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We consider the electrical current through a magnetic point contact in the limit of a strong inelastic scatter-
ing of electrons. In this limit local Joule heating of the contact region plays a decisive role in determining the
transport properties of the point contact. We show that if an applied constant bias voltage exceeds a critical
value, the stationary state of the system is unstable, and that periodic, nonharmonic oscillations in time of both
the electrical current through the contact and the local temperature in the contact region develop spontaneously.
Our estimations show that the necessary experimental conditions for observing such oscillations with charac-
teristic frequencies in the range 108–109 Hz can easily be met. We also show a possibility to manipulate upon
the magnetization direction of a magnetic grain coupled through a point contact to a bulk ferromagnet by
exciting the above-mentioned thermal-electric oscillations.
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I. INTRODUCTION: JOULE HEATING AND
CURRENT-INDUCED INSTABILITIES IN

MAGNETIC NANOCONTACTS

Electric transport in mesoscopic magnetic structures has
become a hot topic of modern solid-state physics research.
One reason for this is the prospect for exploiting not only the
charge of the electron but also its spin degree of freedom for
electronics �“spintronics”�.

An interplay between macroscopic magnetic degrees of
freedom and the electron spin has already been discovered in
the giant magnetoresistance �GMR� effect.1,2 This is a spin-
dependent tunneling phenomenon that quickly found impor-
tant practical applications in data storage devices. As one
shrinks the dimensions of a magnetic material toward the
nanometer scale a new, to some extent inverse, phenomenon
occurs since a high-density electric current is able to affect
the magnetic order.3,4 A current-induced precession and
switching of magnetization has indeed been observed in a
number of experiments on magnetic layers and point
contacts.5–10

Recently11 a correlation was observed between the mag-
nitude of a spin-torque effect and electronic scattering in a
point contact between a normal and a ferromagnetic metal.
Using the method of point-contact spectroscopy it was
proven that elastic backscattering of electrons plays a crucial
role in the transfer of magnetization between differently
magnetized regions of the ferromagnet. This observation also
raises the question of the role of inelastic scattering of elec-
trons, including scattering by magnons, in magnetotransport
since elastic scattering also shortens the inelastic diffusion
length making the transport of heat away from the point
contact less effective.

An advantage of using electrical point contacts for switch-
ing the direction of magnetization is the possibility to locally
achieve extremely high current concentrations of up to
9–10 A/cm2. Such high current densities are just what is
needed for inducing magnetization dynamics. However,

there is a restriction due to Joule heating that limits the pos-
sibility to increase the current density much further. This is
because thermal heating eventually destroys the contact.
Nevertheless, for not too high temperatures, a special revers-
ible point-contact transport regime arises in which electric
and thermal transport processes leads to a spatial distribution
of electric field and temperature that allows the temperature
in the point contact to be controlled electrically.12–14 Heating
may, however, significantly affect the resistivity of the mate-
rial creating a nonlinear point-contact transport regime. As
we will show below, such a nonlinear response to an applied
dc voltage can lead to an electrical instability and to time
dependent �oscillatory� transport phenomena.

It is well known that strong Joule heating of a metal can
result in N- or S-shaped current-voltage �I-V� characteristics
containing segments with negative differential conductance
�see, e.g., Ref. 15�. In particular, Joule heating of an antifer-
romagnetic break junction was recently shown to result in an
N-shaped I-V curve.16 This phenomenon takes place if the
balance between the power released in the heated area and
absorbed by the surrounding medium can be satisfied at three
different temperatures �two of them stable and the third un-
stable�. As has been shown theoretically and experimentally,
such a bi-stability in bulk metals at low temperatures results
in spontaneously formed thermoelectric domains,17–21 non-
linear periodic oscillations,22 and filaments23 of high tem-
perature and current in the sample. This effect can be of
prime importance for magnetic point contacts and particu-
larly for those made of ferromagnetic manganites. This is
because the temperature dependence of their conductance is
strong and diverse up to the Curie temperature and above,
which may result in N- or S-shaped I-V characteristics as
well as their combinations.

In the present paper we investigate an electrical instability
caused by Joule heating of a magnetic point-contact junction.
We show that nonharmonic periodic oscillations in time of
the total current and the voltage drop across the Joule-heated
part of the microcontact �as well as the local temperature at
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the contact� appear spontaneously if the voltage bias of the
entire sample is kept constant. This phenomenon takes place
in a wide interval of sample temperatures that includes the
Curie temperature of the ferromagnetic conductor. We also
show that in the latter case the magnetization direction of a
magnetic grain �which is coupled to a bulk ferromagnet
through a point contact� periodically switches from the di-
rection of the bulk ferromagnet to the direction of the exter-
nal magnetic field following periodic heating and cooling of
the point contact under the regime of the thermal-electric
self-exciting oscillations.

II. FORMULATION OF THE PROBLEM

Below we consider the case when the electron relaxation
lengths for both momentum and energy are shorter than the
size of the microcontact �shown in Fig. 1�. Under this con-
dition the thermal and electrical characteristics obey the con-
tinuity equations for the energy

CV
�T

�t
+ div�− ��T� � T� = − ��T�����2 �1�

and the local charge neutrality condition

div j = 0, �2�

while the total current I flowing through the system satisfies
the equation

LdI/dt + RI = V �3�

�see, e.g., Ref. 24�. Here CV is the heat capacity of the metal
per unit volume, T is the temperature, � is the thermal con-
ductivity, � is the electrical conductivity, � is the electric
potential, j=−��T��� is the electrical current density, L is
the total inductance of the circuit, R is the total resistance
�we assume below that the main contribution to R is from the
point contact� and V is the applied bias voltage. In writing
Eq. �1� we neglected the thermopower, which is small by a
factor kBT /�F where kB is the Boltzmann constant and �F is
the Fermi energy.

The boundary conditions for the set of equations �1� and
�2� are determined by the absence of heat and charge trans-
port through the boundaries of the contact. It follows that

jn�r � �� � n · j = 0, jq,n�r � �� � n · jq = 0, �4�

where jq=−��T+�j and n is the normal to the boundary �
of the microcontact. For a symmetric contact one has

��z → ± �� = ±
V

2
; T�z → ± �� = T0. �5�

Here T0 is the temperature of the peripheral regions of the
contact, the z axis is directed along the axis of the contact.

As was shown in Ref. 25 it is mathematically convenient
to use the coordinates u, �, 	 of an oblate ellipsoid for study-
ing the kinetic properties of microcontacts. These coordi-
nates are related to the Cartesian coordinates x, y, z as

x = d0 sin u cosh � cos 	, y = d0 sin u cosh � sin 	 ,

z = d0 cos u sinh � , �6�

where 0
u
�, −�����, 0
	
2, u=�=const at the
boundary � of the microcontact, d0=d / �2 sin �� is the effec-
tive length of the contact, and d is the smallest diameter of
the contact as indicated in Fig. 1.

We assume the contact to be symmetric and hence the
temperature and the electric potential depend only on the
coordinate � and time t. Therefore Eqs. �1� and �2� expressed
in the new coordinates, reduce to

CV
�T

�t
−

1

d0
2 sinh2 � cosh �

�

��
���T�cosh �

�T

��
�

−
��T�

d0
2 sinh2 �

� ��

��
	2

= 0, �7�

�

��
���T�cosh �

��

��
� = 0. �8�

While deriving Eq. �8� we neglected the term cos2u in the
sum sin h2�+cos2u �which arises in the Lame coefficients�.
This is a reasonable approximation if the characteristic size
of the region of Joule heating is large enough.

Integrating Eqs. �7� and �8� and the relation j
=−��T��� over the cross-section area of the sample one
gets a set of equations that describe the space and time evo-
lution of the temperature T�� , t� and the total current I�t� of
a Joule-heated microcontact,

f���CV
�T

�t
−

�

��
���T�

�T

��
� − ��T�I2/l0

2 = 0; �9�

LdI

dt
+ RI = V; R = 
��T�� . �10�

In Eq. �9�, where f���=d0
2 sinh22���� /4 and l0

2=2d0
2�1

−cos ��, we introduced a new variable � that is related to �
through the relation

�

��
= cosh �

�

��
, �11�

while in Eq. �10� and below, angular brackets imply an inte-
gration over �,


¯� =
1

l0
�

−/2

−/2

¯ d� .

FIG. 1. Model of a microcontact whose transport properties are
discussed in the text.
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III. NEGATIVE DIFFERENTIAL RESISTANCE AND
STABILITY OF THE STATIONARY TEMPERATURE

AND CURRENT IN A JOULE-HEATED MICROCONTACT

The set of equations �9� and �10� subject to the boundary

conditions �5� always have steady-state solutions I= Ī�V� and

T= T̄�V ,�� that satisfy the stationary equations

−
�

��
���T̄�

�T̄

��
� − ��T̄�Ī2/l0

2 = 0, �12�

V = RĪ . �13�

According to Refs. 26 and 27 the stationary current-
voltage characteristics of the microcontact is

Ī�V� =
V

R�V�
, R−1�V� =

l0


�

0

1

dx/��Tm�V�1 − x2� ,

�14�

where Tm is the temperature in the center of the microcontact
��=0� and depends on the applied voltage as26,28

Tm
2 = Tbulk

2 +
V2

4L
, �15�

where L=2kB
2 / �3e2� is the Lorentz number. The dependence

of the stationary temperature T̄�V ,�� on the bias voltage V
and the coordinate � is determined by the relation

R�V��
0

��T̄�
dx/�„Tm�V�1 − x2

… =
2�


, �16�

where ��T�=1− �4L /V2��T2−Tbulk
2 �.

Differentiating Eq. �14� with respect to V one sees that the
differential conductance dI /dV is negative if −R�V��VdR−1 /
dV��1. Assuming the resistivity to be ��T�=�0+�1�T�,
where �0 is the residual resistivity and the temperature-
dependent part �1�T�, one finds the differential conductance
to be negative if

��1 − R� � �0

��Tm
1 − x2�

	 dx

��Tm
1 − x2�

� � 1. �17�

If the microcontact is heated to temperatures for which
�1�Tm���0 the inequality �17� reduces to

� � 1 + k
�0

��Tm�
, �18�

where k is a constant of order 1 �k�1�. For many ferromag-
netic metals ��2 and increases as the temperature ap-
proaches the Curie temperature �see, e.g., Ref. 29� and hence
the I-V characteristics of a Joule-heated ferromagnetic mi-
crocontact has sections with a negative differential resistivity
in a wide range of temperatures including the Curie tempera-
tures.

As soon as the microcontact is heated to temperatures
where the differential resistance is negative, the stationary
distribution of temperature and current in the contact may be
unstable.

In order to investigate the stability of the stationary tem-

perature T̄ and current Ī given by Eqs. �16� and �14� we write
the temperature T�t ,�� and the current I�t� as sums of two
terms,

T�t,�� = T̄��� + T1�t,��, I�t� = Ī + I1�t� , �19�

where T1 and I1 are small corrections to the stationary val-
ues. After substituting Eq. �19� into Eqs. �9� and �10� we

obtain a linearized set of equations for �1=��T̄�T1 and I1 of
the form

��1

�t
+ ����Ĥ�1 =

2������T̄�Ī
l0

I1; �20�

L�I1

�t
+ RI1 + �RĪ = 0; �R =� ���T̄�

��T̄�
�1� , �21�

where �=1/ (f���CV�T̄�) and the Hermitian operator is

Ĥ = −
�2

��2 −
Ī2���T̄�

l0
2��T̄�

�22�

�here and subsequently, a prime denotes differentiation with
respect to T�.

As shown in Appendix A the Laplace transformed current

i1�p� = �
0

�

I�t�exp�− pt�dt

can be expressed as

i1�p� = �I1�0� −
1

L
Ī�
�

A��0�
p + ����D�p� , �23�

where the denominator is

D�p� = p�1 −
1

L
2Ī2

l0
2 �

�

��R�
���p + ���

	 +
1

L
dV̄

dĪ
. �24�

Here A� are coefficients of the series expansion of �1 in

eigenfunctions �� of the Hermitian operator Ĥ�=����Ĥ, and
�� are the eigenvalues of this operator �see Eq. �A2��.

It follows from Eqs. �23� and �24� that for the stationary

current Ī and temperature T̄ �see Eqs. �14� and �16�� to be
stable it is necessary and sufficient that the function D�p� has
no zeros in the half plane Re p�0. It is easy to see that the
stationary current and temperature are stable if the induc-
tance L is small, that is �I��T where

�I =
L
R

; �T =
d0

4

Ī2

T̄CV�T̄�

��T̄�
�25�

are the characteristic relaxation times for current and tem-
perature, respectively. In this case D�p�=0 at p�1/�I and
hence one can expand D�p� as a power series in p−1 and find
I1�t��exp�p1,2t� where
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p1,2 =
1

2L�− R ±R2 −
8Ī

l0
�
�

��R̃�	 , �26�

that is, the stationary distribution is stable at low induc-
tances.

In the opposite case of large L ��I��T� one can neglect
the second term in Eq. �24� and find

I1�t� � exp�−
1

L
dV̄

dĪ
t� . �27�

From Eq. �27� it follows that the stationary current and the
temperature are always stable in the branches of the I-V
curve that have a positive differential resistance, and they are
unstable in the branches with a negative differential resis-
tance. In the next section we investigate the adiabatic evolu-
tion of this instability in the case of a large inductance L.

IV. THERMOELECTRIC SELF-EXCITED PERIODIC
OSCILLATIONS OF THE TOTAL CURRENT AND OF
THE VOLTAGE DROP OVER THE JOULE-HEATED

PART OF THE MICROCONTACT

As was shown in Sec. III the stationary current Ī and

temperature T̄��� in a microcontact �Eqs. �14� and �16�� be-
come unstable if �I��T. Below we show that this instability
results in the spontaneous appearance of nonharmonic peri-
odic oscillations in time of the total current I flowing through
the microcontact and of the voltage drop U over the Joule-
heated part of the contact provided the applied bias voltage V
is kept fixed. In Sec. IV A we derive a set of reduced adia-
batic equations for I and U; in Sec. IV B we study solutions
of these equations both analytically and numerically.

A. Adiabatic evolution equations

In order to investigate the evolution of the instability
�which is governed by Eqs. �9� and �10�� we assume that the
inductance L is large enough to have �I��T. In this case the
current varies slowly in time while the temperature rapidly
follows the current variations. This assumption allows us to
develop an adiabatic perturbation theory in which the tem-
perature and the current can be represented as

T��,t� = T̃„U�t�,�… + T̃1��,t� ,

I�t� = Ĩ�t� + Ĩ1�t� . �28�

Here T̃(U�t� ,�) is the steady-state solution �16� of Eqs. �12�
and �13� in which the constant voltage V has been replaced
by a time-dependent voltage U�t� �to be determined�. Hence

T̃(U�t� ,�) satisfies the equation

−
�

��
���T̃�

�T̃

��
� − ��T̃�Ī2�U�/l0

2 = 0,

Ī�U� = U/R�U� , �29�

where

R�U� = R�T̃� = 
��T̃�� , �30�

while the current Ĩ�t� satisfies the equation

L�Ĩ

�t
+ R�T̃�Ĩ = V . �31�

An equation for U�t� can be found from the condition that

T̃1 and Ĩ1 are small corrections to T̃ and Ĩ, respectively �that

is, �T̃1�� T̃ and �Ĩ1�� Ĩ�. As shown in Appendix B this condi-

tion is satisfied if the current Ĩ�t� and the voltage U�t� satisfy
the following set of ordinary differential equations:

�
dU

dt
= Ĩ2 − Ī2�U�;

LdĨ

dt
+ R�U�Ĩ = V . �32�

Here

� = 4� dR

dU
	−1�dĪ�U�

dU

Ī

l0
	2

�
�

R̃��̃�

�̃�
2

�
V

R2�T, �33�

and V is the applied bias voltage; the Ī-U curve Ī�U�
=U /R�U� and the resistance R�U� are determined explicitly
by Eqs. �14� and �15� in which V has to be changed to U�t�.

The set of nonlinear ordinary differential equations �32�,
allows the system under consideration to be mapped onto the
effective circuit shown in Fig. 2. The circuit includes a Joule-
heated conductor in series with an inductance L, the total
voltage drop in the circuit V being kept constant in time. The
Joule heating of the conductor is assumed to be inhomoge-
neous, so that the relationship between its temperature and
voltage U is described by the thermal continuity equation
�29� and hence the rate of heat removal from the conductor is

Q=RĪ2�U�.
In the next section we investigate the conditions under

which the steady-state solution of Eq. �32� is unstable and

how it evolves into a limit cycle in the Ĩ-U plane, a limit
cycle that corresponds to periodic nonharmonic oscillations
of the current and the voltage drop over the Joule-heated part
of the microcontact.

FIG. 2. An effective circuit under a fixed voltage V containing a
Joule-heated conductor in series with an inductance L; the resis-
tance R�U� depends on the voltage drop U on the conductor in such

a way that the conductor current-voltage characteristics Ī�U�
=U /R�U� has a section with a negative differential resistance; Ĩ is
the total current flowing in the circuit.
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B. Spontaneous development of periodic oscillations of the
current and of the voltage drop over the point contact

Let the steady-state solution of the set of equations �32�
be

Ĩ0 = Ī�U0�; U0 = V . �34�

A study of the stability of the steady-state solution �34� with
respect to small perturbations, carried out on the basis of the
linearized set of equations �32�, shows that small variations
I1 and U1 from the steady state develop as exp��1,2t� with
time, where the rate factor

�1,2 = − � 1

L
R +

dĪ

dV

Ī

�
	 ±� 1

L
R +

dĪ

dV

Ī

�
	2

−
2Ī

�L
.

�35�

From Eq. �35� one sees that in the case of a negative differ-
ential conductance the steady-state solution loses its stability
with an increase of the inductance as soon as the term in the
round brackets changes sign, i.e., as soon as L�Lcr, where
the critical value of the inductance is

Lcr = �
R

�Ī�
� dV

dĪ
� . �36�

Comparing Eq. �36� with Eq. �25� one sees that stability is
lost as soon as �I��T in accordance with the above analysis.
Therefore if �I��T any initial state close to the steady state
U0, I0 is repelled from this point in the voltage-current plane.
On the other hand, as one easily sees from Eq. �32�, any
initial state which is very far from the stable point �that is,
�I�t=0��� �I0� or �U�t=0��� �U0�� decreases in time and is
attracted to the stable point. It means that there is a stable
limit circle in the I-U plane �see, e.g., Ref. 30�. This means
that nonlinear periodic oscillations of the total current and
the voltage drop over the microcontact appear spontaneously
if the bias voltage V is kept fixed. In order to show charac-
teristic features of the spontaneous development of electric
oscillations, we present typical current-voltage characteris-
tics for a microcontact in Fig. 3 and the corresponding spon-
taneous oscillation cycle of the current through the system
and the voltage drop over the Joule-heated microcontact is
shown in Fig. 4.

Simple estimations of the ratio �I /�T �see Eq. �25�� show
that the critical value of the inductance Lcr �at which �I /�T
�1� is

Lcr �
TCV

j0
2d0

, �37�

where j0 is the characteristic value of the current density in
the microcontact and d0 is the size of the microcontact.

C. Magnetization switching under the thermal-electric
self-exciting oscillations

The system under consideration is presented in Fig. 5. A
conducting magnetic grain is coupled through a point contact
�PC� to a bulk magnetic conductor and to a nonmagnetic

conductor �the right-hand side of the figure�. There is a mag-
netic field H directed opposite to the magnetization of the
bulk magnetic conductor. The magnetic field is weak enough
so that at low temperatures the grain magnetization is paral-
lel to the magnetization of the bulk ferromagnetic due to the
exchange interaction.

Let the inductance of the circuit to be large enough in
order that the above-mentioned thermal-electric self-
oscillations arise in the system. The limiting cycle along
which the current J and the voltage drop U periodically
move in time are shown in Fig. 6 �for the sake of simplicity
it is shown for the case of a extremely large inductance �L
��T�.

When J and U move along the left arising branch of the
CVC the PC is cold �its temperature is nearly the same as
those of the cooling media�. When the system jumps to the
right arising branch of the CVC �along the upper straight line
in Fig. 6�, the PC is Joule heated above the Curie tempera-

FIG. 3. Dependence of the total current I through the microcon-
tact shown in Fig. 1 on the voltage drop U over the contact for the
case that the microcontact resistance depends on voltage as R�U�
= �R0+�U2�. The current is normalized to I0=U0 /R0, where U0

=R0 /�.

FIG. 4. Spontaneous oscillations of the current I�t� through the
microcontact sketched in Fig. 1 and the voltage drop U�t� over the
contact. Here I0=U0 /R0 and U0=R0 /�. Initial values of I�0� and
U�0� are shown by filled squares. As time goes on, the current and
the voltage drop move along the dashed or thin solid line towards
the limit cycle �thick solid line� depending on whether the initial
state is outside or inside the limit cycle. After a time t��I the set
(I�t� ,U�t�) moves along the limit cycle executing a periodic motion,
i.e., the current I�t� and the voltage drop U�t� execute periodic
nonlinear oscillations.
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ture while the bulk ferromagnetic and the grain remain cold.
It means that the magnetization in the vicinity of the PC
disappears and hence the exchange coupling of the grain to
the bulk ferromagnetic is interrupted, and the magnetization
of the grain flips to the direction of the magnetic field H.
Moving further along the limiting cycle �along the right
branch of CVC�, the system jumps to the left arising branch
of the CVC �along the lower straight line in Fig. 6�, the PC is
cooled to temperatures close to the thermostat temperature,
the magnetization in the vicinity of the PC is restored, and
the grain magnetization flips to the direction of the bulk
magnetization again. After that these flips repeat periodically

in time with the periodicity of the thermal-electric self-
exciting oscillations.

The period of the thermal-electric self-oscillations and
hence the period of the switching of the grain magnetization
is controlled by the inductance in the circuit �as well as by
the applied voltage�.

The above-mentioned mechanism of the magnetization
switching works if, at low temperatures, the exchange cou-
pling of the grain to the bulk ferromagnetic keeps the grain
magnetization parallel to the bulk magnetization despite the
opposite direction of the applied magnetic field. By this it is
meant that if at low temperatures, the grain magnetization
flips to the direction of the magnetic field, the total energy of
the system increases, that is,

Wtotal =� dV��� �M�

�xi
	2

− M� H� � � 0. �38�

Here M� is the magnetic moment, �� I /aM2, where I�kTc
and a are the exchange energy and the lattice spacing, re-
spectively, k is the Boltzmann constant, and TC is the Curie
temperature. If the characteristic size of the PC d is less than
the domain-wall length ldw, the length of the effective do-
main wall is of the order of d �see Ref. 31�, and from Eq.
�38� it follows that Wtotal�0 if ��M2 /d2�d3− �� H /a3�V0

�0, that is,

V0 �
Tc

TH
�a2d� , �39�

where V0 is the volume of the grain, TH=� H /k, and  H
=eH / �mc� �e is the electron charge and m is the electron
mass�. If one takes, e.g., d�10a, Tc�103 K, H
�102–103 G �that is 10−3–10−2 T�, and V0�10a!L2, one
finds the characteristic width of the grain L��102–103�a
where a is the atomic spacing in the crystal.

V. CONCLUSION

In conclusion, we have theoretically studied the
temperature-dependent electrical current through a voltage-
biased point contact. We predict that spontaneous temporal
oscillations of the temperature and current through the con-
tact may appear due to Joule heating and a strong tempera-
ture dependence of the point-contact resistance.

We have also showed that the self-exciting oscillations
can control the magnetization direction of a magnetic grain
coupled through a point contact to a bulk magnetic conduc-
tor: the grain magnetization direction periodically switches
from the direction of the bulk magnetization to the direction
of the external magnetic field following periodic cooling and
heating of the point contact under the regime of the self-
exciting thermal-electric oscillations. In order to estimate the
characteristic frequency of these self-oscillations we take the
minimum width d of the microcontact shown in Fig. 1 to be
200 nm and let the current I through the contact be16 1 mA,
its temperature T�30 K, and the specific heat CV at this
temperature20 �1 J cm−3 K−1. Under these conditions we can
use Eq. �36� to evaluate the critical inductance Lcr required

FIG. 5. �a� The nanocontact is cold. The exchange coupling
through the contact keeps the magnetization of the grain parallel to
the magnetization of the left bulk ferromagnetic conductor. �b� The
nanocontact is hot. The exchange coupling through the nanocontact
is killed and the magnetic field H flips the magnetization of the
grain.

FIG. 6. The limiting cycle for an extremely large inductance in
the circuit ��L��T�; when the total current I�t� and the voltage drop
U�t� on the point contact move along the left branch of CVC the
point contact is cooled to temperatures close to the thermostat tem-
perature; while they move along the right branch of CVC the point
contact is heated above the Curie temperature.
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for self-oscillations to develop as well as the oscillation fre-
quency  when L"Lcr. The result is

Lcr � 10−6 – 10−5 H;  � 108 – 109 s−1 �40�

and we note that the frequency of the self-oscillations de-
creases linearly with an increase of the inductance of the
circuit.

Finally we observe that due to Joule heating of the contact
area, where the current density is maximal, a wide range of
temperatures can be reached in this region of the sample �and
controlled by the bias voltage�. This allows for a thermal
scanning that avoids difficult calorimetric measurements in
many cases and since the Joule heating easily can produce
temperatures of the order of the critical temperature for mag-
netic phase transitions, it offers an exciting possibility for
electrically controlled magnetic switching on the nanometer
scale.
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APPENDIX A

Let us write �1�� , t� in the form of an expansion as

�1��,t� = �
�

A��t������ , �A1�

where �� are the eigenfunctions of the operator Ĥ�=����Ĥ,
which satisfies the Sturm-Liouville equation

�−
�2

��2 −
Ī2���T̄�

l0
2��T̄�

��� = ���
−1��. �A2�

Substituting Eq. �A1� into Eqs. �20� and �21� and carry-
ing out a Laplace transformation with respect to t we find
the following set of algebraic equations for a�p�
=�0

�A�t�exp�−pt�dt and i1�p�=�0
�I�t�exp�−pt�dt:

�p + ���a� − �2Ī/l0
2���i1 = A��0� ,

�Lp + R�i1 + Ī�
�

R�a� = LI1�0� . �A3�

Here A��0� and I1�0� are the initial values of A� and I1 at t
=0, respectively, while

R� =� ���T̄�

��T̄�
������ ; �� = 
��T̄������� .

While obtaining Eq. �A3� we took into account the fact that

the Hermitian conjugate operator Ĥ�
† = Ĥ���� has eigenfunc-

tions �̄�=�−1�� and hence 
���1/������=��,��.
On the other hand, differentiating the current-voltage

characteristics V= 
��T̄��Ī ,���Ī and Eq. �12� with respect to

the current Ī one obtains

dV

dĪ
= R + Ī����T̄

�Ī
� �A4�

and

Ĥ���T̄�
�T̄

�Ī
	 =

2Ī

l0
2 � . �A5�

Here Ĥ is the operator defined by Eq. �22�. It follows from

Eqs. �A5� and �A2� that �dT̄ /dĪ can be written in the form

�
�T̄

�Ī
=

2Ī

l0
2 �

�

��
��
��. �A6�

Substituting Eq. �A6� into Eq. �A4� we find

dV̄

dĪ
= R +

2Ī

l0
2 �

�

��R�
��

. �A7�

Using Eq. �A3� and the equality Eq. �A7� one gets Eq. �23�.

APPENDIX B

Inserting first Eq. �28� into Eqs. �9� and �10� we obtain

linear differential equations for T̃1 and Ĩ1 of the form

Ĥ���T̃1� − 2�̃��T̄�
Ī�U�

l0
2 Ĩ1 = �̃F , �B1�

LdĨ1

dt
+ R�T̃�Ĩ1 + �R̃Ĩ = 0, �B2�

where

F �
��T̃�

l0
2 „Ĩ2 − Ī2�U�… −

1

�̃

dT̃

dU

dU

dt
,

�R̃ = 
���T̃�T̃1�; �̃ = ��T̃� . �B3�

When deriving the above equations we neglected a term
�dT1 /dt in Eq. �B1� since it is of second order in the param-

eter �=�T /�I�1 �in contrast to LdĨ1 /dt, which is of the first
order in ��.

Equation �B1� can be easily solved if one writes �̃1

=��T̃�T̃1 in the form of a series expansion as

�̃1 = �
�

Ã��t��̃���� . �B4�

Inserting the solution of Eq. �B1� found in this way into Eq.
�B2� one may rewrite this equation to read

LdĨ1

dt
+ R�T̃�Ĩ1 +

2Ī

l0
2 �

�

�̃�R̃�

�̃�

Ĩ1 = − �
�

R̃�F̃�

�̃�

. �B5�

Here �̃� and �̃� are eigenfunctions and eigenvalues of the

operator Ĥ� �see Eq. �A2�� in which T̄ and Ī�V� are changed

to T̃ and Ĩ�U�, while
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F̃� = 
F�t,���̃��; R̃� =� ���T̃�

��T̃�
�̃�� ; �̃ = 
��T̃��̃�� .

�B6�

Using now Eq. �A7� �in which all quantities marked with the
bar sign should be changed to those marked with the tilde

sign� one finds the equation for Ĩ1 to be

LdĨ1

dt
+

dŨ

dĨ
Ĩ1 = − �

�

R̃�F�

�̃�

. �B7�

Solving the linear differential equation �B7� one finds the
solution of the linear differential equations �B1� and �B2� for

the current Ĩ1�t� to be

Ĩ1�t� = exp�#�t��

!�−
1

L�0

t

d��
�

R̃�F̃�

�̃�

exp�− #���� + Ĩ1�0�� ,

�B8�

where

#�t� = −
1

L�0

t dŨ

dĨ
d�� �B9�

and Ĩ1�0� is the initial value of Ĩ1�t�. From Eqs. �B8� and �B9�
it follows that the current Ĩ1�t� grows exponentially with time

if the differential resistance is negative �i.e., if dŨ /dĨ�0�. In
order to prevent this increase we impose a condition on the

parameters of the zero approximation incorporated in F̃�.
The condition is expressed by the equation

−
1

L�0

�

d��
�

R̃�F̃�

�̃�

e−#��� + Ĩ1�0� = 0. �B10�

As a result one gets

Ĩ1 =
1

L
e#�t��

t

�

d��
�

R̃�F̃�

�̃�

e−#���. �B11�

It follows from Eqs. �B10� and �B11� that the inequality

�Ĩ1 �� �Ĩ� is satisfied at all times if

�
�

R̃�F̃�

�̃�

� �Ĩ1�/�Ĩ�� 1.

Therefore the parameters of the zero approximation Ĩ�t� and

Ũ�t� should satisfy the equation

�
�

R̃�F̃�

�̃�

= 0. �B12�

Using Eq. �B12� and Eqs. �10�, �A7�, �B3�, and �B6� we find

the final set of equations �32� for the current Ĩ�t� and the
voltage U�t�.
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