
HV2sA1

− HVA1A1
��2s�r���A1

�r�


�EA1
− E2��1 − ��A1

�r���2s�r�
��2s�r���A1
�r�
�

�c�2s�0�

+
HV3sA1

− HVA1A1
��3s�r���A1

�r�


�EA1
− E3��1 − ��A1

�r���3s�r�
��3s�r���A1
�r�
�

c�3s�0� .

�14�
The various terms and symbols in Eq. �14� are given in Ap-
pendix A. Note that the 2s and 3s states are no longer or-
thogonal to the 1s�A1� state because they use different Bohr

radii �Eqs. �9� and �10��. As shown in Appendix A, the terms
��2s�r� ��A1

�r�
 and ��3s�r� ��A1
�r�
 are independent of the

voltage on the A gate and can be evaluated numerically. Us-
ing their numerical values and the values of the wave func-
tions at the donor nucleus position �A1

�0�, �2s�0�, and
�3s�0�, we can simplify Eq. �14� as follows:

���A1
�0,V��2 � 4.4 � 1029 + �HV2sA1

− 0.71HVA1A1
�21.2

� 1069

+ �HV3sA1
− 0.27HVA1A1

�28.1 � 1067 + �HV2sA1

− 0.71HVA1A1
�4.5 � 1049 + �HV2sA1

− 0.71HVA1A1
��HV3sA1

− 0.27HVA1A1
�6.2

� 1068 + �HV3sA1
− 0.27HVA1A1

�1.2 � 1049.

�15�

Once ���A1
�0,V��2 is known, the hyperfine interaction con-

stant Ah is found by18

Ah�V� =
2

3
���A1

�0,V��2	BgN	N	0, �16�

where 	B is the Bohr magnetron, gN is the nuclear g factor
for 31P, 	N is the nuclear magnetron, and 	0 is the perme-
ability of silicon. When the donor electron is in the ground
state, the NMR frequency f is given by �to the second-order
accuracy�4,19

hf = 2gN	NB + 2Ah�V� +
2Ah

2�V�
	BB

, �17�

where h is the Planck’s constant and B is the applied static
magnetic field.

C. Calculation of the potential inside the silicon and silicon
dioxide layers due to the gate voltage

To calculate the various perturbation terms in Eq. �14�, we
need to know the potential V�r� due to the applied voltage at
the A gate �see Appendix A�. There have been several
attempts4,18–20 to calculate this potential as mentioned in the
Sec. I. In our current study, we shall solve the Poisson’s
equation for an arbitrary 3D A gate structure using the mul-
tilayered Green’s functions.24 In order to simulate the infi-
nitely long structure of the strip in one direction, the method
we use is to first assume a finite-length strip and then vary
the length until the effect of the length is negligible on the
nuclear magnetic resonance frequency of the donor. The
multilayered Green’s functions for qubit structure shown in
Fig. 1 are obtained from the work of Li et al.24 and are given
in Appendix B. In our numerical calculations, these Green’s
functions are used to formulate an integral equation which is
then solved using the moment method21 �see Appendix B�.

III. RESULTS AND DISCUSSIONS

A. The potential variation

We first validate the numerical method used to calculate
the potential V�r�. For this, we calculate the capacitance be-
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tween two square parallel plates separated by a dielectric
medium. The results are shown in Fig. 2 and compared with
the results obtained by Itoh et al.25 The square plates are with
a side length W and separation b. Two cases of the dielectric
constant for the dielectric medium have been calculated, 
r
=1.0 and 
r=9.6. As can be seen, our results are in good
agreement with those in the literature.

As we mentioned earlier, we model the infinitely long
strip by a finite-length strip. We therefore need to know how
long is the strip that approximately gives the same potential
at the donor site as an infinitely long strip. We first simplify
the A gate geometry to a rectangular shape with a same width
as the strip and hence merged with the strip. This is the most
common assumption in the previous studies4 and we shall
only consider this gate structure in all the following studies,
although other gate structures can also be easily modeled by
our method. Figure 3 shows the calculated potential profiles
in the silicon and silicon dioxide layers along the z direction
with different strip lengths. The dimensions and parameters
�see Fig. 1� are s=5 nm, b=60, W=7 nm, 
r of silicon
=11.46, and 
r of silicon dioxide=3.9. The potentials are
obtained along a line in the z direction at x=20 nm and y
=0. Three cases of strip lengths are shown: L=35 nm, L

=70 nm, and L=140 nm. It can be seen that the potential
profiles for the cases of L=70 nm and L=140 nm have little
difference. Hence in the following studies, we will assume a
strip length of L=70 nm.

The choice of the silicon layer thickness of 60 nm and
silicon dioxide layer thickness of 5 nm was typically re-
ported in previous studies.19 It was also reported that both
the silicon and the silicon dioxide layer thicknesses have a
significant effect on the potential profiles in these two layers.
Figures 4 and 5 show the differences in potential profiles for
different silicon dioxide and silicon layer thicknesses. The
potential profiles are obtained along the z direction at x
=20 nm and y=0. From Fig. 4, it can be seen that with a
silicon layer thickness of 60 nm, the potential profiles for
different silicon dioxide layer thicknesses are very different.
Assuming the donor site is at x=20 nm, y=0, and z
=40 nm in the silicon layer, the difference of potential at the
donor site for silicon dioxide layer thickness of 5 nm and
1 nm is about 0.08 V. This is quite significant as the poten-
tial for the 5 nm case is only about 0.13 V while the poten-
tial for the 1 nm case is about 0.21 V. Furthermore, with a
silicon dioxide layer thickness of 1 nm, the potential dropped
across the silicon layer is about 80% of the gate voltage.
However, when the silicon dioxide layer is 5 nm, the poten-
tial dropped across the silicon layer is only about 40% of the

FIG. 2. Comparison of the calculated normalized capacitance of
two square parallel plates by using the multilayered Green’s func-
tions and that obtained by Itoh et al. �Ref. 25�. The square plates are
with a side length of W and separation of b and separated by a
dielectric medium with a dielectric constant 
r.

FIG. 3. Variation of the potential profile along the z direction at
x=20 nm and y=0 in the silicon and silicon dioxide layers with
different strip lengths. s=5 nm, b=60 nm, W=7 nm, 
r of silicon
=11.46, and 
r of silicon dioxide=3.9.

FIG. 4. Variation of the potential profile along the z direction at
x=20 nm and y=0 in the silicon and silicon dioxide layers with
different silicon dioxide thicknesses. b=60 nm, L=70 nm, W
=7 nm, 
r of silicon=11.46, and 
r of silicon dioxide=3.9.

FIG. 5. Variation of the potential profile along the z direction at
x=20 nm and y=0 in the silicon and silicon dioxide layers with
different silicon thicknesses. s=5 nm, L=70 nm, W=7 nm, 
r of
silicon=11.46, and 
r of silicon dioxide=3.9.
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gate voltage. However, fabrication of a 1 nm silicon dioxide
layer on top of a silicon substrate is more challenging than a
5 nm one.26 On the other hand, when changing the silicon
layer thickness, the difference of the potential in the donor
site is not as significant as changing the silicon dioxide layer
thickness. Assuming the donor site is at x=20 nm, y=0, and
is 20 nm from the silicon dioxide interface in the z direction.
From the results shown in Fig. 5, with a silicon dioxide layer
thickness of 5 nm, the difference in potential at the donor
site with a silicon layer thickness of 40 nm and 120 nm is
about 0.06 V while the potential at the donor site with a
silicon layer thickness of 120 nm is about 0.16 V. Hence the
change of potential from 120 nm to 40 nm is about 38%.

B. The NMR frequency

Now we use Eqs. �15�–�17� to determine the NMR fre-
quency f of the donor under the influence of the gate voltage.
We first evaluate the various perturbation terms in Eq. �15�,
i.e., HVA1A1

, HV2sA1
, and HV3sA1

. As shown in Appendix A,
these three terms can be calculated numerically. In the nu-
merical calculation of these terms �see Eqs. �A1�–�A3� in
Appendix A�, we assume the integration volume V0 to be a
finite cube centered on the donor nucleus. We find that the
volume of this cube can be much smaller than the silicon
substrate. Figure 6 shows the convergence of the nuclear
magnetic resonance frequency f with respect to the cube
size. The donor site is at x=20 nm, y=0, and z=40 nm. The
other dimensions and parameters are s=5 nm, b=60 nm, L
=70 nm, W=7 nm, 
r of silicon=11.46, 
r of silicon
dioxide=3.9, and the applied static magnetic field B=2 T. As
seen from Fig. 6, convergence is achieved at about a
=11 nm, where a is the half-side length of the cube. Hence,
we will use a cube size with a half-side length of 13.85 nm
in the subsequent studies �compared with the length of a unit
cell of silicon of 0.543 nm�. With this cube size, the NMR
frequency is found to be f =44.4 MHz.

Figure 7 shows the change of the NMR frequency f with
the gate voltage. The donor site is at the same position as in
Fig. 6 and all other dimensions and parameters are also the

same. The results obtained by Kane4 and Kettle et al.19 have
also been shown in Fig. 7 for comparison. Kane’s result was
obtained by following estimates of Kohn of shallow donor
Stark shifts in silicon13 while the result of Kettle et al. was
obtained based on computer simulation of a 2D structure. It
can be seen that our result shows a much greater hyperfine
interaction than that of Kettle et al. but a slightly smaller
hyperfine interaction than Kane’s result. Note that our result
is very close to Kane’s result near 0 V and 1 V.

As shown earlier, the thicknesses of the silicon and silicon
dioxide layers have a quite significant effect on the potential
at the donor site. Here we further investigate the effect on the
NMR frequency. As shown in Fig. 8, we see that the effect
on the NMR frequency is indeed quite significant. The reso-
nance frequency �the curve referring to the left vertical axis�
changes from 36.6 MHz when thickness of the silicon diox-
ide layer is 1 nm to 44.4 MHz when the thickness is 5 nm.
On the other hand, when the thickness of the silicon layer is
40 nm, the resonance frequency is 51.5 MHz �the curve re-

FIG. 6. Convergence of the nuclear magnetic resonance fre-
quency with respect to the cube size used in the numerical calcula-
tion to obtain the perturbation terms. The donor site is at x
=20 nm, y=0, and z=40 nm. s=5 nm, b=60 nm, L=70 nm, W
=7 nm, 
r of silicon=11.46, 
r of silicon dioxide=3.9, and the
applied static magnetic field B=2 T.

FIG. 7. The change of the nuclear magnetic resonance fre-
quency with the gate voltage. The donor site is at x=20 nm, y=0,
and z=40 nm and the applied static magnetic field B=2 T. s
=5 nm, b=60 nm, L=70 nm, W=7 nm, 
r of silicon=11.46, and 
r

of silicon dioxide=3.9.

FIG. 8. The variations of the nuclear magnetic resonance fre-
quency with the thicknesses of the silicon �Si� and silicon dioxide
�SiO2� layers. For the variation of the thickness of the silicon layer,
the thickness of the silicon dioxide layer is fixed at s=5 nm, and the
donor site is at x=20, y=0, and z being 20 nm from the Si/SiO2

interface. For the variation of the thickness of the silicon dioxide
layer, the thickness of the silicon layer is fixed at b=60 nm, and the
donor site is at x=20, y=0, and z=40 nm. The applied static mag-
netic field B=2 T and the other dimensions and parameters are L
=70 nm, W=7 nm, 
r of silicon=11.46, 
r of silicon dioxide=3.9.
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ferring to the right vertical axis�. But when the thickness of
the silicon layer is increased to 120 nm, the resonance fre-
quency is reduced to 39.6 MHz. Hence a thinner silicon di-
oxide layer and a thicker silicon layer will tend to increase
the hyperfine interaction and result in a greater control on the
NMR frequency.

Finally, we study the effect of misplacing the donor at a
slightly different position from its default position at x
=20 nm, y=0, and z=40 nm �see Fig. 1 for the position of
the coordinate system�. The dimensions and parameters of
the qubit structure are s=5 nm, b=60 nm, L=70 nm, W
=7 nm, 
r of silicon=11.46, 
r of silicon dioxide=3.9, and
the applied static magnetic field B=2 T. The results are
shown in Fig. 9. When varying the donor site along the x
axis, we fix the y and z coordinates of the donor are at 0 and
40 nm, respectively. It can be seen �the curve referring to the
left vertical axis� that the change in resonance frequency is
quite significant when the donor moves closer to the open
end �x=0�. The change in resonance frequency with the do-
nor at x=20 nm and x=0 is about 19%. Next we vary the
donor site along the y axis the x and z coordinates of the
donor site fixed at 20 and 40 nm, respectively. The result �the
curve referring to the right vertical axis� demonstrates a limi-
tation to the placement of adjacent single qubits. We see that
the difference in resonance frequency with the donor site at
y=0 �immediately under the A gate� and y=20 nm is only
about 19%. This may suggest that a separation of 20 nm
between adjacent qubit is not enough and an even wider
separation is required.

IV. CONCLUSIONS

In this paper, we introduced a numerical method to deter-
mine the NMR frequency of a donor �31P� doped inside a
silicon substrate under the influence of an applied electric
field. This phosphorus donor has been suggested for operat-
ing as a qubit for the realization of a solid-state scalable
quantum computer. Based on the effective-mass theory and
the variational method proposed by Ning and Sah,16 we ob-
tained a set of corrected wave functions for donor. Using the
corrected wave functions at the donor site, we formulated a

first-order perturbation theory for the perturbed system under
the influence of an electric field. In order to calculate the
potential distributions inside the silicon and the insulating
silicon dioxide layers due to the voltage on the A gate, we
used a numerical method to solve an integral equation for-
mulated using the multilayered Green’s functions. This en-
ables us to consider arbitrary shape and 3D-structured A
gates and the potential distributions can be obtained in an
accurate manner. Using this method, we have investigated
the potential distributions inside the silicon and silicon diox-
ide layers. We have also investigated the effects of the thick-
nesses of silicon and silicon dioxide layers, the relative po-
sition of the donor, and the applied gate voltage on the NMR
frequency of the donor. Our method provides a potential
analysis and design tool for Kane’s quantum computer.

APPENDIX A: THE VARIOUS TERMS AND SYMBOLS
IN EQ. (14)

The various terms and symbols in Eq. �14� are given as
follows:

HVA1A1
= ��A1

�r��HV��A1
�r�
 =� � �

V0

1
�6

FA1

1s*
�r�

1
�6

FA1

1s �r�eV�r���*�kx,r� + �*�− kx,r� + �*�ky,r� + �*�− ky,r� + �*�kz,r�

+ �*�− kz,r�����kx,r� + ��− kx,r� + ��ky,r� + ��− ky,r� + ��kzr� + ��− kz,r��dr

� �
m=1

N
1
�6

FA1

1s*
�rm�

1
�6

FA1

1s �rm�eV�rm�� � �
�

��*�kx,r� + �*�− kx,r� + �*�ky,r� + �*�− ky,r� + �*�kz,r� + �*�− kz,r�� ·

���kx,r� + ��− kx,r� + ��ky,r� + ��− ky,r� + ��kz,r� + ��− kz,r��dr

= �
m=1

N
1
�6

FA1

1s*
�rm�

1
�6

FA1

1s �rm�eV�rm� · � · 6 = ��
m=1

N

FA1

1s*
�rm�FA1

1s �rm�eV�rm� , �A1�

FIG. 9. The variations of the nuclear magnetic resonance fre-
quency with positions of the donor change along the x and y axes.
For the variation of the donor site along the x axis, the y and z
coordinates of the donor are at 0 and 40 nm, respectively. For the
variation of the donor site along the y axis, the x and z coordinates
of the donor are at 20 and 40 nm, respectively. The applied static
magnetic field B=2 T and the other dimensions and parameters are
s=5 nm, b=60 nm, L=70 nm, W=7 nm, 
r of silicon=11.46, and

r of silicon dioxide=3.9.

H. T. HUI PHYSICAL REVIEW B 74, 195309 �2006�

195309-6



where � is the volume of the unit cell of silicon, N is the
number of unit cells in the silicon layer �volume=V0�, and
rm is the coordinate of the center of the mth unit cell. In
simplifying the result in Eq. �A1�, we have assumed that the
hydrogenic wave function FA1

1s �r� and the potential function
V�r� due to the gate voltage are slow-varying functions and
almost constant within a unit cell. The Bloch wave functions
are orthonormalized as indicated by Kohn.13 Once the poten-
tial V�rm� due to the gate voltage is known, Eq. �A1� can be
evaluated by numerical summation.

In a similarly way, we have

HV2sA1
= ��2s�r��HV��A1

�r�
 � ��
m=1

N

F2s
* �rm�FA1

1s �rm�eV�rm� ,

�A2�

HV3sA1
= ��3s�r��HV��A1

�r�
 � ��
m=1

N

F3s
* �rm�FA1

1s �rm�eV�rm� ,

�A3�

The terms ��2s�r� ��A1
�r�
 and ��3s�r� ��A1

�r�
 in Eq. �14�
are independent of the gate voltage and can be evaluated
numerically. That is,

��2s�r���A1
�r�
 = ��A1

�r���2s�r�


� �
m=1

N
1
�6

F2s
* �rm�

1
�6

FA1

1s �rm� · � · 6

= ��
m=1

N

F2s
* �rm�FA1

�rm�

=� � �
V

F2s
* �r�FA1

1s �r�dr = 0.71 �A4�

and

��3s�r���A1
�r�
 = ��A1

�r���3s�r�
 � 0.27. �A5�

The ground-state energy EA1
in Eq. �14� is obtained by the

variation method �Ning and Sah16� and is equal to
45.47 meV with respect to the conduction band minimum.
The excited energies E2 and E3 are calculated as hydrogenic
energy levels with a Bohr radius given by Eq. �10�. Their
values are 7.5 meV and 3.3 meV, respectively, with respect
to the conduction band minimum.

APPENDIX B: THE GREEN’S FUNCTIONS FOR THE
SILICON AND SILICON-DIOXIDE QUBUIT STRUCTURE

The Green’s functions listed here are for a three-layered
structure with the source placed in the interface between the
second and third layers. Layer 1 is the silicon substrate, layer
2 is the insulating layer of silicon dioxide, and layer 3 is the
space above the silicon dioxide layer. The field coordinates
�x ,y ,z� and the source coordinates �x� ,y� ,z�� are referring to
local coordinate systems within each layer.24 The various
Green’s functions are expressed in terms of a spectral do-
main kernel, which can be numerically approximated by us-
ing Prony’s method, and the spatial Green’s function are ob-
tained by using the complex image method.22 The three-
layered Green’s functions are listed below.

G13�x,y,z�x�,y�,z�� =
1

�2��2�
−�

� �
−�

�

G̃13�kx,ky,z,z��

exp�− jkx�x − x���

�exp�− jky�y − y���dkxdky , �B1�

where the spectral domain kernel is


 = �kx
2 + ky

2, G̃13�kx,ky,z,z�� ,=� 1


0

�


r2 sinh�
z�
sinh�
h1�sinh�
h2�


r2
r3 + 
r2
r3 coth�
h2� + 
r1
r3 coth�
h1� + 
r1
r2 coth�
h1�coth�
h2�
, �B2�

where G13�x ,y ,z �x� ,y� ,z�� is the Green’s function representing the potential inside layer 1 due to a unit charge in layer 3. The
other two Green’s functions are

G23�x,y,z�x�,y�,z�� =
1

�2��2�
−�

� �
−�

�

G̃23�kx,ky,z,z��exp�− jkx�x − x���exp�− jky�y − y���dkxdky , �B3�

where

G̃23�kx,ky,z,z�� = � 1


0

�


r1 coth�
h1�sinh�
z� + 
r2 cosh�
z�
sinh�
h2�


r2
r3 + 
r2
r3 coth�
h2� + 
r1
r3 coth�
h1� + 
r1
r2 coth�
h1�coth�
h2�
. �B4�

Finally, the Green’s function representing the potential inside layer 3 due to a unit charge in layer 3 is given by,
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G33�x,y,z�x�,y�,z�� =
1

�2��2�
−�

� �
−�

�

G̃33�kx,ky,z,z��exp�− jkx�x − x���exp�− jky�y − y���dkxdky , �B5�

where

G̃33�kx,ky,z,z�� = � 1


0

� 
r1 coth�
h1� + 
r2 coth�
h2�


r2
r3 + 
r2
r3 coth�
h2� + 
r1
r3 coth�
h1� + 
r1
r2 coth�
h1�coth�
h2�
. �B6�

With these Green’s functions, the charge distribution Q�x� ,y�� on the strip and the A gate due to a unit voltage on strip and the
A gate can be obtained by solving the following integral equation using the moment method:21

1 =� �
S

G33�x,y,0�x�,y�,0�Q�x�,y�,z��dx�dy�, �B7�

where S is the area of the strip and the A gate. Once Q�x� ,y�� is known, the potentials due to a 1 V voltage on the strip and
the A gate can be evaluated as

V13�x,y,z� =� �
S

G13�x,y,z�x�,y�,0�Q�x�,y��dx�dy�, in layer 1 �B8�

V23�x,y,z� =� �
S

G23�x,y,z�x�,y�,0�Q�x�,y��dx�dy�, in layer 2 �B9�

V33�x,y,z� =� �
S

G33�x,y,z�x�,y�,0�Q�x�,y��dx�dy�, in layer 3. �B10�
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