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The electronic energy band structure of strained and unstrained Si, Ge, and SiGe alloys is examined in this
work using a 30-level k ·p analysis. The energy bands are at first obtained with ab initio calculations based on
the local-density approximation of density-functional theory, including a GW correction and relativistic effects.
The so-calculated band structure is then used to extract the unknown k ·p fitting parameters with a conjugate-
gradient optimization procedure. In a similar manner, the results of ab initio calculations for strained materials
are used to fit the unknown deformation potentials that are included in the present k ·p Hamiltonian following
the Pikus-Bir correction scheme. We show that the present k ·p model is an efficient numerical method, as far
as computational time is concerned, which reproduces accurately the overall band structure, as well as the bulk
effective density of states and the carrier effective masses, for both strained and unstrained materials. As an
application, the present 30-level k ·p model is used to describe the band offsets and the variations of the carrier
effective masses in the strained Si1−xGex /Si1−yGey system.
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I. INTRODUCTION

The continuous downscaling of metal-oxide-
semiconductor field-effect-transistor �MOSFET� critical di-
mensions such as the gate length and gate oxide thickness
has been a very successful trend in current manufacturing, as
testified, e.g., by the ITRS requirements. However, conven-
tional scaling down of the MOSFET channel length is de-
clining as the physical and economic limits of such an ap-
proach are coming closer. Novel solutions are increasingly
being used in MOSFET channel engineering. The growth of
a strained Si layer on a relaxed Si1−yGey buffer layer is a
typical technique used to improve the electrical perfor-
mances of MOSFET devices, due to the expected enhance-
ments in the carrier mobility1,2 of such a strained layer. High-
performance strained Si1−xGex transistors have been recently
obtained, and this technology could feature in the future chip
generation with channel size of 32 nm or less.1,3 When mod-
eling the electrical currents of such devices, it is required to
take into account the fundamental carrier transport properties
that are governed by the structure of the electronic energy
bands of the strained material.

Material science computational methods for the calcula-
tion of the electronic energy band structure fall into two gen-
eral categories. The first category includes the ab initio meth-
ods, such as Hartree-Fock or density-functional theory
�DFT�, which calculate the electronic structure from first
principles—i.e., without the need for empirical parameters.
The second category consists of far more computationally
efficient semiempirical methods such as the empirical
pseudopotential method �EPM�, the tight binding �TB�
method, and the k ·p method.

Over the past decades, the local-density approximation
�LDA� variant of DFT �Ref. 4� has been established as a very
powerful tool for studying the elastic properties and the de-

formation potentials of strained semiconductors.5–8 More re-
cently, the GW many-body correction to the LDA DFT �Ref.
9� has yielded semiconductor band structures that feature
band gap values near their experimental values. Ab initio
methods are self-consistent methods which utilize a varia-
tional approach to calculate the ground-state energy of a
many-body system and thus require large computer re-
sources. They can only be used in particular situations of
high symmetries and are not suitable for calculating the
transport properties of large systems with confined edge
states.

Unlike ab initio approaches, EPM, TB, and the k ·p
method involve fitting parameters to reproduce the experi-
mental energy band gaps, the dielectric response, and the
carrier effective masses. Over the past three decades, the
EPM with spin-orbit �SO� corrections has proven to be ex-
tremely successful in calculating the electronic band struc-
ture of relaxed and strained semiconductors with indirect
gap.10–14 Recent calculations using the TB method have also
given accurate results.15,16 In the k ·p method, the energy
band structure is obtained by a set of parameters which rep-
resent the energy gaps at �, the momentum matrix elements,
and the strength of the SO coupling. The number of energy
bands �or levels� that are effectively calculated is related to
the precision of the results. The six-level k ·p model,17 eight-
level k ·p model, and 14-level k ·p model18 give an accurate
description of the highest valence bands �VBs� and the low-
est conduction bands �CBs� of semiconductors near the cen-
ter � of the Brillouin zone, but fail to describe the CBs of
semiconductors with an indirect gap. Low-order k ·p Hamil-
tonians need a small number of parameters �typically less
than 10�, while high-order k ·p methods,19 referred to by Pol-
lak et al.20 as “full-zone” k ·p methods, require a large num-
ber of unknown parameters. While it is a straightforward
matter to work out the energy band structure at any k point in
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the Brillouin zone, once these parameters have been chosen,
it requires effort and skill to come up with a satisfactory set
of parameters.20 For this reason, the full-zone k ·p method
has been used rarely and for a few bulk semiconductors only,
including Si, Ge,19,21,22 and �-Sn,20 while no extensive cal-
culations have been published for strained semiconductors.

In this paper, we propose to extend to strained Si, Ge, and
SiGe alloys the 30-level k ·p model that was first introduced
by Cardona and Pollock.19 For the first time, the well-known
Pikus-Bir23 correction for strained materials has been com-
bined within this 30-level k ·p formalism. The k ·p parameter
optimization strategy is based on a conjugate-gradient proce-
dure that uses ab initio simulations but also a large amount
of experimental data that are currently available for Si and
Ge.

In the first part of this paper, a series of ab initio DFT-
LDA simulations that include the GW correction and relativ-
istic effects in strained Si1−xGex /Si1−yGey systems has been
performed with a view to complete the experimental data and
to establish a reference set of energy bands. In the second
part of this paper, we have determined the k ·p model cou-
pling parameters and the deformation potentials that fit as
closely as possible the first-principles results, matching not
only the energy levels and the carrier effective masses, but
also the general shape of the band structure of relaxed and
strained crystals. A simple interpolation between the k ·p pa-
rameters for Si and those for Ge has been proposed in order
to model SiGe alloys. In the third part of this paper, a set of
comparisons is given with experimental data in relaxed and
strained Si, Ge, and Si1−xGex alloys. We show that the
present k ·p model accurately reproduces the overall band
structure, as well as the band shifts and the carrier effective
masses versus applied strain. A second set of comparisons
with the widely used Chelikowsly-Cohen nonlocal EPM
�Ref. 10� has also shown a good agreement with k ·p simu-
lations.

II. FIRST-PRINCIPLES SIMULATION SETUP

A. Bulk material

A series of first-principles calculations has been per-
formed in Si and Ge to obtain a reference set of energy
bands, which can be used later for the k ·p model parameter
optimization. The first-principles results presented in this
work have been obtained within the LDA variant of the
DFT.24 The present DFT-LDA calculation relies on the
pseudopotential �PP� approximation, by which the core states
are effectively eliminated from the calculation. We have used
the Hartwigsen-Goedecker-Hutter relativistic separable dual-
space Gaussian PP,25 which uses the Cerperley-Alder
exchange-correlation functional.26 These PPs include relativ-
istic effects and provide an accurate description of the VBs
in the near � region, a critical region with respect to the hole
transport properties in semiconductors.

The value of the equilibrium lattice parameter has been
calculated by minimizing the total energy. Any further LDA
calculation have used this theoretical value, instead of the
experimental one,27 yielding thus a consistent set of zero-
pressure reference data. In Si, we found a0=5.387 Å and, in

Ge, a0=5.585 Å. These values agree within 0.75% and
1.33% with the experimental values of 5.431 Å and
5.658 Å,28 respectively.

It is known that the band gaps calculated with the LDA
method are generally below their experimental values. How-
ever, the agreement can be greatly improved by the use of
the Hedin’s GW correction.9 In practice this correction can
be applied as a post-DFT scheme29–31 in a non-self-
consistent way. In the following work, the G0W0 corrections
of bulk Si and Ge were computed on 19 high-symmetry
points in the Brillouin zone and added in a perturbative man-
ner to the LDA band structure. One remark deserves notice:
In spite of the G0W0 correction, the theoretical lowest CBs
typically lie within 0.05–0.2 eV of the range of experimental
energies observed.29 In the present work, the G0W0 theoreti-
cal indirect gaps have been found to be 1.076 eV in Si �lo-
cated at 84% away from � along the �-X direction� and
0.64 eV in Ge, which is underestimated by 8% and 14%,
respectively. Our results compare favorably with other LDA-
GW results found in the literature �e.g., see the extensive
comparison between first-principles calculations summarized
in the review by Aulbur et al.29�. Even though correctly pa-
rametrized, LDA-G0W0 results do not match perfectly with
experimental data, and significant theoretical work such as
vertex correction, self-consistent-GW, and the exact treat-
ment of the exchange term are currently in progress to fur-
ther improve DFT results.29 These alternative approaches are
beyond the scope of the present work. For the purpose of
obtaining a reference set of energy bands that can be used in
the development of an optimized k ·p model, we used the
non-self-consistent G0W0 approximation to correct the band
gap problem and we applied a supplementary rigid “scissors”
shift of 0.09 eV for Si and 0.104 eV for Ge in order to obtain
the final reference set of energy bands, the GW energy
levels.32

Aside from the above studies, the accuracy of the DFT-
LDA calculation critically depends on the manner in which
the problem is sampled numerically.33 We found a good LDA
convergence ��Ek�0.01 eV� using a basis set of approxi-
mately 1300–1500 plane waves, which corresponds to a cut-
off energy of around 22 hartrees. The Brillouin zone was
sampled on a 6�6�6 fourfold-shifted Monkhorst-Pack
�MP� grid34 �i.e., 864 k points� to obtain the charge density.
As regards the G0W0 correction, a satisfactory trade-off be-
tween numerical convergence and computation time was
achieved with a cutoff energy of 8 hartrees and using a large
number of bands ��100� included in the calculation of the
self-energy.35

B. SiGe alloys

In Si1−xGex, where x denotes the relative mole fraction of
the two materials, both Si and Ge atoms are present in the
unit cell. For this reason, we used a 32-atom tetragonal cell
sampled on a �4�4�2�-shifted MP grid to simulate
Si1−xGex alloys when x� �0;0.5;1�. The Si and Ge atoms
have been randomly distributed in the supercell, and a struc-
tural optimization of the atomic positions in the unit cell has
been performed. A linear interpolation between the GW cor-

RIDEAU et al. PHYSICAL REVIEW B 74, 195208 �2006�

195208-2



rection of Si and Ge was used to correct the band gap. This
latter approximation is reasonable because the GW correc-
tions obtained in Si and Ge are effectively very close.29

The experimental lattice parameter in Si1−xGex is well de-
scribed by Dismukes’s law36 according to which aexpt�x�
=5.431+0.2x+0.027x2 is a quadratic function of x. A similar
expression has been obtained from our theoretical results at
various x contents:

atheo�x� = 5.387 + 0.1428x + 0.0532x2. �1�

C. Strained material

A series of first-principles simulations of the electronic
band structure has been performed with a view to fitting the
deformation potentials needed in the development of the k ·p
model for strained materials, which is presented in the next
section. For this purpose, epitaxial Si1−xGex layers grown on
a relaxed Si1−yGey buffer are studied for a large range of
biaxial strain ��� up to 4%� applied perpendicularly to the
�001�, �111�, and �110� directions.

As is known, the normal stresses and the inner displace-
ment of atoms in the cell strongly influence the electronic
and structural properties of the strained crystal.37 For this
reason, the present simulations include a structural optimiza-
tion of the unit cell of the strained crystal. The calculations
are performed as follows.

�i� The longitudinal strain ���=a�y� /a0−1 is calculated
from the slight difference between the Si and Ge relaxed
lattice parameter a0 and the Si1−yGey one in the buffer a�y�
that is determined from Eq. �1�. The shape of the distorted

cell and the position of the atoms in the cell are obtained by
minimizing the total energy of the biaxially strained crystal
�following the procedure described in Appendix A�.

�ii� The optimized cell is used later in the DFT-LDA band
structure calculations.

�iii� The GW correction of bulk Si and Ge is used to
correct the band gap problem. This choice was motivated by
the work of Zhu et al.38 reporting that there is no quantitative
difference in Si between the LDA band gap pressure depen-
dences and the ones from a full GW calculation.

III. DEVELOPMENT OF AN OPTIMIZED k ·p MODEL

A. k ·p parameters for bulk materials

The k ·p formalism using a zinc-blende �-centered Bloch
function basis ulk�r�=	nCn

l un0�r� leads to the secular k ·p
equation of the undeformed crystal:17

	
n

��2k2

2m
+ En

0 − Elk�	n,n� +
�k

m
· 
un�0�p�un0��Cn

l = 0,

�2�

where En
0 are the eigenvalues at �. The 15 � states from

group Oh determined by Cardona and Pollock19 �shown in
Table I� is our starting point. The number of independent
nondiagonal matrix elements in Eq. �2� can be reduced to 10
in Si and Ge using group-theory selection rules.19,43 The SO
coupling terms are introduced in the usual way,17,20 leading
to a 30�30 k ·p matrix �see Appendix B�. We note, inciden-
tally, that since this approach does not use renormalized
Luttinger-type parameters, it is different from other lower-

TABLE I. Eigenvalues and SO splittings of �-centered states. Symbols of Ref. 19. The �25�l eigenvalue is arbitrarily set to zero. �
symbols refer to the state’s SO splittings. All energies are expressed in eV.

States at �

Si Ge
Si1−xGex

k ·peExpt. EPMa G0W0
a Expt. EPMa G0W0

a

�1l −12.4±0.6,b −11.2,i −12.36 −11.489 −12.6±0.3b, −12.624 −12.638 −12.7−0.18x

−12.5±0.6,c −11.4i −12.9±0.2h

�25�l 0.044c 0.044 0.0499 0.296c 0.297 0.312 0.044+0.2x+0.052x2

�15 3.4,c 3.35,f 3.406 3.204 3.006,i 3.206,i 3.279 3.1 3.335−0.222x

3.05d 3.16,g 3.25,c

�15 0.04c 0.037 0.037 0.200c 0.205 0.227 0.033+0.157x

�2�l 4.15,i 4.1,d 4.062 3.96 0.89,h 0.90i 0.861 0.715 4.15−3.26x

4.185,c 4.21i

�1u 7.561 8.308 6.072 6.82 8.4−1.6x

�12� 9.371 8.451 8.665 9.925 8.54+1.76x

�25�u 12.203 11.41 11.334 11.193 11.7−0.34x

�25�u 0.009 0.012 0.0558 0.029 0.012+0.03x

�2�u 13.3 15.41 12.97 14.086 15.8−1.8x

aPresent calculations.
bAs presented in Ref. 10.
cAs presented in Ref. 28.
dReference 38.
eAs used in the present k ·p model.

fReference 40.
gReference 41.
hAs presented in Ref. 42.
iAs presented in Ref. 29.
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order k ·p models such as the 14-level k ·p model of Ref. 18
and the 20-level model of Ref. 44.

As written in Appendix B, the 30-level k ·p model de-
pends on seven �-centered eigenvalues, four SO coupling
coefficients, and ten matrix elements. In the development of
the present optimized k ·p model, we attempted to fit experi-
mental electronic properties of Si, Ge, and SiGe alloys as
closely as possible. Currently, there is insufficient detailed
experimental information about the band energies to accu-
rately determine all the k ·p parameters, particularly at high
energy ��5 eV�. For this reason, we adopted a mixed ap-
proach using experimental data when available and ab initio
results otherwise. These coefficients were fitted using a
conjugate-gradient procedure. Satisfactory convergence was
determined through a least-squares error function between
k ·p eigenvalues and GW results evaluated on a dense
��1000� set of k points in the Brillouin zone. Particular care
has been given in the near-� region and at the CB minima in
order to obtain an accurate description of the curvature
masses and Luttinger parameters. We also tried as far as
possible to reduce the discontinuity in energy at the K- and
U-equivalent points.20 Due to missing high-energy �220�
bands in the present k ·p, eigenvalues at K and U differ from
several meV ��7 meV�. The coupling between �220� states
to the other 30-lowest-energy states is naturally more pro-
nounced near K, where the lowest �220� eigenvalues are as
low as �4.5 eV. For comparison, the lowest �220� eigenval-
ues are 
26 eV at �, 
12.5 eV at X, and 
12 eV at L. After
several attempts to remove this discontinuity by changing the
k ·p parameter values only, we found out that no satisfactory
trade-off between accuracy and continuity in K and U could
be obtained. For this reason, the present k ·p model has a
discontinuity in K and U �Ref. 45� �as in Ref. 19�.

Following Pollak et al.,20 the SO strength between �25u

and �25l states was determined by imposing the highest VBs

to be degenerated at X. �25l =44 meV for Si and �25l

=290 meV for Ge are known by experiments, while �25u and
�15 were obtained from first-principles simulations �see
Table I�.

The �-centered eigenvalues and the coupling parameters
obtained from our procedure are listed in Table I and Table V
in Appendix A. It ought to be mentioned that there are two
sets of published k ·p parameters in Si �Refs. 21 and 22� and
one set in Ge �Ref. 21� based on the early work of Cardona
and Pollak.19 Although the initial Cardona and Pollak’s pa-
rameters set19 provides an accurate description of the main
CB minima and the top of the VBs, it has the limitation of
not including the SO coupling �due to computational limita-
tions in the mid-60s�. This was recently done in Si and Ge
�Ref. 21� together with a new set of parameters. Unfortu-
nately in Ge, the proposed set of parameters failed to im-
prove Cardona and Pollak’s19 one in so far as none of the
VBs reach the edge of the Brillouin zone with zero slope �or
average slope� as required by crystal symmetry and the
L-valley minima are very distant from the Brillouin zone
edge. This later drawback makes this model inappropriate for
application to transport properties in nanostructures. This
was not the case with Cardona and Pollak’s parameters set,19

but also with the present one. In comparison to this former
set of parameters, our optimization strategy based on an
ab initio reference set of energy bands brings additional in-
formation �notably at high energies� and slightly improves
the accuracy of the carrier group velocity at the first and
second CB minima, but also certain energy gap values in
both Si and Ge. The matrix elements listed in Table V are
slightly different from Cardona and Pollak’s19 ones. The
main differences46 come from the fact that the � eigenvalues
used in the present k ·p model differ at high energy �E
�3.5 eV� and that nonlocal effects have been accounted for
in the present model.47

FIG. 1. Bulk Si electronic band structure obtained using the
30-level k ·p model, EPM, and GW calculation.

FIG. 2. Bulk Ge electronic band structure obtained using the
30-level k ·p model, EPM, and GW calculation.
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The Si and Ge band structures �BSs� obtained using the
present k ·p parameters set are compared to GW first-
principles simulations in Figs. 1 and 2. The overall quality of
the fit is excellent: The difference in band energies between
our semiempirical values and those used for the fit was typi-
cally less than 0.01 eV for the principal band gaps and under
0.3 eV at other high-symmetry points. Further comparisons
are shown with the widely used Chelikowsky-Cohen nonlo-
cal EPM.10 As can be seen, the straightforward application of
the EPM yields a BS that is in very good agreement �up to
more than 6 eV� with the results of the much more complex
GW ab initio calculation. This excellent agreement means
that both methods are consistent and lends further support to
the GW reference set of energy bands used for the k ·p pa-
rameter optimization.

B. SiGe alloy parameters

The virtual crystal approximation was used to extend the
k ·p results to SiGe alloys. A quadratic interpolation between
Si and Ge parameters is proposed in Tables I and V. Due to
centrosymmetry breaking, SiGe alloys do not belong to
group Oh. A supplementary SO coupling term48 and two
purely imaginary coupling terms from group Td �Ref. 49�
�not shown in Appendix B� have been introduced in Table V.
These interpolation coefficients were determined in order to
fit the GW Si1−xGex band structures for various x-content
values �see, e.g., in Fig. 3 the Si0.5Ge0.5 band structure ob-
tained with the present k ·p parameters interpolated at x
=0.5�. The present k ·p model predicts a crossing between
�-valley and L-valley minima at x=0.84 �not shown� which
is consistent with the experimental data.1

C. Strained materials: deformation potentials

The analysis of the structure of strained semiconductors
using the k ·p Hamiltonian has been initially proposed by

Pikus and Bir.23 These authors derived the first-order k ·p
perturbation terms arising from straining the semiconductor
in question. This general expression has been widely used in
the six-level k ·p Hamiltonian to analyze the effect of defor-
mation on the hole energy spectrum. For the first time, we
applied the Pikus-Bir formalism in the case of the 30-level
k ·p Hamiltonian. The perturbation term to be added to Eq.
�2� can be written as23

Wn�,n = − 	
i,j

�

m
�ijki
un�0�pj�un0� + �ij
un�0��ij�un0� , �3�

where i , j stand for x ,y ,z. The first term of Eq. �3�, accounts
for the interaction between the strain and the momentum of
the carriers. The deformation potential operator �ij =−

pipj

m
+Vij�r� describes the change in the potential and the kinetic
energy of carriers due to the strain itself. The unknown non-
vanishing deformation potentials at �
un�0 ��ij �un0�, listed in
Table VII �Appendix C�, were determined from group-theory
selection rules, taking into account the pipj contribution only.
This choice is motivated by the fact that in the deformed-ion
approximation the Vij term with rhombic or tetragonal sym-
metries vanishes.23

The perturbation matrix W to be added to the 30 k ·p
matrix is shown in Appendix C. Accurate knowledge of the
deformation potentials at � for all 30 lowest-energy bands is
required for the construction of the k ·p model in the strained
material. However, only deformation potentials for the �25l

states are known experimentally6 in Si and Ge. The deforma-
tion potentials, needed in Eq. �3� and listed in Table II, have
been fitted using a procedure similar to the one used in bulk
materials. We have used a least-squares optimization proce-
dure on GW energy levels calculated for various distorted
crystals, including shear distortions. Special attention has
been given to the time-reversal symmetry degeneracy at the
edge of the Brillouin zone. In addition to space-group sym-

TABLE II. Deformation potentials �eV�.

Si Expt.a EPMb LDAc k ·pc

bv −2.10±0.10 −2.12 −2.27 −2.27

dv −4.85±0.15 −4.56 −4.36 −4.36
��d

�+ 1
3�u

�−av� 1.50±0.30 2.24 1.67 1.94

��d
L+ 1

3�u
L−av� −1.4 −3.14 −3.03

�u
� 8.6±0.4 9 8.79 9.01

�u
L 15.9 13.85 15.1

Ge Expt. a EPM b LDAc k ·pc

bv −2.86±0.15 −2.81 −2.9 −2.8

dv −5.28±0.50 −5.31 −6 −5.5
��d

�+ 1
3�u

�−av� 3.12 1.43 1.83

��d
L+ 1

3�u
L−av� −2.0±0.5 −2.26 −2.86 −1.97

�u
� 9.91 10 10

�u
L 16.2±0.4 16.3 17 16.3

aCited by Ref. 6.
bPresent Chelikowsky-Cohen-based EPM �Refs. 10 and 50�.
cPresent work.
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metry operations, the Hamiltonian of an isolated centrosym-
metric crystal exhibits time-reversal symmetry. The addi-
tional degeneracy among eigenvalues may be determined
using the Kramer theorem and the Wigner rule. Using that
rule, Ma et al.15 have obtained additional information about
the degeneracy in Si and Ge for the �001�, �111�, and �110�
growth cases that have been accounted for in the present k ·p
model.

Typical results of our fit procedure are presented in Fig.
4�a� �and Fig. 4�b�� for the biaxially strained Si �Ge� layer
grown on a �001�-oriented cubic Ge buffer �and Si buffer,
respectively�. Further results are shown in Fig. 5�a� �and Fig.
5�b�� for the strained Si �Ge� layer on a �111�-oriented cubic
Ge buffer �and Si buffer�. The band structures calculated
along various directions in reciprocal space using the present
k ·p model are compared to EPM �Ref. 50� and GW results.
For a purely biaxially strained Si layer �Fig. 4�, the minima
of the L valleys remain equivalent. However, due to crystal
symmetry lowering, the equienergy lowest CB � valleys are
split into four �4 and two �2 valleys. On the contrary, strain

along the �111� direction leaves the � valleys equivalent
whereas valleys at second minima are split �two Z valleys

along �111� and six L valleys along �1̄11�, �11̄1�, and �111̄��.
Moreover, it can be seen that the two lowest CBs along the
�-X direction become nondegenerate at X, the splitting being
the result of the removal of the center of inversion in the
sheared crystal.15 Another important effect of the strain is
observable in the near-� region, for instance in Fig. 4: In the
case of the strained Si �tensile-biaxial strain�, the heavy-hole
band “crosses” the SO band, while in the case of strained Ge
it is the contrary �compressive-biaxial strain�: the SO-hole
band “crosses” the heavy-hole one.

IV. RESULTS AND COMPARISON TO EXPERIMENTAL
DATA

A. Energy band gaps

We now address the question as to how well the energy
levels �vide post for the effective masses� calculated using

TABLE III. Eigenvalues and energy gaps at high-symmetry points in the Brillouin zone calculated with the EPM, k ·p and GW methods
�see text for details�. The state’s SO splittings are shown in parentheses. Averaged values over transitions between SO-split bands are noted
with a bar. All energies are in eV.

Statesa

Si Ge

Expt. EPM G0W0 k ·p Expt. EPM G0W0 k ·p

L1 −6.8±0.2,b −6.4i −6.991 −7.019 −7.448 −7.7±0.2b -7.588 -7.801 -7.678

−6.7±0.2d

L3� −1.5,c −1.2±0.2b −1.228 −1.216 −1.198 −1.4±0.2b −1.433 −1.459 −1.490

�0.034� �0.033� �0.026� �0.187� �0.197� �0.188�
L1 2.06,i 2.1,g 2.247 2.095 2.234 0.744d 0.776 0.64 0.747

2.4±0.15g

L3 3.9,i 4.15±0.1g 4.324 3.962 4.245 4.2±0.1,g4.4c 4.319 4.227 4.250

4.3±0.2d

�0.016� �0.015� �0.007� �0.087� �0.103� �0.077�
L2� 7.334 8.161 8.031 7.8c 7.8±0.1g 7.285 7.495 7.242

7.9i

X1 −7.711 −7.823 −8.087 −9.3±0.2g −8.646 −8.995 −8.875

X4 −2.5±0.3b −2.9g −2.889 −2.92 −2.95 −3.66c −3.15±0.2d −3.267 −3.28 −3.375

−3.3±0.2g −3.5±0.2g

X1 1.13,i 1.25,c 1.3g 1.163 1.221 1.321 1.3±0.2d 1.254 1.045 1.169

W1 −8.1±0.3b −7.512 −7.653 −7.662 −8.7±0.3b −8.512 −8.88 −8.638

�0.006� �0.005� �0.295� �0.029� �0.025� �0.103�
W2 −3.9±0.2b −3.886 −3.95 −3.922 −3.9±0.2b −3.956 −4.151 −4.038

�0.014� �0.013� �0.008� �0.042� �0.075� �0.154�
�1

min −4.7±0.2b −4.466 −4.527 −4.553 −4.5±0.2b −4.548 −4.748 −4.555

Eg��� 1.17d 1.031 1.076 1.17 1.04 0.855 0.961

E1�L� 3.45,g 3.46e 3.492 3.311 3.432 2.05,d 2.22f 2.302 2.099 2.239

E1��L� 5.38,e 5.50g 5.577 5.178 5.443 5.65d 5.889 5.686 5.750

E2�X� 4.32e 4.052 4.141 4.271 4.45f 4.521 4.325 4.544

aSymbols of Ref. 49.
bAs presented in Ref. 10.
cAs presented in Ref. 39.
dAs presented in Ref. 28.

eReference 40.
fReference 41.
gAs presented in Ref. 42.
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k ·p agree with the experiments and theoretical results.
Tables I and III show a comparison for the cases where ex-
perimental data seem to be well established. To this end, we

have used the large set of experimental values summarized
by Chelikowsky and Cohen,10 Landolt-Börnstein,28 Hybert-
sen and Louie,42 and Aulbur et al.,29 but also the most recent
optical measurements in Si �Ref. 40� and Ge �Ref. 41�. We
note that this assignment is in several cases somewhat tenta-
tive. The interpretation of the experimental peaks and critical
points is hindered when energetically close transitions take
place, e.g., due to SO-split bands. Moreover, the critical
points might originate from transitions close to, but not nec-
essarily exactly at, high-symmetry points in the Brillouin
zone. Aside from recent inverse-photoemission and photo-
emission experiments which have addressed certain high-
energy bands in Si and Ge,39 the complex shape of the dif-
ferent energy bands cannot be easily measured directly on its
whole structure.

It is clear from Tables I and III that the overall agreement
between theoretical and experimental band gaps is good. In
particular, the present k ·p model predicts indirect gaps of
1.17 eV in Si and 0.747 eV in Ge.

B. Curvature masses, Luttinger parameters, and DOS

The �-electron and L-electron effective masses were ob-
tained from the second derivative of the CB energy with
respect to the wave vector along various directions away
from the valley minima. The VBs are extremely nonpara-
bolic, and so the effective masses could not be evaluated by
the method described above. Instead, we used the six-level
k ·p Dresselhauss-Kip-Kittel model,17 which depends on
three Luttinger parameters, the values of which have been
fitted using a conjugate-gradient optimization. This optimi-
zation is based on a least-squares error between the curvature
masses along the �001�, �111�, and �110� directions obtained
with this six-level k ·p model and with the EPM, 30-level
k ·p, or GW models. We verified in the EPM and k ·p method

TABLE IV. Effective curvature masses and Luttinger
parameters.

Si Expt. G0W0 EPM k ·pd

ml
� 0.9163a 0.925 0.89 0.928

mt
� 0.1905a 0.189 0.198 0.192

ml
L 1.8083 1.855 1.704

mt
L 0.1235 0.1535 0.131


1 4.26,a 4.285a 4.54 4.01 4.338

4.22,b 4.340c


2 0.38,a 0.339a 0.33 0.38 0.3468

0.39,b 0.31c


3 1.56,a 1.446a 1.54 1.401 1.4451

1.44,b1.46c

Ge Expt. G0W0 EPM k ·pd

ml
� 0.881 0.964 0.874

mt
� 0.176 0.205 0.200

ml
L 1.588,f 1.74g 1.626 1.763 1.59

mt
L 0.08152,f 0.079g 0.074 0.099 0.099


1 13.0,h 12.8,e 13.54 9.54 10.41

13.25a


2 4.4,h 4.0,e 4.32 2.75 3.045

4.20a


3 5.3,h5.5,e 5.77 3.93 4.313

5.56a

aAs presented in Ref. 28.
bBalslev and Lawaetz, as presented in Ref. 22.
cReference 52.
dPresent model.
eReference 53.
fReference 54.
gReference 55.
hReference 17.

TABLE V. Elastic coefficients and internal strain parameter.

Si Ge

Expt. LDAa Expt. LDAa

D001 �GPa� 0.776 0.795 0.7513 0.711

D110 �GPa� 0.515 0.527 0.4498 0.42

D111 �GPa� 0.444 0.461 0.3711 0.343

C11 �GPa� 167.5d 168.3b 131.5d 132.8b

C12 �GPa� 65d 66.8b 49.4d 46.8b

C44 �GPa� 80.1d 79.9b 68.4d 66.57b

� 0.54c 0.536 0.54c 0.495

aPresent work.
bElastic constant calculated from the D values.
cReference 70.
dReference 71.

FIG. 3. Bulk Si0.5Ge0.5 electronic band structure obtained using
the 30-level k ·p model and GW calculation.
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that the present extraction technique of the curvature masses
and Luttinger parameters gives similar results to a direct cal-
culation based on the sum rules and the k ·p theory14,17,51

�e.g., the Chelikowsky-Cohen EPM values obtained by
Rieger and Vogl14 in Ge, 
1=9.563, 
2=2.77, and 
3=3.91,
can be compared to our results listed in Table IV�. The the-
oretical effective masses and Luttinger parameters are listed
in Table IV, and we can see that all methods provide reason-
ably good agreement with experimental values. It should be
mentioned nevertheless that the present k ·p model as well as
the present nonlocal EPM gives rather disappointing results
for the VB Luttinger parameters in Ge. Even if the present
k ·p parameter set improves the accuracy of the Luttinger

parameters, it still underestimates their values by about 20%.
When the Luttinger parameters are expressed in terms of
matrix elements,14,17,51 it becomes clear why it is so: They
contain the term P /E�2�l, the value of which is relatively

small in the present work.47

An accurate description of the DOS is key features for
accurate carrier density modeling within a realistic transport
model in semiconductors.56,57 The DOS is also a good check
for the quality of the present k ·p parameter set. Indeed, the
DOS not only depends on the band energies but also on their
gradient with respect to the wave vector �group velocity�.

The DOS is obtained using the Gilat-Raubenheimer
procedure.58 We applied exactly the same algorithm using
the k ·p �solid lines�, the EPM �dashed lines�, and the GW
models �dotted lines�, respectively. As can be seen in Fig. 6,
the agreement between the three models is excellent for the
VBs but also for the CBs from −5 eV up to 5 eV.

FIG. 4. �a� Band structure of a strained Si layer grown on a
�001�-oriented cubic Ge buffer and �b� band structure of a strained
Ge layer grown on a �001�-oriented cubic Si buffer. The Si layer is
biaxially strained in tension, while the Ge layer is biaxially strained
in compression. Simulations have been performed with the 30-level
k ·p model �solid lines�, EPM �dashed lines�, and GW �dotted lines�
along various directions connecting high-symmetry points of the
distorted Brillouin zone �Ref. 15�.

FIG. 5. Same as Fig. 4 but in case of �a� a strained Si layer
grown on a �111�-oriented cubic Ge buffer and �b� a strained Ge
layer grown on a �111�-oriented cubic Si buffer.
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C. Energy band shifts in strained Si1−xGex /Si1−yGey systems

The calculated energy shifts of the main VBs and CBs
extrema in Si, Ge, and Si1−yGey are shown in Figs. 7–9 for
material grown on �001�, �111�, and �110� Si1−yGey buffers,
respectively. In these figures, good agreement can be noticed
between first-principles simulations, EPM, and the present
k ·p models. An important effect of strain can be clearly seen,
for example, in Fig. 7: Several � eigenvalue shifts exhibit a
highly nonlinear �and even nonmonotonic� relation versus y.
This implies that the dependence of the energy gaps on strain
is substantially nonlinear, which has been reported for Ge
and GaAs.59 This typical result51 is induced by the coupling
between states due to symmetry lowering. Indeed, several
k-independent coupling terms �W� terms in the W30�30 per-
turbation matrix� occur in strained materials �e.g., for

sheared crystals between the �15 and �2�l states originally
noncoupled in the relaxed k ·p Hamiltonian�.

From the energy band shifts, we have calculated the de-
formation potentials which reflect the variation of an indi-
vidual band energy as a function of applied strain. Following
the notation of Van de Walle,7 the experimental values found
in strained Si and Ge for the splitting of the top of the VBs
are quoted in Table II. The deformation potentials av, bv, and
dv refer to the hydrostatic, the splitting, and the shear defor-
mation potentials of the VBs at �, respectively. Theoretical
deformation potentials are consistent with the experimental
ones except for dv in Ge, which is overestimated by �8%.
This result can be inferred from the slight overestimation of
the theoretical internal parameter � shown in Table VI �see
Appendix A�. Besides deformation potentials at �, other de-
formation potentials have been experimentally determined at
the lowest CB minima, typically along the L direction for Ge
and X direction for Si. In Table II, �d

� and �d
L are the hydro-

static CB deformation potentials, while �u
L and �u

� are the
splitting deformation potential.

It is worth mentioning that certain quantities listed in
Table II depend on the absolute VB hydrostatic deformation
potentials av. Individual quantities are difficult to measure
because they are referred to an absolute energy scale that is
in most cases determined using empirical rules �e.g., the
deep defect level pinning�.60,61 Theoretically, the relation to
an absolute energy is well defined only when specific bound-
ary conditions are introduced, which relate the potential to a
common zero of energy. Most modern band structure meth-
ods usually apply the periodic boundary condition, so the
electronic states are defined within an unknown constant.62

In this work, we did not calculate av; the energy scales have
been fixed by setting arbitrarily to zero the top of the VBs
and using the hydrostatic deformation potential values deter-
mined from carrier mobility by Fischetti and Laux13 �av=2
for Si, av=2.1 for Ge�. These values, which are consistent
with recent first-principles calculations,62 were later interpo-
lated for Si1−xGex alloys �av=2+0.1x�.

FIG. 6. The DOS of Si, Ge, and Si0.5Ge0.5 alloy: Comparison
between 30-level k ·p �solid lines�, EPM �dashed lines�, and GW
�dotted lines�.

FIG. 7. Calculated VB and CB shifts of a
strained Si layer as a function of y content in the
Si1−yGey buffer: k ·p �solid lines�, EPM �dashed
lines�, and GW �dotted lines� simulations per-
formed for various buffer orientations.
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D. Carrier masses in strained Si1−xGex /Si1−yGey systems

The electronic transport properties in strained devices de-
pend not only on the gap variation with strain, but also on the
carriers effective masses,13 which reflect the local curvature
of the band structure near a minimum in energy. Figures 10
and 11 show the strained Si and Ge electron curvature
masses change as a function of y content in the Si1−yGey
buffer for various orientations. Focusing, for example, on the
� valleys in purely biaxially strained Si layer ��001� buffer in
Fig. 10�, it can be seen that the change in curvature masses
depend on the � valleys in question but remain relatively
small ��10% �, which is in good agreement with cyclotron
resonance data for Si on �001�-Si0.7Ge0.3.

63 On the contrary,
for the �111�-growth case ��111� buffer in Fig. 10�, each �
valley exhibits the same longitudinal and transverse masses
but their values are significantly larger �up to 100%� than in

the bulk Si. Finally, the �110�-growth case is a mixture of the
two previous cases:7 The � valleys exhibit different longitu-
dinal and transverse curvature masses that can increase even
more than for the �111�-growth case. It can be noted that the
large increase of the curvature masses with shear strain is
much more pronounced for the � valleys than for the L val-
leys. We found out that, in addition to the increase of the
�-electron masses with applied strain, the �-valley minima
positions in reciprocal space also significantly change. This
behavior is generally more pronounced when shear distor-
tions are applied. For instance, the �-valley minimum dis-
tance along the �-X direction changes from 84% in bulk Si
up to 97% in strained Si on �111�-oriented Ge buffer. This
latter point and the changes in shape can be seen in the
three-dimensional �3D� surface plot at thermal energy � 3

2kT�
shown in Fig. 12. The � valleys in the first and second Bril-
louin zones are shown, respectively, along the �-X, �-Y, and

FIG. 8. Calculated VB and CB shifts of a
strained Ge layer as a function of y content in the
Si1−yGey buffer: k ·p �solid lines�, EPM �dashed
lines�, and GW �dotted lines� simulations per-
formed for various buffer orientations.

FIG. 9. Calculated VB and CB shifts of a
strained Si1−xGex layer grown on a Si buffer: k ·p
�solid lines� and GW �symbols� simulations per-
formed for various buffer orientations.
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�-Z directions for bulk Si and for the �001�- and �111�-
growth cases. The �-valley 3D surfaces in the first and sec-
ond Brillouin zones a re clearly separated in the bulk and in
the purely �001� biaxially strained crystal, while they
“merge” into a single 3D surface for the �111�-strained crys-
tal.

For the reason mentioned previously, the curvature
masses for the three topmost VBs cannot be easily evaluated
from parabolic fits. Instead, the variations of the DOS effec-
tive masses in coherently strained Si and Ge layers are
shown in Figs. 13 and 14 as a function of the mole fraction y
in the relaxed Si1−yGey buffer. In the unstrained crystal, the
heavy-hole DOS mass is approximately 3 times larger than
the light-hole mass. This difference decreases as soon as the
degeneracy at � between the heavy and light holes is re-
moved and the bands mixing becomes significant. As already
studied with the sum rule,11,51 strain-induced changes in the
Luttinger parameters, as observed in cyclotron resonance
experiments,64 are also involved in the results shown in Figs.
13 and 14.

At least four independent theoretical EPM calculations in
purely biaxially strained Si and Ge crystals have reported
changes in effective masses.11,13,14,51 However, few results
have been published for shear distortions.51 The present cal-
culations show similar behavior for biaxial strain and extend
the results to shear distortions. Although few direct measure-
ments of the curvature masses are available63,64 in strained Si
and Ge, recent transport simulations in inversion layers using
“full-band” Monte Carlo simulations65 have suggested that
changes in effective masses due to strain should be involved
to account for the mobility variations measured in strained
devices. Concerning the effective masses at the second CB
minima in energy �i.e., L valley in Si and � valley in Ge�,
similar good agreements between empirical methods �EPM
and k ·p � and GW results have been found. It should be

noted that these valleys could play a significant role in the
transport properties of strained semiconductors, particularly
for Ge, in which the � valley and L valley are separated by
only 200 meV. Indeed, in the case of a biaxially strained Ge
layer grown on a �001�-oriented Si1−yGey buffer the �-valley
minima lie at a lower energy than the L-valleys minima for
y� 0.5 �see Fig. 8�, which implies that these valleys would
contribute substantially to the current.

V. DISCUSSION

We have presented a 30-level k ·p model for bulk and
strained SiGe, the parameters of which have been optimized
using a conjugate-gradient procedure on a reference set of
energy bands obtained with first-principles calculations. The
first-principles simulations have been validated through an
accurate comparison with experimental results found in the
literature. For bulk Si, Ge, and SiGe alloys, a set of compari-
sons with experimental data has shown good agreement for
the main band gaps values �Tables I and III�, the carrier
effective masses, and Luttinger parameters �Table IV�. For
strained materials, we have benchmarked our first-principles
results using the deformation potential theory applied to the
specific case of Si and Ge epitaxial layers grown on �001�-,
�111�-, and �110�-oriented relaxed buffers. Theoretical defor-
mation potentials �Table II� have been found to be consistent
with experimental ones, within experimental error. A second
set of comparisons has been performed using the widely used
Chelikowsky-Cohen nonlocal EPM,10 including relativistic
corrections.

As presented in this paper, the present 30-level k ·p model
can be used to fit first-principles simulations accurately. This
is also an illustration that the k ·p method might be a good
and efficient method for another systems of material as well.

TABLE VI. Matrix elements of the linear momentum p �a.u.� used in the present k ·p model. Symbols of
group Oh are taken from Ref. 19. Other symbols for Si1−xGex �0�x�1� belong to group Td.

Matrix elements �a.u.� Si1−xGex

P� �

m 
�25�l �p ��2�l� 1.22−0.034x

Q� �

m 
�25�l �p ��15� 1.0679+0.0068x

R� �

m 
�25�l �p ��12�� 0.5427+0.0884x

P�� �

m 
�25�l �p ��2�u� 0.156−0.0081x

P�� �

m 
�25�u �p ��2�l� −0.008+0.078x−0.05x2

Q�� �

m 
�25�u �p ��15� −0.6555−0.1052x

R�� �

m 
�25�u �p ��12�� 0.8342−0.0126x

P�� �

m 
�25�u �p ��2�u� 1.425−0.0263x

T� �

m 
�1u �p ��15� 1.166−0.0247x−0.04x2

T�� �

m 
�1l �p ��15� 0.29+0.08x

S� �

m 
�15 �p ��2�l� −i0.1x�1−x�
S�� �

m 
�15 �p ��2�u� i0.3x�1−x�

SO coupling strength �eV� Si1−xGex

��25�l,�25�u 0.022+0.198x

��15,�25�l 0.04x−0.04x2
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Moreover, our procedure yields additional pieces of informa-
tion.

�i� Using first-principles simulations, important quantities
not addressed experimentally yet �high-energy levels and ef-
fective masses at the second CB minima� have been taken
into account in the present k ·p model.

�ii� SiGe compounds have been modeled using interpola-
tion functions between Si and Ge k ·p parameters. Additional
SO splittings and energy degeneracy removal �due to cen-
trosymmetry breaking� have been accounted for with supple-
mentary coupling k ·p parameters fitted on first-principles
data.

FIG. 10. Strained Si electron longitudinal and
transverse curvature masses as a function of y
content in the Si1−yGey buffer: k ·p �solid lines�,
EPM �dashed lines�, and GW �dotted lines� simu-
lations performed for various buffer orientations.

FIG. 11. Strained Ge electron longitudinal
and transverse curvature masses as a function of
y content in the Si1−yGey buffer: k ·p �solid lines�,
EPM �dashed lines�, and GW �dotted lines� simu-
lations performed for various buffer orientations.

RIDEAU et al. PHYSICAL REVIEW B 74, 195208 �2006�

195208-12



�iii� As emphasized by Fischetti and Laux,13 a rigorous
description of the carrier mobility in strained Si and Ge de-
vices is closely related to the accuracy of the BS calculation.
The “full-band” Monte Carlo �MC� approach, which solves
the Boltzmann transport equation, is one of the most prom-
ising ways to estimate the current in nanoscale devices. Most
of the “state-of-the-art” MC simulators13,54,57 are based on
the EPM BS calculation. In this paper, we have shown that
the nonlocal EPM and k ·p results were actually very close.
Recent full-band MC simulations based on the present k ·p
model have shown good agreement with EPM-based MC
simulations. It should be noted that from a practical point of
view, the computational burden of the k ·p calculations is
impressively reduced in comparison to EPM simulations:
The CPU time to obtain a complete band structure is ap-
proximately two orders of magnitude less than the CPU time
needed by EPM.66

For the reasons mentioned above, the present highly op-
timized k ·p parameter set improves the published k ·p pa-
rameters set of Refs. 19 and 21 for bulk materials and ex-
tends its predictions to SiGe alloys. Furthermore, the Pikus-
Bir perturbative treatment of strain was for the first time
evaluated in the Cardona-Pollak 30-level k ·p formalism.19

We have shown notably that this correction captures the
main feature of strained-crystal band structures, such as en-
ergy shifts7 and effective masses change11,13,14,51 due to

FIG. 12. 3D-surface plot at thermal energy of the lowest CBs
across the Brillouin zone edges along the �100�, �010�, and �001�
directions. Simulations performed for �a� bulk Si, �b� strained Si on
�001�-oriented cubic Ge buffer, and �c� strained Si on �111�-oriented
Ge buffer.

FIG. 13. Coherently strained Si layer hole masses as a function of Ge content y in the �001�, �111�, and �110� Si1−yGey buffers: k ·p �open
symbols� and GW �solid symbols�. Solid lines and dashed lines are a guide for the eyes; T=300 K.
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strain. It ought to be mentioned that this is not the case with
the recently published 20-level k ·p model for biaxially
strained Si and Ge,67 in which important contributions to the
strain perturbation matrix have been omitted. We found out
that the behavior of the CBs in strained Si and Ge strongly
depends on the Wk and W�,� terms in the perturbation matrix.
The neglect of such matrix elements leads to a large under-
estimation of the CB equienergy valley splitting and effec-
tive masses changes versus strain. Moreover, the time rever-
sal symmetry �e.g., as can be seen in Fig. 4 degeneracies at
the point X remain in the �001�-growth case� and correct
band shifts at L valleys versus strain cannot be obtained
without these contributions.

VI. CONCLUSION

In this paper, we have developed a highly optimized 30-
level k ·p model for strained Si, Ge, and SiGe alloys.

A series of ab initio DFT-LDA simulations that include
GW correction and relativistic effects in Si, Ge, and SiGe
alloys has been performed with a view to obtaining informa-
tion not addressed by experiments. Once a reference set of
energy bands has been obtained, we have optimized the k ·p
model parameters using a conjugate-gradient procedure in
order to fit as closely as possible first-principles results, but
also carrier effective masses and Luttinger parameters. A

simple interpolation between Si and Ge k ·p parameters has
been proposed in order to model SiGe alloys.

The electronic structure of strained Si1−xGex layers grown
on Si1−yGey buffers has been studied using first-principles
simulations. The Pikus-Bir correction23 for strained materials
has been examined within this 30-level k ·p formalism, and
the deformation potentials have been obtained from first-
principles simulations in order to fit the shifts of the 30
lowest-energy levels at � versus applied strain, but also the
general shape of the band structure of the strained crystal.

Finally, the present k ·p model has been validated through
an accurate set of comparisons with experimental data in
relaxed and strained Si, Ge, and Si1−xGex alloys. A second set
of comparisons with first-principles simulations, but also
with the widely used Chelikowsly-Cohen nonlocal EPM,10

has also shown a good agreement. The present k ·p descrip-
tion of strained Si, Ge, and SiGe accurately reproduces the
overall band structure, as well as the band shifts and the
carrier effective masses versus applied strain.
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FIG. 14. Coherently strained Ge layer hole masses as a function of Ge content y in the �001�, �111�, and �110� Si1−yGey buffers: k ·p �open
symbols� and GW �solid symbols�. Solid lines and dashed lines are a guide for the eyes; T=300 K.
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APPENDIX A: k ·p STRAIN TENSOR AND STRUCTURAL
OPTIMIZATION OF THE UNIT CELL IN

EPITAXIAL LAYERS

When Si and Ge are grown epitaxially on the cubic
Si1−yGey substrate, the layer atoms are described as being
subjected to biaxial tension and compression, respectively.
Using continuum elasticity theory, the biaxial strain tensor
can be written as

�DCS = ��� 0 0

0 �� 0

0 0 ��

� , �A1�

where the longitudinal strain ���=a�y� /a0−1 is imposed by
the slight difference between the lattice parameter in the
buffer and longitudinal ones in the layer. The normal strain
��=−D��� depends on the Poisson ratio D that determines the
displacements of the atomic plans along the normal �001�,
�111�, and �110� directions. It is to be noted that Eq. �A1� is
written in the device coordinate system �DCS�, whereas ato-
mistic methods typically work in the crystal coordinate sys-
tem �CCS�: Figure 15 shows, for different oriented crystals,
the vector basis �e��

�1� ,e��
�2� ,e�� in which the strain tensor is

expressed in its diagonal biaxial form �Eq. �A1��. In the case
of the �001�-oriented buffers, the CCS coincides with the
DCS, while for the �111� buffers and �110� buffers, the strain
tensor must be expressed in the CCS by means of an

appropriate rotation matrix. For the �111� buffer it can be
written as15

��111�
CCS =
�xx= �yy = �zz = 1

3 ��� + 2���� ,

�xy= �xz = �yz = 1
3 ��� − ���� ,

�A2�

and for the �110� buffer,

��110�
CCS = �

�xx= �yy = 1
2 ��� + ���� ,

�zz= ���,

�xy= 1
2 ��� − ���� ,

�xz= �yz = 0.

�A3�

The shifted Bravais lattice can be determined from the
strain tensor: B�= �1+�CCS� ·B. However, knowledge of the
Bravais lattice is not enough to infer the position of the at-
oms in the unit cell. An additional degree of freedom �which
occurs notably for shear distortions as it is the case in the
�111�- and �110�-growth cases� must be added to the dis-
placement of the atoms.68 The internal strain parameter �,
which measures how the distance between the two atoms in
the unit cell changes in response to the symmetry-breaking
stress, is known experimentally in Si and Ge uniaxially

FIG. 15. Distorted diamond structures coher-
ently grown on oriented substrates: �a� unstrained
cubic structure, �b� Si grown on �001�-Ge sub-
strate, �c� Si grown on �111�-Ge substrate, and �d�
Si grown on �110�-Ge substrate. For the �111�-
and �110�-growth cases, the inner displacements
of atoms in the distorted cell are shown for �=0
�white atoms� and �=1 �black atoms�. Also
shown are the basis vectors in which the strain
tensor is biaxial �see text for detail�. For clarity,
the distortion magnitude has been arbitrarily
amplified.
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strained along the �111� direction69,70 �and are quoted in
Table V�.

In the present first-principles simulations, the internal
strain parameters and the Poisson ratios have been calculated
by minimizing the total energy of the biaxially strained crys-
tal. For searching the equilibrium structure under external
applied strain ���, the total energy is minimized by varying
the unit cell length along the strain direction and the atomic
position in the unit cell. The theoretical Poisson ratios D001,
D111, and D110 and the internal strain parameters extracted
from the structural optimizations at ���→0 are reported in
Table V. Using continuum elasticity theory, these coeffi-
cients can be written as D001=2�C12/C11�, D110= �C11

+3C12−2C44� / �C11+C12+2C44�, and D111= �2C11+4C12

−4C44� / �C11+2C12+4C44�, where C11, C12, and C44 are the
elastic constants. It can be verified in Table V that the theo-
retical elastic constants obtained from D001, D111, and D110

together with the above equations are in good agreement
with the experimental values measured in Si and Ge.71

In Fig. 16, the theoretical Poisson ratio D and the internal
strain parameter � are reported as a function of applied biax-
ial strain ��. Simulations have been performed in tension in

Si �right� and in compression in Ge �left� for the three pre-
viously mentioned growth cases. As can be seen, for the
�001�-growth case D does not significantly depend on ��,
while for the �111�- and �110�-growth cases both D and �
change �up to �15%� with applied strain. The former case is
consistent with results of Ref. 6 concerning strained Ge lay-
ers grown on �001�-cubic Si. Changes in � with applied strain
have also been reported in Refs. 5, 8, and 72 as well as
elastic constant strain dependence.37 As shown in Sec. IV, the
energy band shifts depend on the deformation applied to the
crystal and thus the results shown in Fig. 16 have been care-
fully accounted for. For instance, we found out that the VB
energy shifts in Si grown on a �111�-Ge buffer are overesti-
mated �by roughly 10%� when both � and D are kept con-
stant �this behavior is inversed in Ge grown on �111�-Si
buffer�.

APPENDIX B: k ·p MATRIX FOR RELAXED MATERIALS

The 30-level k ·p matrix �Eq. �2�� for relaxed materials
can be written as

FIG. 16. Theoretical internal strain parameter � and theoretical normal strain coefficient D as a function of longitudinal biaxial strain
applied perpendicularly to the normal �001�, �111�, and �110� directions. The coefficients D are normalized to the experimental values listed
in Table V.
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Hk.p
30 = �

H�2�u

2�2
P�Hk

2�6 0 0 0 0 0 P�Hk
2�6

H�25�u

6�6
R�Hk

6�4 0 0 Q�Hk
6�6 P�Hk

6�2 H�25�u,�25�l

so

H�12�

4�4
0 0 0 0 RHk

4�6

H�1u

2�2
0 THk

2�6 0 0

H�1l

2�2
T�Hk

2�6 0 0

H�15

6�6 0 QHk
6�6

H�2�l

2�2
PHk

2�6

H�25�l

6�6

� , �B1�

whose diagonal blocks read

H�
6�6= diag�E� +

�2k2

2m
� + H�

SO,

H�
4�4= diag�E� +

�2k2

2m
� ,

H�
2�2= diag�E� +

�2k2

2m
� ,

�B2�

where k2=kx
2+ky

2+kz
2, and diag�¯� stands for the diagonal

matrix. E� is the eigenvalue of the state labeled by �, as
listed in Table I. The coupling constants �P , P� , P�, etc…�
are listed in Table V. H�

SO is the SO matrix, which depends
on the SO coupling parameters listed in Table VI:

H�
SO =

��

3 �
− 1 − i 0 0 0 1

i − 1 0 0 0 − i

0 0 − 1 − 1 i 0

0 0 − 1 − 1 i 0

0 0 − i − i − 1 0

1 i 0 0 0 − 1

� . �B3�

The nonzero k ·p blocks can be written as

Hk
6�6 = �

0 kz ky 0 0 0

kz 0 kx 0 0 0

ky kx 0 0 0 0

0 0 0 0 kz ky

0 0 0 kz 0 kx

0 0 0 ky kx 0

� ,

Hk
4�6 = �

0 �3ky − �3kz 0 0 0

2kx − ky − kz 0 0 0

0 0 0 0 �3ky − �3kz

0 0 0 2kx − ky − kz

� ,

Hk
2�6 = �kx ky kz 0 0 0

0 0 0 kx ky kz
� . �B4�

We have finally included a SO coupling term between the
�25u and the �25l states and fitted the coupling strength ��,�
in order to respect the time reversal degeneracy at X.

APPENDIX C: k ·p MATRIX FOR STRAINED MATERIALS

The perturbation matrix for strained materials �Eq. �3��
can be written as

TABLE VII. Strain perturbation matrix coefficients expressed in eV.

Symbols Si1−xGex Symbols Si1−xGex Symbols Si1−xGex Symbols Si1−xGex

l�25l −2.7−1.1x a12 7.7−0.885x l�25l,�25u −19.8−4.339x a�2l,�2u 0.3−1.511x

m�25l 4.2+0.7x b12 5.47+1.328x m�25l,�25u 3.9−4.024x a�1l,�1u −2−3.927x

n�25l −7.379−2.148x c12 7.3+0.445x n�25l,�25u −0.112x g�12,�2u −10.5+5.5x

l�15
� 3.4+2.626x d12 3.65+1.208x f�1u,�25u 6+5.22x g�12,�2l −4.5−0.854x

m�15
� −0.5+1.262x a�2l −9+1.819x f�1l,�25l −5−2.666x

n�15
� −10.392+0.258x a�2u 5−0.51x f�1u,�25l −10−2.21x

l�25u� −19−1.692x a�1l 10+4.171x f�15,�2l −19−3.242x

m�25u� 8+1.119x a�1u 0.5−0.992x f�15,�2u −2+21.925x

n�25u� −1.732+2.213x
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Wk·p
30 = �

W�2�u

2�2
P�Wk

2�6 W�2�u,�12�

2�4
0 0 W�2�u,�15

2�6 W�2�u,�2�l

2�2
P��Wk

2�6

W�25�u

6�6
R�Wk

6�4 W�25�u,�1u

6�2 W�25�u,�1l

6�2
Q�Wk

6�6 P�Wk
6�2 W�25�l,�25�u

6�6

W�12�

4�4
0 0 W�12�,�15

4�6 W�12�,�2�l

4�2
RWk

4�6

W�1u

2�2 W�1u,�1l

2�2
TWk

2�6 0 W�1u,�25�l

2�6

W�1l

2�2
T�Wk

2�6 0 W�1l,�25�l

2�6

W�15

6�6 W�15,�2�l

6�2
QWk

6�6

W�2�l

2�2
PWk

2�6

W�25�l

6�6

� . �C1�

There are two types of coupling terms in the matrix described by Eq. �C1�; k-independent terms �labeled W�� coming from the
second term in Eq. �3� and terms that are linear in k �labeled Wk� coming from the first term in Eq. �3�.

The k-independent W� blocks can be written as

W�
6�6 = �W�

3�3 0

0 W�
3�3� ,

W�
3�3 = �l�xx + m��yy + �zz� n�xy n�xz

n�xy l�yy + m��xx + �zz� n�yz

n�xz n�yz l�zz + m��xx + �yy�
� ,

W�12

4�4 = �
A�xx + B��yy + �zz� E��yy − �zz� 0 0

E��yy − �zz� C�xx + D��yy + �zz� 0 0

0 0 A�xx + B��yy + �zz� E��yy − �zz�
0 0 E��yy − �zz� C�xx + D��yy + �zz�

� ,

W�
2�2 = a�	

i
��ii 0

0 �ii
� ,

W�
2�6 = f���yz �xz �xy 0 0 0

0 0 0 �yz �xz �xy
� ,

W�
4�2 = g��

�3��yy − �zz� 0

2�xx − �yy − �zz 0

0 �3��yy − �zz�
0 2�xx − �yy − �zz

� ,

W�
4�6 = h��

0 �3�xz − �3�xy 0 0 0

2�yz − �xz − �xy 0 0 0

0 0 0 0 �3�xz − �3�xy

0 0 0 2�yz − �xz − �xy

� . �C2�

The deformation potentials �l ,n ,m, etc.� are listed in Table VII �the coefficients not mentioned in the table are set to zero�.
Group-theory considerations allow us to write the five coefficients A, B, C, D, and E as a linear combination of four
coefficients:

A = 6�b12 − d12� ,

B = 3�a12 + b12 − 2c12� ,

C = 2�2a12 − 4c12 + b12 + d12� ,
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D = 5b12 − 2c12 − 4d12 + a12,

E = �3�2c12 − 2d12 − a12 + b12� . �C3�

The first term in Eq. �3� gives rise to an additional nondiagonal k-independent coupling between states of the same polarity.
These blocks and the corresponding deformation potentials have been labeled using a double-subscript notation �e.g., W�12,�2u�.
For simplicity, we dropped the double-subscript notation for the coupling between identical states �e.g., W�12

�.
Finally, the k ·p coupling terms due to the second term in Eq. �3� can be written as

Wk
6�6 = − 	

i �
0 �izki �yiki 0 0 0

�izki 0 �xiki 0 0 0

�iyki �ixki 0 0 0 0

0 0 0 0 �izki �yiki

0 0 0 �izki 0 �xiki

0 0 0 �iyki �ixki 0

� ,

Wk
4�6 = − 	

i �
0 �3�iyki − �3�izki 0 0 0

2�ixki − �iyki − �izki 0 0 0

0 0 0 0 �3�iyki − �3�izki

0 0 0 2�ixki − �iyki − �izki

� ,

Wk
2�6 = − 	

i
��ixki �iyki �izki 0 0 0

0 0 0 �ixki �iyki �izki
� , �C4�

where i stands for x, y, and z.
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