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We present time-resolved measurements of electron transport through a quantum dot. The measurements
were performed using a nearby quantum point contact as a charge detector. The rates for tunneling through the
two barriers connecting the dot to source and drain contacts could be determined individually. In the high bias
regime, the method was used to probe excited states of the dot. Furthermore, we have detected bunching of
electrons, leading to super-Poissonian noise. We have used the framework of full counting statistics to model
the experimental data. The existence of super-Poissonian noise suggests a long relaxation time for the involved
excited state, which could be related to the spin relaxation time.
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I. INTRODUCTION

Studies of current fluctuations in conductors are of great
interest because they give information about the charge car-
riers in the system and their mutual interactions, complemen-
tary to that obtained by the measurement of the average
current.1 In recent years, the method of full counting
statistics2 �FCS� has brought renewed interest to the field.
Using FCS, fluctuations are studied by counting the number
of electrons that pass through a conductor within a fixed
period of time. Since this gives direct access to the distribu-
tion function of the fluctuations, not only the shot noise
but also higher order correlations can be extracted. The
method has so far mainly been used as a theoretical tool for
calculating the shot noise in various mesoscopic systems.3

For electron transport through quantum dots, the noise is
typically of sub-Poissonian nature. This is due to the Cou-
lomb blockade, which enhances the correlation between
electrons and thereby reduces the noise.4 However, when
several channels with different coupling strengths contribute
to the electron transport, interactions can lead to more com-
plex processes and to an enhancement of the noise.5–8 More-
over, it has been predicted that entangled electrons could
lead to super-Poissonian noise, thus providing a possible way
of detecting entanglement in mesoscopic systems.9,10

Experimentally, direct observations of FCS by counting
electrons are difficult to achieve. This is because a very sen-
sitive, noninvasive, high bandwidth charge detector is
needed in order to be able to resolve individual
electrons.11–13 Only very recently, measurements of FCS for
single level transport through a quantum dot �QD� were
performed.14 A quantum point contact �QPC� was used to
read out the charge state of the nearby QD.15 Here, we
present further time-resolved measurements of a QD system.
We show methods for tuning the QD and for extracting in-
formation about tunneling rates16 and about excited states of
the QD.17 Furthermore, we present measurements in a re-
gime where transport is governed by more complex pro-
cesses than tunneling through a single QD level. We observe

bunching of electrons and super-Poissonian noise. In this re-
gime, we show that the theory of FCS �Ref. 2� can be used to
model the experimental data and to extract intrinsic proper-
ties of the mesoscopic system, such as the relaxation time
between excited states.

II. EXPERIMENTAL SETUP

The QD used in the experiment is shown in Fig. 1�a�. The
structure was fabricated using scanning probe lithography18

on a GaAs/Al0.3Ga0.7As heterostructure with a two-
dimensional electron gas �2DEG� 34 nm below the surface
�electron density 4.5�10−15 m−2, mobility 25 m2/V s�. The
sample consists of a QD �dotted circle in Fig. 1�a�� and a
nearby QPC. We estimate from the geometry and the char-
acteristic energy scales that the dot contains about 30 elec-
trons. The gates G1 and G2 were used to tune the tunnel
barriers connecting the dot to source and drain leads, while
the P gate was used to tune the conductance of the QPC to a
regime where the sensitivity to changes in the dot charge is
maximal. For our setup, the best sensitivity was reached
when the QPC conductance �GQPC� was tuned below the first
conductance plateau, with GQPC�0.25e2 /h. The conduc-
tance was measured by applying a voltage over the QPC

FIG. 1. �Color online� �a� Quantum dot with integrated charge
read-out used in the experiment. �b� Current through the QPC as a
function of time, showing a few electrons tunneling into and out of
the dot. The arrows mark the steps corresponding to an electron
entering the dot.
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�Vbias=500 �V� and monitoring the current. Since changing
the voltages on gates G1 and G2 also affects the QPC sen-
sitivity, a compensation voltage had to be applied to the P
gate in order to keep the QPC in the region of maximum
sensitivity whenever the other gates were changed. All mea-
surements where performed in a dilution refrigerator with a
base temperature of 60 mK.

When an electron tunnels onto the dot, the conductance
through the QPC is reduced due to the electrostatic coupling
between the dot and the QPC. A typical time trace of the
QPC current is plotted in Fig. 1�b�, showing switching be-
tween two levels. The low levels correspond to the configu-
ration where the dot contains one extra electron, while �in
and �out specify the time it takes for an electron to tunnel into
and out of the dot, respectively. The length of each time trace
presented here is 0.5 s.

The bandwidth of the QPC circuit is �f =30 kHz, which
limits the current we can measure by counting electrons to
I�e�f �5 fA. The bandwidth is similar to what was
achieved in measurements on a split-gate defined dot.19 In
our setup, the bandwidth is not limited by low signal-to-
noise ratio �S /N�, but by the low-pass filter formed by
the cable capacitance and the feedback resistor of the IV
converter. From the trace shown in Fig. 1�b�, we extract
S /N�15. Assuming a flat noise spectrum, we estimate that
S /N would allow us to increase the bandwidth by a factor of
10 and still get a detectable signal. One possible reason for
the high sensitivity of our detector compared to split-gate
defined structures is that there are no metallic gates on the
surface that shield the electrostatic coupling between the QD
and the QPC. However, the sensitivity is also strongly de-
pendent on the exact shape of the confinement potential
within the QPC and on how susceptible this potential is to
changes in the electrostatical environment. This may vary a
lot from sample to sample. For the structure used in this
measurement, the QPC showed broad resonances in addition
to the standard plateau features. By operating the QPC at the
flank of a resonance in the step below the first plateau, we
were able to find a regime with good sensitivity. For typical
current levels in the QPC �nA�, electrons pass the QPC at a
rate which is many orders of magnitude higher than the rate
for electrons passing the quantum dot �aA�. We conclude that
back action of the QPC via its shot noise can be neglected
for the analysis of the counting statistics.20

III. THERMAL NOISE WITH ONE LEAD CONNECTED
TO THE DOT

In the following, we are interested in the number of elec-
trons visiting the dot during a given time interval. We call
each visit one event and use the symbol rE to denote the
number of events occurring per second. In the low-bias Cou-
lomb blockade regime, the dot can only hold one excess
electron. Before a new one can enter, another one must go
out. In this case, we can count the events by detecting the
electrons as they enter the dot �marked by vertical arrows in
Fig. 1�b��. Note that by counting events, we do not distin-
guish between electrons passing through the dot and elec-
trons hopping back and forth between the dot and a single
lead.

First, we concentrate on the regime where only one lead is
connected to the dot and the electron motion is entirely gov-
erned by thermal fluctuations and occupation probabilities.
For the data shown in Fig. 1�b�, the gates are tuned such that
the tunnel barrier between the dot and the drain lead is com-
pletely closed, while the source lead is weakly coupled to the
dot. With only one lead open and with a temperature and
level broadening much lower than the charging energy and
single level spacing of the QD, only one QD state is avail-
able for tunneling. The probability for an electron to tunnel
into or out of the dot during a time interval dt is governed by
the relation

pin/out�t�dt = �in/oute
−�in/outtdt, �1�

where �in and �out are the effective rates for tunneling into
and out of the dot. Using similar methods as in Refs. 14 and
16, we have checked that Eq. �1� is fulfilled when we are in
the single-level regime. In the following, we consider the
case of a nondegenerate level, as discussed in previous
work.16 To unambiguously determine the spin configuration
of the involved states, measurements as a function of
magnetic field would be required. Given the availability
of our experimental data we focus our analysis on the extrac-
tion of the tunneling rates for a single nondegenerate state.
We also assume the tunnel coupling to be independent of
energy within the small interval of interest. At the end of this
section we discuss how the analysis would change if spin
degeneracy is relevant.

The relations between the effective rates and the dot-lead
tunnel coupling � are given by

�in = �f��E/kBT�, �out = ��1 − f��E/kBT�� , �2�

where f�x� is the Fermi distribution function, T is the tem-
perature, and �E is the energy difference between the Fermi
level of the lead and the electrochemical potential of the dot.

The tunneling rates can be determined directly from the
measured time traces. Using Eq. �1�, we find �in=1/ ��in�,
�out=1/ ��out�, with a relative accuracy of �2 ln 2/N �see Ap-
pendix A�. Here, N is the total number of switches occurring
during one trace. The relative accuracy is calculated assum-
ing that Eq. �1� is valid. For the trace in Fig. 1�b�, we get
�in=8.0 kHz, �out=2.3 kHz, and �=1/ ��in�+1/ ��out�
=10.3 kHz, with a relative accuracy of 1.7%. It has been
shown that the finite bandwidth of the detector leads to a
systematic underestimate of the actual rates. For the rates
given here we have compensated for such errors using the
methods presented in Ref. 21, with a detection rate of �det
=100 kHz.

Since the dot can only hold one extra electron, we can
determine the Fermi function from the average population of
excess electrons on the dot

f��E/kBT� = �nexcess� = ��out�/���in� + ��out�� . �3�

The Fermi function can also be found by counting the aver-
age number of events occuring per second, rE. Assuming
sequential tunneling and using Eq. �2�, we find for the case
with one lead open

GUSTAVSSON et al. PHYSICAL REVIEW B 74, 195305 �2006�

195305-2



rE = 1/���in� + ��out�� = �f�1 − f� . �4�

In Figs. 2�a� and 2�b� we plot the average population
and the number of events per second as the gate G2 was used
to change the electrochemical potential of the dot. The accu-
racy obtained when determining the Fermi function is
�f = f�1− f��2/N �see Appendix B�, giving error bars smaller
than the markers used in the figures. The data fits well to the
expected relations. By first determining the lever arm be-
tween gate G2 and the dot from standard Coulomb diamond
measurements,22 it was possible to extract the electronic tem-
perature �T=230 mK� from the width of the Fermi function.
The same temperature was found by checking the width of
standard Coulomb blockade current peaks,22 measured when
the dot was in a more open regime.

As mentioned earlier, the results shown here are valid
only for a nondegenerate level. Taking spin degeneracy into
account will modify the value extracted for the tunneling rate
� �see Appendix A�, but it will not change the width of the
Fermi distribution. The error analysis is performed within the
assumption of a nondegenerate level. If spin-degeneracy is
taken into account, then some tunneling rates are changed by
a factor of 2, while the expression for the relative accuracy
remains the same as derived before. Further experiments are

required to clearly differentiate between spin-degenerate lev-
els and single levels at the Fermi energy. However, the gen-
eral way how our analysis proceeds is not affected by this.

IV. THERMAL NOISE WITH TWO LEADS CONNECTED
TO THE DOT

In order to perform time-resolved measurements of elec-
tron transport through the dot, the tunnel barriers must be
symmetrized so that both give similar tunneling rates. The
rates must be kept lower than the bandwidth of the setup, but
still high enough to give good statistics. Figure 2�c� shows
the number of events per second as a function of the two
gates VG1 and VG2. In the upper left corner of the figure, VG1
is high and VG2 is low, corresponding to the case where the
source lead is open and the drain lead is closed. In the bot-
tom right corner, the opposite is true. For the region in
between, marked by the ellipse in Fig. 2�c�, the data indicates
that both leads are weakly coupled to the dot.

The measurement method does not enable us to distin-
guish whether an electron that tunnels into the dot arrives
from the left or from the right lead. Therefore, when both
leads are connected to the dot, the rates in Eq. �2� must be
adjusted to contain one part for the left lead and one part for
the right lead,

�in = �L
in + �R

in = �LfL + �RfR,

�5�
�out = �L

out + �R
out = �L�1 − fL� + �R�1 − fR� .

Here, fL and fR are the Fermi distribution functions of the
left and the right lead, respectively. Using Eq. �5�, we calcu-
late the rate of events for the case when both leads are kept
open,

rE =
��LfL + �RfR���L�1 − fL� + �R�1 − fR��

�L + �R
. �6�

With no bias applied to the dot, the two distributions func-
tions fL and fR are identical except for a possible difference
in electronic temperature in the two leads. However, assum-
ing TL=TR=T, we have fL= fR= f , and Eq. �6� simplifies to
rE= ��L+�R�f�1− f�. Fitting this expression to curves similar
to that shown in Fig. 2�b�, we extract the temperature and
combined tunneling rate �L+�R from the data within the
ellipse of Fig. 2�c�. The result is presented in Fig. 2�d�. The
rates and the temperature shown in the graph are due to the
combined tunneling through both leads. Still, for low VG2
�high VG1�, the drain lead is pinched off and tunneling occurs
mainly between the source lead and the dot. For high VG2
�low VG1�, the source is pinched off and the tunneling is
dominated by electrons going between the drain and the dot.
The fact that the electronic temperatures extracted from both
regimes turn out to be the same within the accuracy of the
analysis �T=230 mK� justifies the assumption that TL=TR.

V. SHOT NOISE AT FINITE BIAS

Now we apply a finite voltage bias between source and
drain leads and measure electron transport through the dot.

FIG. 2. �Color online� �a� Average dot population versus voltage
on gate G2. The data was fit to a Fermi distribution function with
T=230 mK. �b� Counts of events per second for the same data as in
�a�. The data was fit to Eq. �4�, giving �=2.63 kHz and
T=230 mK. �c� Events per second versus VG1 and VG2. For low
values of VG1 and VG2, both the source lead and the drain lead are
pinched off. For high voltages, the barriers open up so much that
the tunneling occurs on a time scale faster than the measurement
bandwidth. �d� Temperature �squares� and tunnel coupling �crosses�,
extracted from data shown within the ellipse in �c�. As VG2 is in-
creased, VG1 is decreased, in order to keep the dot at a constant
potential. For low VG2, tunneling occurs between the source lead
and the dot, for high VG2, the electrons tunnel between the drain and
the dot. For intermediate gate values, both leads contribute to the
tunneling. The electron temperature was found to be the same for
both leads, within the accuracy of the data analysis.
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Figure 3�a� shows the Coulomb blockade diamonds mea-
sured by counting events. In this measurement, the gate G1
was used as a plunger gate to control the dot electrochemical
potential. However, the gate also strongly affects the source
tunnel barrier. For low G1 voltages, the source lead is closed,
giving strong charge fluctuations only when the drain lead is
in resonance with the dot �see case I in Figs. 3�a� and 3�b��.

At higher gate voltages, the source lead opens up and a
current can flow through the dot. In point II of Fig. 3�a�, the
dot electrochemical potential �n lies within the bias window
but far away from the thermal broadening of the Fermi dis-
tribution in the leads. The condition can be expressed as

	 ± eV/2 − �n	 � kBT , �7�

where the “�” case refers to the source contact and the “	”
case refers to the drain. Whenever Eq. �7� is fulfilled, elec-
trons can only enter the dot from the source lead and only
leave through the drain. In this regime, we measure the cur-
rent through the dot by counting events. This opens the pos-
sibility to use the QD as a very precise current meter for
measuring sub-fA currents.13 Since the electrons are detected
one by one, the noise and higher order correlations of the
current can also be experimentally investigated.14 In this re-
gime we measure the shot noise of the system, which arises
because of the discreteness of the charge carriers.1 This is in
contrast to the results shown in the preceding sections, where
the fluctuations were due to thermal effects.

When the bias exceeds the dot charging energy,
EC�2.1 meV, and the electrochemical potentials of the �n�
and the �n+1� states are within the bias window �see case III

of Figs. 3�a� and 3�b��, transport processes are allowed where
the dot may contain 0, 1 or 2 excess electrons. A time trace
measured at point III of Fig. 3�a� is shown in Fig. 3�c�.
The high sensitivity of the QPC charge detector allows us to
measure switching between three different levels, corre-
sponding to �n�, �n+1�, and �n+2� electrons on the dot. This
distinction is not possible in a standard current measurement.

With the condition given by Eq. �7� fulfilled, we know
that for positive bias voltage, electrons always enter the dot
through the source contact and leave the dot through the
drain contact. In this case, we have

�S = �in = 1/��in�, �D = �out = 1/��out� . �8�

Equation �8� can then be used to determine the tunneling
rates of an individual state, but only if there are no excited
states available within the bias window. If there are excited
states available, Eq. �8� will still be valid, however, the cal-
culated �S and �D will not be the tunneling rates of a single
state but rather the sum of rates from all states contributing
to the tunneling process. A further complication with excited
states is that there may be equilibrium charge fluctuations
between the lead and the excited state, thereby removing the
unidirectionality of the electron motion. However, if the re-
laxation rate of the excited state into the ground state is or-
ders of magnitude faster than the tunneling out rate, the elec-
tron in the excited state will have time to relax to the ground
state before equilibrium fluctuations can take place.

The separate rates �in and �out for a close-up of the upper-
left region of Fig. 3�a� are plotted in Figs. 4�a� and 4�b�. It is
important to note that the requirement of Eq. �7� is met only
for the region along and above the dashed lines in the fig-
ures. At the lower left end of the dashed lines, the energy
levels of the dot are aligned as shown in Fig. 4�c�. Going
diagonally upward along the lines corresponds to raising the
Fermi level of the source lead, while keeping the energy
difference between the dot and the drain lead fixed.

Starting at low bias and low voltage on the gate VG1, the
dot is in the Coulomb blockade regime, and no tunneling is
possible. Following the dashed line upwards, the dot ground
state becomes available for tunneling at Vbias=0.3mV. The
transition is marked by the solid lines in Figs. 4�a� and 4�b�.
At these low gate voltages, the source tunnel barrier is al-
most completely pinched off, meaning that the rate for elec-
trons entering the dot is still low �Fig. 4�a��. Even so, some
electrons do enter the dot, as can be seen from the few points
of measurements of rates for electrons tunneling out of the
dot within the corresponding region of Fig. 4�b�.

We now concentrate on the tunneling-in rate in Fig. 4�a�.
As the source level is further raised, excited states become
available for transport. The first excited state �at Vbias
=0.85 mV along the dashed line� is more strongly coupled to
the lead than the ground state, giving a tunneling rate of
�70 Hz for electrons entering the dot. The large difference
in the tunneling-in rate between the ground and the excited
state can be understood if the wave functions of the ground
and excited state have different spatial distributions. If
the overlap with the lead wave function is larger for the
excited state, the tunneling rate will also be larger. Similar
differences in tunneling rates have been found between the

FIG. 3. �Color online� �a� Coulomb diamonds, measured by
counting events per second. For low values of VG1, the source lead
is pinched off and tunneling can only occur between the dot and the
drain lead. As VG1 increases, the source lead opens up and a current
can flow through the dot. �b� Diagrams depicting the energy levels
of the dot at points I, II, and III. In case III, the bias is higher than
the charging energy of the dot, meaning that the dot can contain 0,
1 or 2 excess electrons. �c� Time trace taken at point III. The three
possible dot populations �n, n+1 or n+2 electrons� are clearly
resolvable.
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singlet and triplet states in a two-electron dot.23,24

By further raising the source level, tunneling can
also occur through a second excited state. The measured
tunneling-in rate will now be the sum of the rates from
both excited states; by subtracting the contribution from
the first state, the tunneling-in rate for the second state can
be determined. Using this method, we can resolve three
excited states, with excitations energies 
1=0.55 meV,

2=1.0 meV, 
3=1.3 meV and with tunneling rates
�1=70 Hz, �2=190 Hz, �3=190 Hz. The excited states are
clearly seen in Fig. 4�d�, which is a cut along the dashed
diagonal line in Fig. 4�a�.

Focusing now on the rates for electrons tunneling out of
the dot �Fig. 4�b��, there is a noisy region where the ground
state but no excited states are within the bias window
�0.3�Vbias�0.85 mV along the dashed line�. In this regime,
few electrons will enter the dot, meaning that the statistics
needed for measuring the rate of electrons leaving the dot is
not sufficient. However, for bias voltages higher than the first
excited state, the tunneling-out rate remains constant along
the dashed line. This is in contrast to the steps seen in the
tunneling-in rates, indicating that the rate for tunneling out of
the QD does not depend on the state used for tunneling into
the QD. Since the individual excited states are expected to
have different rates also for tunneling out of the dot, the data
is consistent with the interpretation that an electron entering
the dot into an excited state will always have time to relax to

the ground state before it tunnels out. The rate for tunneling
out is �6 kHz, giving an upper bound for the relaxation time
of �170 �s.

The main relaxation mechanism in quantum dots is
thought to be electron-phonon scattering.25 Measurements on
few-electron vertical quantum dots have shown relaxation
times of 10 ns.26 Recent numerical investigations have
shown that the electron-electron interaction in multielectron
dots can lead to reduced relaxation rates.27 Still, the relax-
ation rate is expected to be considerably faster than the upper
limit we give here.

VI. BUNCHING OF ELECTRONS

So far, we have analyzed data where the tunneling events
can be well explained by a rate equation approach with one
rate for electrons tunneling into and another rate for electrons
leaving the dot. For the trace shown in Fig. 5�a�, the behavior
is distinctly different. The electrons come in bunches; there
are intervals where tunneling occurs on a fast time scale
��10 kHz�, in-between these intervals there are long periods
of time ��1 ms� without any tunneling. The data was taken
with a bias applied so that the Fermi level of the source lead
is lining up with the electrochemical potential of the dot,
while the drain lead is far below the electrochemical poten-
tial of the dot, thus prohibiting electrons from entering the
dot from the drain lead. The voltage on gate VG1 was set to
34 mV, which is outside the range of the Coulomb diamonds

FIG. 4. �Color online� �a� and �b� Blow-up of the upper left
region of Fig. 3�a�, showing the rates for electrons tunneling in �a�
and out �b� of the dot, respectively. The solid lines mark the posi-
tions where the source lead is lining up with the electrochemical
potential of the dot’s ground state. The dashed lines mark the lower
edge of the region where condition of Eq. �7� in the text is fulfilled.
The color scales are different for the two figures, the rate for tun-
neling out is around 10 times faster than tunneling in. �c� Diagram
depicting the energy levels along the dashed lines in �a� and �b�. As
the source lead is raised �corresponds to going upward along the
dashed lines in �a� and �b��, excited states become available for
tunneling. �d� Tunneling rate for electrons entering the dot, mea-
sured along the dashed line in �a�. With increased gate voltage,
excited states become available for transport, giving higher tunnel-
ing rates.

FIG. 5. �Color online� �a� Time trace of the QPC current show-
ing bunching of electrons. �b� Dot states included in the model used
to describe the bunching of electrons. The red circles correspond to
electron occupation. State SA is the n-electron ground state, state SB

is an excited n-electron state, and state Sn+1 is the ground state when
the dot contains �n+1� electrons. �c� Energy diagram for the model.
The two dot transitions are both within the thermal broadening of
the lead. Electrons enter the dot from the left lead and may leave
through either the left or the right lead. �d� Possible transitions
between the different states of the model. The rates �in

A , �in
B refer to

electrons entering the dot, thus taking the dot from state SA/B to state
Sn+1. The rates �out

A , �out
B describe electrons leaving the dot, giving

transitions from state Sn+1 to SA/B. WAB and WBA are the direct
transition rates between states SA and SB. Finally, the rates �right

A ,
�right

B refer to electrons leaving the dot through the right lead.
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presented in Fig. 3�a�. Since the QPC current is at the high
level during the intervals without tunneling, the dot contains
one electron less when the fast tunneling is blocked.

In order to explain the two different time scales, we as-
sume the validity of a model where there are two almost
energy-degenerate dot states within the thermal broadening
of the distribution in the source lead. Because of Coulomb
blockade, the dot may hold one or zero excess electrons. The
model includes three possible dot states, shown in Fig. 5�b�.
State SA is the n-electron ground state, state SB is an excited
n-electron state and state Sn+1 is the ground state when the
dot contains �n+1� electrons. Transitions between the SA /SB
states and the Sn+1 state occur whenever an electron tunnels
into or out of the dot.

The tunnel coupling between the dot and the lead is given
by the overlap of the dot and lead electronic wave functions.
Since the wave functions corresponding to the two states SA
and SB may have different spatial distributions, the coupling
strength �A of the transition SA⇔Sn+1 can vary from the
coupling �B of the SB⇔Sn+1 transition. The energy levels of
the dot and the leads for the configuration where we measure
bunching of electrons are shown in Fig. 5�c�, while the
possible transitions of the model are depicted in Fig. 5�d�.

Starting with one excess electron on the dot �state Sn+1 in
Fig. 5�d��, at some point an electron will tunnel out, leaving
the dot in either state SA or state SB. Assuming �B��A, it is
most likely that the dot will end up in the excited state SB. If
the tunneling rate �B is faster than the relaxation process
SB⇒SA, an electron from the lead will have time to tunnel
onto the dot again and take the dot back to the initial Sn+1
state. The whole process can then be repeated, leading to the
fast tunneling in Fig. 5�a�.

However, at some point the dot will end up in state SA,
either through an electron leaving the dot via the �A transi-
tion, or through relaxation of the SB state. To get out of state
SA, there must be either a direct transition back to state SB, or
an electron tunneling into the dot through the SA⇒Sn+1 tran-
sition. With �B��A and assuming �B�WBA, both processes
are slow compared to the tunneling between the lead and
state SB. This mechanism will block the fast tunneling and
produce the intervals without switching events seen in
Fig. 5�a�. Similar arguments can be used to show that the
blocking mechanism will be possible also if �B
�A.

From the above reasoning, we see that the fast time scale
is set by the fast tunneling state, while the slow time scale is
determined either by the relaxation process SB⇒SA or by the
slow tunneling rate, depending on which process is the fast-
est. Either way, it is crucial that the relaxation rate is slower
than the fast tunneling rate �in our case WAB
�B�20 kHz�.
We speculate that the slow relaxation rate may be due to
different spin configurations of the two states. For a few-
electron QD, spin relaxation times of T1�1 ms have been
reported.23,28

To make quantitative comparisons between the model and
the data, we use the framework of full counting statistics
�FCS� to investigate how the dot charge fluctuations change
as the source lead is swept over a Coulomb resonance. The-
oretical investigations of multilevel quantum dots have lead
to predictions of electron bunching and super-Poissonian
noise.7 Following the lines of Refs. 7 and 29, we first write
the master equation for the system,

d

dt
 pA

pB

pn+1
� = M
 pA

pB

pn+1
� , �9�

with

M = 
− �in
A − WBA WAB ��out

A + �right
A � � ei�

WBA − �in
B − WAB ��out

B + �right
B � � ei�

�in
A �in

B − �out
� .

�10�

Here �out= ��out
A +�out

B +�right
A +�right

B � and pA, pB, and pn+1 are
occupation probabilities for states SA and SB and Sn+1, re-
spectively. The effective tunneling rates are determined by
multiplying the tunnel coupling constants for each state with
the Fermi distribution of the electrons in the lead,

�in/out
A/B = f ���eV − �A/B���A/B. �11�

The tunneling rates �right
A and �right

B are included to account
for the possibility of electrons to leave through the right
barrier. The Fermi level of the right lead is far below the
electrochemical potential of the dot, so that the states in the
right lead can be assumed to be unoccupied. Finally, WAB
and WBA are the direct transition rates between states SA and
SB. These rates obey detailed balance,

WAB/WBA = exp���A − �B�/kBT� . �12�

The phenomenological relaxation rate between the two states
is given as 1/T1=WAB+WBA.

In Eq. �10�, we introduce charge counting by multiplying
all entries of M involving an electron leaving the dot with the
counting factor exp�i��.29 We do not distinguish whether the
electron leaves the dot through the left or the right lead. In
this way we obtain the counting statistics pt0

�N�, which is the
probability for counting N events within the time span t0.
The distribution describes fluctuations of charge on the dot,
which is exactly what is measured by the QPC detector in the
experiment. We stress that this distribution is equal to the
distribution of current fluctuations only if it can be safely
assumed that the electron motion is unidirectional. This is the
case if the condition in Eq. �7� is fulfilled, i.e. if the tunneling
due to thermal fluctuations is suppressed. Here, we are in a
regime where there is a mixture of tunneling due to the ap-
plied bias and tunneling due to equilibrium fluctuations. But
since the model defined in Eq. �10� is valid regardless of the
direction of the electron motion, it can still be used for
analyzing the experimental data.

Using the method of Ref. 29, we calculate the lowest
eigenvalue �0��� of M and use it to obtain the cumulant
generating function �CGF� for pt0

�N�,

S��� = − �0���t0. �13�

The CGF can then be used to obtain the cumulants of any
order using the relation 	Cn=−�−i���nS���	�=0. In order to
compare the theory with the experiment we extract the first
three cumulants of pt0

�N� from the experimental data. Since
we want to compare the data with the predictions given by
the CGF of the model, we choose to calculate the cumulants
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instead of the central moments, as it was done in a previous
work.14 The first cumulant �C1� is identical to �N�, the mean
of the distribution, while the second and third cumulants
�C2 ,C3� coincide with the second and third central moments
��N2�− �N�2 and �N− �N��3�, giving the variance and the
asymmetry of the distribution.

The cumulants were found by taking a trace of length
T=0.5 s and splitting it into m=T / t0 independent traces. By
counting the number of electrons N leaving the dot in each
trace and repeating the procedure for all m subtraces, the
distribution function pt0

�N� could be experimentally deter-
mined. The experimental cumulants were then calculated di-
rectly from the measured distribution function.30 The time t0
was chosen such that �N��3.

Figure 6�a� shows the first three cumulants versus voltage
applied to the source lead. The points correspond to experi-
mental data, while the solid lines show the cumulants calcu-
lated from the CGF of our model, with fitting parameters
�A=1.6 kHz, �B=20.5 kHz, �right

A =4.6 kHz, �right
B =310 Hz,

T1=8 ms, and �A−�B=13 �eV. The electronic temperature
in this measurement was 400 mK. The figure shows good
agreement between the model and the experimental data.

Figure 6�b� shows the normalized cumulants C2 /C1 and
C3 /C1 for the experimental data; we notice that both the
second and the third cumulants vastly exceed the first cumu-
lant when the Fermi level of the source lead is aligned with
the electrochemical potential of the dot �Vbias=1.3 mV�. The
noise is of super-Poissonian nature, as expected from the
bunching behavior of the electrons.

When the bias voltage is further increased
�Vbias�1.5 mV�, the source lead is no longer in resonance

with the electrochemical potential of the dot and the equilib-
rium fluctuations between the source and the dot are sup-
pressed. In this regime, the measured charge fluctuations are
due to a current flowing through the dot. Electrons enter the
dot from the source lead and leave the dot through the drain
lead. The blocking mechanism is no longer effective and the
transport process will predominantly take place through state
SA, since the tunnel coupling to the drain lead is stronger for
this state ��right

A ��right
B �. The transport through the dot can

essentially be described by a rate equation, with one rate for
electrons entering and another rate for electrons leaving the
dot. For such systems, it has been shown that the Coulomb
blockade will lead to an increase in correlation between the
tunneling electrons compared to a single-barrier structure,
giving sub-Poissonian noise.4,14 The effect is seen for
Vbias�1.5 mV in Fig. 6�b�; both the second and third
cumulants are reduced compared to the first cumulant.

The value of T1=8 ms obtained from fitting the experi-
mental data is of the same order of magnitude as previously
reported values for the spin relaxation time T1. We stress that
the bunching of electrons and the super-Poissonian noise can
only exist if the relaxation time is at least as long as the
inverse tunneling time. This is demonstrated in Fig. 6�c�,
which shows the maximum value obtained for the ratio
C3 /C1 calculated for different T1 while keeping the rest of
the fitting parameters at the values given in the caption of
Fig. 6.

VII. CONCLUSION

In this work, we have shown that a quantum point contact
can be used for measuring time resolved transport through a
weakly coupled quantum dot. The detection method allows
us to determine the tunneling rates for electrons entering and
leaving the dot separately. Comparing the different tunneling
rates, information about the excited states and their relax-
ation times could be extracted. We have shown that the
framework of full counting statistics together with time-
resolved measurement techniques can be used as a tool for
extracting information about electron transport properties of
solid state systems.

APPENDIX A: STATISTICS OF TUNNELING RATES

In the single-level regime, the process of an electron tun-
neling into or out of the dot is described by the rate equation

ṗin/out�t� = − �in/outpin/out�t� . �A1�

Here, pin/out�t� is the probability density for an electron to
tunnel into or out of the dot at a time t after a complementary
event. Since the expressions for electrons entering and leav-
ing the dot are the same, we drop the subscripts �in/out� and
use the notations p�t� and � to describe either one of the two
processes. Solving the differential equation and normalizing
the resulting distribution gives

p�t�dt = �e−�tdt . �A2�

Equation �A2� is valid assuming nondegenerate states. For
the case of spin degeneracy, the rate for tunneling into the

FIG. 6. �Color online� �a� First, second, and third cumulants of
the distribution of charge fluctuations. The markers show values
extracted from the experimental data, while the solid lines are
calculated from the model given in the text. Fitting parameters
are �A=1.6 kHz, �B=20.5 kHz, �right

A =4.6 kHz, �right
B =310 Hz,

T1=8 ms, and �A−�B=13 �eV. The electronic temperature was
400 mK. �b� Normalized cumulants C3 /C1 and C2 /C1 versus bias
voltage. The noise is clearly super-Poissonian in the central region
of the graph. �c� Calculated maximal value of C3 /C1 as a function
of the relaxation time between the two states. The values are calcu-
lated by varying the relaxation time while keeping the other param-
eters to the values given by the fit shown in �a�. The maximum
value C3 /C1 extracted from the experimental data is 15.9.
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dot should be multiplied with a factor of 2 if both spin states
are initially empty.

In the experiment, we measure a time trace containing a
sequence of tunneling times �k, k=1,2 ,3 , . . .. To estimate �
and its relative accuracy from such a sequence, we need to
calculate the probability distribution for extracting a certain
value �, given a fixed sequence of tunneling times. We start
by dividing the time axis into bins of width �� and number
them with i=0,1 ,2 , . . .. A tunneling event �k will be counted
in bin i if i����k� �i+1���. Using Eq. �A2� and assuming
��
1/�, we find that the probability to get a count in bin i
for a given value of � is equal to

p�i	�� = ���e−���i. �A3�

A certain sequence 
in� is realized with probability,

p�
in�	�� = �
n=1

N

���e−���in = �����Ne−����n=1
N in

= �����Ne−����i=0
� nii = �����Ne−���N�i�. �A4�

Here, ni is the number of times an event falls into bin i,
�i=0

� ni=N is the total number of events in the trace and
�i�= 1

N�i=0
� nii is the average of i. A certain set of bin occupa-

tions 
ni� can be achieved with many different 
in� series,
namely N! /�i=0

� ni!. Assuming that they all occur with the
same probability p�
in� 	��, we find

p�
ni�	�� =
N!

�
i=0

�

ni!

�����Ne−���N�i�. �A5�

This is our sampling distribution. For an estimate of � we
use Bayes theorem

p��	
ni�� = p���
p�
ni�	��
p�
ni��

. �A6�

Because we have no information on the prior probabilities
p��� and p�
ni��, the principle of indifference requires them
to be constants, giving

p��	
ni�� = C�����Ne−���N�i�, �A7�

where C is constant. Normalization �0
�p�� 	 
ni��d�=1 leads

to

p��	
ni�� =
NN�i�N+1��

N!
�����Ne−���N�i�

=
NN

N!
���������Ne−N����. �A8�

The most likely value of � is therefore �*=1/ ���. The rela-
tive accuracy of this estimate is given by the width of the
distribution. Setting x=���� and evaluating the width at
half-maximum gives

xNe−xN =
1

2
e−N ⇒ ln�x� = x − 1 −

1

N
ln�2� . �A9�

For large N we can expand ln�x� in a Taylor series around
x=1. Keeping only the first two terms, it follows

1

2
�x − 1�2 =

1

N
ln�2� ⇒ x = 1 ±�2 ln�2�

N
. �A10�

Thus the relative accuracy is �� /�=�2 ln�2� /N.

APPENDIX B: FERMI DISTRIBUTION

With just one lead connected to the QD, we adopt the
model �in=Dn+1�f��E /kBT�; �out=Dn��1− f��E /kBT��.
Here, f is the Fermi distribution of the lead, � is the tunnel
coupling between the QD and the lead, Dn is the spin degen-
eracy of the state with n electrons on the QD, and �E is the
energy difference between the electrochemical potential of
the QD and the Fermi level of the lead. The tunnel coupling
is assumed to be independent of energy within the small
interval of interest. Combining the equations gives

�in

�out
=

Dn+1

Dn

f

1 − f
. �B1�

In the following we will focus on the special case of nonde-
generate states, with Dn=Dn+1=1. To determine the Fermi
distribution from a sequence of tunneling events, we follow
the lines of Appendix A and divide the time axis into bins of
width ��. The bins are labeled with i=0,1 ,2 , . . ., and an
event will be counted in bin i if i����in/out� �i+1���. We
collect the tunneling times in two sets of bins, one for elec-
trons tunneling into the dot �
ni��, and one for electrons leav-
ing the dot �
mi��. Assuming that the events corresponding to
tunneling in and tunneling out are uncorrelated and using the
results of Eq. �A5�, we get

p�
ni;mi�	�in;�out� = p�
ni�	�in�p�
mi�	�out�

� ��in�out��2�Ne−N��in��in�+�out��out��.

�B2�

The principle of indifference gives

p��in;�out	
ni;mi�� � ��in�out��2�Ne−N��in��in�+�out��out��.

�B3�

Inserting the result of Eq. �B1� leads to

p�f ;�out	
ni;mi�� � � f

1 − f
�out

2 ��2�N

e−N�out
�f/�1−f����in�+��out��.

�B4�

Marginalization gives
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p�f 	
ni;mi�� = �
0

�

p�f ;�out	
ni;mi��d�out

�

� f

1 − f
�N

�2N + 1�!

�� f

1 − f
��in� + ��out��N�2N+1 . �B5�

The distribution has a maximum for f
1−f =

��out�

��in�
N

N+1 . In the

limit of N→�, the most likely f is given by

f =
��out�

��in� + ��out�
. �B6�

We find the width of p�f 	 
ni ;mi�� by approximating it around
its maximum by a Gaussian. The result is

� = f�1 − f��2/N . �B7�
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