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We have used the master equation to simulate variable-range hopping �VRH� of charges in a strongly
disordered d-dimensional energy landscape �d=1,2 ,3�. The current distribution over hopping distances and
hopping energies gives a clear insight into the difference between hops that occur most frequently, dominate
quantitatively in the integral over the mobility distribution, or are critical ones that still need to be considered
in that integral to recover the full low-temperature mobility. The recently reported scaling with temperature of
the VRH-current distribution over hopping distances and hopping energies is quantitatively analyzed in 1D and
2D, and accurately confirmed. Based on this, we present an analytical scaling theory of VRH, which distin-
guishes between a scaling part of the distribution and an exponential tail, separated by critical currents that set
the scale and that follow self-consistently at each temperature. This naturally renders Mott’s law for the
low-temperature mobility, in a way and with a physical picture different from that of the established critical-
percolation-network approach to VRH. We argue that current fluctuations as observed in simulations are
intrinsic to VRH and play an essential role in this distinction.
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I. INTRODUCTION

The low-temperature charge mobility in disordered con-
ductors continues to receive much attention both experimen-
tally and theoretically.1–11 As shown already by Mott,12 this
mobility can be understood to result from thermally assisted
variable-range hopping �VRH� between localized states of
varying energy. Mott thereby considers a single-hop rate of
the form exp�−�R−��� �� is the inverse localization length
and �=1/kBT� first introduced by Miller and Abrahams,13

which accounts both for tunneling through the tail of the
wave function and for a phonon-assisted thermal activation.
At low temperatures, a compromise has to be sought be-
tween hopping distances R well beyond the nearest-neighbor
distance and hopping energies � well above kBT, to reach a
percolating conduction path through the bulk disordered me-
dium. By identifying the bulk mobility �* with the probabil-
ity of a single critical hop for persistent transport Mott de-
rived a dominant temperature dependence �apart from
logarithmic corrections� of the form

log �* = − �T0/T��, �1�

with

kBT0 = a�d��d/�F, �2�

and with ��1/ �d+1�; a�d� is a constant of order unity, �F

the �constant� density of states at the Fermi level, and d the
spatial dimension.

The universal softer-than-activated temperature-
dependent mobility given by Mott’s law has been accurately
verified experimentally for widely different classes of mate-
rials and broad ranges of temperatures �although it should
be added that at very low temperatures often an exponent
�=1/2 is found even in the case of three-dimensional hop-
ping; the latter observation indicates so-called Efros-
Shklovskii hopping,14 in which Coulomb interactions be-

come dominant in the hop and induce a gap in the density of
states�. However, the theoretical understanding of Mott’s law
has been a subject of much discussion. To improve upon
Mott’s choice of representing the statistical and highly disor-
dered transport process by a single critical hop, several
authors15–17 have mapped the problem onto a mean-field
random-resistor network and used a percolation approach to
calculate the network mobility. In this approach, bonds are
artificially introduced in the �d+1�-dimensional VRH space
of site position and energy in decreasing order of conduc-
tance, until at a minimum conductance a first continuous
path is reached, which should correspond with the Mott per-
colation point. The minimum bond conductance is then iden-
tified with the bulk conductance, while bonds of still lower
conductance are supposed to become short-circuited, and are
left out.

Very recently, extensive simulations of VRH currents
have been reported which give a detailed insight into the
distribution of VRH currents in the two-dimensional space of
hopping distances and hopping energies.18 In particular, this
work numerically reveals a scaling of the VRH currents, in
such a form that the normalized distribution of currents over
the two-dimensional space of random-resistor variables de-
pends on temperature only via a dimensionless parameter
l���d� /�F��; this parameter is proportional to Mott’s criti-
cal parameters �RM��� and ��M���, and is used in Ref. 18 to
scale the random-resistor distances and energies. In view of
Mott’s analysis, such temperature dependence may be ex-
pected for the parameters of some typical hop derived from
the distribution, but the striking result of Ref. 18 is that the
scaling actually turns out to hold for a large area in param-
eter space around the mean. Only for very low values of the
conductances the numerical scaling is seen to break down;
typically this happens beyond the critical value below which
in the percolation approach currents are assumed to be neg-
ligible. This suggests a deeper relation between Mott’s law,
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the percolation approach, and the scaling of the VRH cur-
rents, but no such relation has been established in Ref. 18.
Rather, the results in Ref. 18 for the 3D system seemed to
indicate that a non-negligible part of the current distribution
still persisted beyond the critical percolation boundary, even
for T→0. A second major result from the recent paper is that
the simulated VRH chemical potentials and currents show a
marked pattern of spatial fluctuations, which qualitatively
appears to scale again in accordance with Mott’s parameters.

In Ref. 18, a general scale-transformation argument has
been given to understand the scaling with the dimensionless
parameter l, but this still leaves three fundamental questions
unanswered. First, to understand the relation between this
scaling and Mott’s law; second, to clarify the relation with
the percolation approach, including the apparent conver-
gence problems mentioned above; and third, to understand
the origin and effect of the current fluctuations in the picture
of variable-range hopping. The objective of the present paper
is to come to answers to all three fundamental questions. To
do so, we will first present more extensive simulation data,
gathered by the same methods as in Ref. 18, but analyzed in
variables that do not assume a random-resistor network and
also allow faster convergence for low temperatures. Second,
we rationalize the scaling data in terms of an analytical scal-
ing theory of VRH, with a physical picture distinct from the
established critical-percolation-network argument. Third, we
will argue that fluctuations intrinsic to VRH play a natural
role in this distinction.

II. SIMULATION METHOD

To simulate the VRH currents we follow the same master-
equation approach as in Ref. 18 �see also Refs. 19–21�. We
first generate randomly distributed energies on each site of
an array of lattice constant R0 and size Ld, d=1,2 ,3, by
sampling from an interval �����0 /2��2R0

d�F�−1. �Note that
disorder is here only energetic; we can choose a regular lat-
tice since in the limit that we are interested in the hop lengths
will be much larger than the lattice constant. Positional dis-
order is important however beyond the Ohmic regime.22�
Charges are introduced by setting the chemical potential in
the Fermi-Dirac �FD� distribution zero. Then we apply an
electric field in the x-direction and solve the steady-state
Kirchhoff equation for the FD occupation numbers ni, with
sites i having position vectors Ri and energies �i. The effec-
tive mobility then follows as

�ni
0��*E = L−d�

i�j

Rij�Wijni�1 − nj� − �i ↔ j�	 . �3�

Here the angular brackets represent a sample average, ni
0 is

the equilibrium occupation number, and Wij the Miller-
Abrahams transition rate13

Wij = 
	0 exp�− ��Rij� − ��� j − �i�	 , � j 
 �i,

	0 exp�− ��Rij�� , � j � �i,
� �4�

with 	0 an intrinsic rate; � includes a contribution −qE ·R
from the external field E, q being the particle charge. Within
the mentioned random-resistor description, the left hand of

Eq. �3� is written in terms of the sample conductance G*,
while the hopping-rate factor between square brackets at the
right-hand side can be replaced by a product of a local con-
ductance Gij and a potential difference Vij; Eq. �3� then takes
the form

�L2−dR0
2/q�G*E = L−d�

i�j

RijGijVij = �RijGijVij� . �5�

Using this equality, the random-resistor-percolation approach
identifies the bulk conductance G* with some critical mini-
mum conductance level Gij,c that is needed to achieve per-
colation upon sequential introduction of all Gij in decreasing
order; obviously this leaves ambiguity in the associated hop
length �Rij� in the average �5�.

III. NUMERICAL RESULTS

To show the numerical results of our master-equation
simulation for the temperature dependence of the mobility
we introduce units q=R0=	0=�0=1.

Figure 1 confirms that in each dimension �* follows a
straight line for low temperatures only if the temperature is
plotted as �1/�d+1�, a direct consequence of Mott’s VRH. This
has already been shown by McInnes and Butcher.21 The
slopes of the curves give prefactors a�d�=2.81,1.24,1.20 for
the relation between kBT0 and �d /�F.

Our simulations enable us to see what actually happens in
�R ,�� space by writing

�*��� =� dRd���R,�;�� , �6�

with the distribution ��R ,� ;�� following from the summand
in Eq. �3�. Figure 2 shows typical examples of the distribu-

FIG. 1. �Color online� Mobility as a function of temperature for
three spatial dimensions. Array sizes Ld used for calculations:
L=10 000, 200, and 60 for d=1,2 ,3, respectively. The number of
neighbors N taken into account is N=79,99,215 for d=1,2 ,3. Av-
eraging over different disorder realizations is performed to get error
bars smaller than the symbol size; for d=3 the error bar is of the
order of the symbol size. The inset shows the 2D high-T activated
behavior.
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tion in 1D ��=1, ��� /�F�1/2=7.3	 and 2D ��=3.6,
���2 /�F�1/3=9.3	. The continuous contour lines have been
generated from the simulation data by a Mathematica interpo-
lation routine. Clearly, our results for 1D and 2D are similar,
but we will mainly focus on 2D because the 1D case is
known to show possible finite-size peculiarities as pointed
out first by Lee23 and Serota, Kalia, and Lee.24 Because of
computational demand, the 3D distribution has not been
thoroughly investigated, but it looks qualitatively the same.

Our detailed results distinguish between hops that are
dominant, critical, or most frequent. Figure 2 clearly shows
peaks at �Rp ,0� giving the dominant contribution to the mo-
bility; the figures have mirror images for ��0, understand-
able from energy conservation. Around the peak the distribu-
tion falls off slower than exponentially, and only for large
�R+�� equidistant lines reflecting the Miller-Abrahams ex-
ponential decay can be recognized. We note that, if the
slopes in Fig. 1 are to be attributed to critical hops �RM ,�M�,
then for d=2, �=3.6, ���2 /�F�1/3=9.3, we have �RM

+��M =11.5, far from the maximum at ��Rp ,��p�= �7.0,0�
in Fig. 2 and in the region where the logarithmic contours
become equidistant.

From mobility distributions at higher temperatures it is
seen that the peak then shifts to smaller distances. To study
the full �R ,�� picture as a function of temperature, we have
scaled in Fig. 3 the distributions ��R ,� ;�� of two higher
temperatures �d=2, �=3.6, ���2 /�F�1/3=7.2 and 8.8	 to the
data of Fig. 2 by plotting �scaled�� /�* vs scaled variables
Rscaled
�R�−1/�d+1�, �scaled
��d/�d+1�. Strikingly, the con-
tours from different temperatures coincide both in the peak
position and in a much larger �R ,�� domain around it. In
fact, significant deviations from this scaling behavior only
emerge when �R+�� approaches values where the logarith-
mic contours become equidistant, values which in Fig. 2
were identified as critical. Obviously, beyond these critical
values the exponential decay precludes scaling. The cross
over from the scaling regime to the exponential regime,
around the critical Mott values, is first observed at the high-
est temperature. The above results in particular confirm in
quantitative detail the observations of scaling reported in
Ref. 18, though in a different energy variable.

To better visualize the effective jump frequency of the
diffusive hops one may alternatively plot � /R2 rather than �.
We have done so in Fig. 4 for the temperature-scaled data,
where for better accuracy we have chosen 1D results only. In
this plot for the jump frequency the peak disappears and the
distribution increases to a constant near the origin, showing
that this is the region of the most-frequent hops. Beyond the
critical hops, where the contour lines are equidistant, the
straightness of these frequency contours is particularly note-
worthy; it suggests that in this regime of unlikely hops the
jump rate � /R2 accurately depends on the sum of the dimen-
sionless hopping variables �R ,�� only.

IV. DERIVATION OF MOTT’S LAW

Let us now rationalize these findings, and in particular
show how they imply Mott’s law. A natural energy scale in
the problem is �0= �R0

d�F�−1, where �F is the �constant� den-
sity of states near the Fermi level �F. For ��0�1 there is
nearest-neighbor hopping, but for ��0�1 the charge carrier

FIG. 2. �Color online� Distribution of hops ��R ,��� and their
contribution to the mobility at a fixed temperature. The left-hand
picture shows the situation for d=1, �=1, ��� /�F�1/2=7.3, and the
right-hand side for d=2, �=3.6, ���2 /�F�1/3=9.3. Both plots are
normalized on the peak and have contour lines with decreasing
values: 0.9, 0.5, 0.1, and then one per decade.

FIG. 3. �Color online� Scaled hop rate �scaled�Rscaled ,�scaled�
�contour lines are normalized to the peak, and from 10−1 decreasing
per decade� for three different temperatures in the Mott regime.
Left-handed contour plot shows �d=1, �=1�: ��� /�F�1/2=5.3
�solid line�, 6.6 �dashed line�, and 7.3 �dotted line� and right-handed
contour plot shows �d=2, �=3.6�: ���2 /�F�1/3=7.2 �dotted line�,
8.8 �dashed line�, and 9.3 �solid line�.

FIG. 4. �Color online� Scaled hop rate �scaled/Rscaled
2 �contour

lines per decreasing decade with respect to origin� for three differ-
ent temperatures in the Mott regime �d=1, �=1�: ��� /�F�1/2=5.3
�dotted line�, 6.6 �dashed line�, and 7.3 �solid line�.
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is forced to hop further away to find a percolating path. If,
like Mott stated, there are maximum hops, characterized by
RM��� and �M���, that still contribute, we can make the fol-
lowing two assumptions: �a� for �R ,�� beyond this maximum
we have a contribution ���
 that becomes negligible, and
�b� in the remaining �R ,�� space the only relevant scales in
the contributions to ���� are RM and �M. Supported by
Figs. 2 and 3 we can make these assumptions explicit in the
following scaling ansatz:

���R,�;��/�*��� = �Fh� R

RM���
,

���
�M���� ,

�
�R,�;��/�0 = �F��R�2 exp�− �R − ����� . �7�

Here h�x ,y� is a scaling function which is of order unity in
the central part of �R ,�� space. The denominator �* in the
expression for �� is the self-consistent and T-dependent mo-
bility scale in the �R ,�� domain of relevant hops, while the
denominator �0 in the expression for �
 sets the natural
scale of the mobility via an intrinsic T-dependent factor. It
may be easily verified that expressions exactly of these forms
are implicit in a self-consistent effective-medium theory of
VRH;25 in that case h�x ,y� is a trivial function.

Given the expressions for the different regimes, the re-
quirement of continuity at the crossover dictates

���RM,�M ;�� = �
�RM,�M ;�� , �8�

or, with Eq. �7�,

�*��� = �0
��RM�2

h�1,1�
exp�− �RM − ��M� . �9�

So, the temperature dependence of the mobility �*��� is in-
deed via an exponential dependence on the scaling param-
eters �RM��� and ��M���, as supposed by Mott; however,
with an additional factor ��RM�2 /h�1,1�, which is

temperature-dependent and numerically may be considerably
larger than unity.

In view of the symmetry between �RM��� and ��M��� in
determining the upper boundary of the scaling regime we
argue that there is in fact one scaling parameter: �RM���
=��M����
M���, so the mobility �9� becomes

�*��� = �0
�
M���	2

h�1,1�
exp�− 2
M���	 . �10�

The �-dependence of 
M��� then follows from the self-
consistency requirement that in the low-temperature limit
�*��� should be recovered by restricting Eq. �6� to the inte-
gral over ���R ,� ;�� only, i.e., to the scaling area

�1 − ���*��� = �
�R+�����2
M

dRd����R,�;�� , �11�

with the residue � vanishing in that limit. This condition
should correspond to the Mott percolation condition, since
around percolation a first new natural scale enters the prob-
lem. The result is


M��� = � �1 − ��
H

�d�

�F
��

� l���/H� 
 ��, � → 0,

�12�

with �=1/ �d+1�, l���= ��d� /�F��, and

H�d� � �
�x�+�y��2

dx dy h�x,y� . �13�

The combination of Eqs. �10� and �12� renders Mott’s law
�1�, with an additional algebraic temperature dependence via
the prefactor. Comparison of Eqs. �2�, �10�, and �12� yields
for the numerical constant in Eq. �2�: a�d�=21/� /H�d�.

To validate the scaling ansatz �7� quantitatively, we show
in Fig. 5 cross sections through scaled current distributions
�scaled�Rscaled ,�scaled� along �=0, for a variety of parameter

FIG. 5. �Color online� Cross section along ���=0 of the scaled distribution �scaled�Rscaled ,�scaled� for �d=1, left�: �=1 and ��� /�F�1/2

=5.3 �squares�, 6.6 �circles�, 7.3 �triangles�; for �d=2, right�: �=2 and ���2 /�F�1/3=5.3 �down triangles�, 6.5 �squares�, �=3.6 and
���2 /�F�1/3=7.2 �circles�, 9.3 �diamonds�, �=7 and ���2 /�F�1/3=17 �up triangles�. The inset shows the same plots but represented in a
linear fashion.
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values in 1D and 2D. The graphs clearly illustrate the scaling
and nonscaling regions; in particular, the straight lines in
these plots correspond to uncorrelated Miller-Abrahams hop-
ping, so the currents in the scaling region are well below that
level. The interpretation is that easy Miller-Abrahams hops
will be passed recurrently �and hence put in series� before a
charge carrier escapes from a local region, and more fre-
quently so the easier the hop. By contrast, difficult Miller-
Abrahams hops will not likely be revisited. The distinction
between “easy” and “difficult” effective bonds follows self-
consistently from the temperature-dependent average mobil-
ity �*, and leads to the crossover from a renormalized and
scaling distribution �� to an exponential tail �
, separated
by the Mott scale.

V. CROSSOVER AND CONVERGENCE AT LOW
TEMPERATURES

The expressions �� and �
 are only asymptotically equal
to ��R ,�� sufficiently below and above �RM +��M, respec-
tively. The sharpness of the crossover to negligible contribu-
tions beyond 
M can be characterized, e.g., by the value of
the residue

� =
1

�*�����R+����
2
M

dRd����R,�;�� , �14�

which still has to be proven small. The integration in Eq.
�14� straightforwardly gives a prefactor ��d� /�F�−1, which
vanishes linear in T. However, the integrand includes a factor
��R�2 and the integration also runs over the areas �R+����

2
M with �R�
M or �����
M, which leads to a power
series in 
M in the numerator of the prefactor. Still, since
asymptotically 
M

d+1
 ld+1
� we conclude that � is indeed
small, but only vanishes linear in 
M

−1 when T→0 or
�−1→0:

� =
h�1,1�

��d�/�F�
�c−2
M

−2 + c−1
M
−1 + ¯ cd
M

d � �
h�1,1�

H

cd


M
.

�15�

For increasing T or �−1 the contribution from the outer inte-
gration region increases, and hence the deviation from scal-
ing near �RM ,�M� will increase, as was observed in Fig. 3;
note that in constructing Figs. 3 and 5 the limit form of Eq.
�12� has already been used, which introduces additional er-
rors of O���.

Obviously the crossover and the numerical corrections to
scaling for increasing temperature and delocalization are be-
yond the present asymptotic theory and deserve further
study. We have nevertheless checked the values of � vs tem-
perature in 1D and 2D in Fig. 6 and conclude that the simu-
lation data are consistent with Eq. �15�: for larger values of
�−1 the residue � decays to approximately zero like the lead-
ing factor at the right hand of Eq. �15�, while the correction
factors in Eq. �15� would bend the curves down even further
in the limit �−1→0. The latter effect will be stronger, and
hence the initial convergence weaker, for higher dimensions.

VI. COMPARISON WITH RANDOM-RESISTOR
AND PERCOLATION DESCRIPTIONS

For comparison with the numerical results in Ref. 18, it is
important to note that our energy variable ���= �� j −�i� differs
from that considered in the random-resistor-network
description,15–17 and also used in Ref. 18 for analyzing data
from the master-equation simulation. The latter energy vari-
able will henceforth be denoted � and reads in our notation
�ij ����i�+ �� j�+ ��i−� j�� /2; it only corresponds exactly with
Eq. �4� for energy states asymptotically far from �F. Still, for
the dominant critical hops between such states—those cross-
ing �F—the variables ��� and � are identical; these hops will
also be the ones to which the ansatz �
 Eq. �7� should par-
ticularly apply. In terms of the initial and final energies �i, � j
the full difference between ��� and � is visualized in Fig. 7.
It shows that where the double sum in Eq. �3� has in Eq. �6�
been replaced by an integral �dRd�, this would in the
random-resistor variables be replaced by �dRd��. The extra
factor � simply shifts the position of the peak in the hop
distribution away from the horizontal axis, as was observed
in Ref. 18. Also, it is clear from this extra factor � that linear
contours as considered in the regime of critical hops in Fig. 4
will not remain linear in the random-resistor variables; note
that in Ref. 18 the boundary of critical hops was assumed
linear in the latter variables. For further comparison with the
analysis of Ref. 18 it should also be realized from Fig. 7 that
the use of the energy variable ������ j −�i� in the energy in-
tegration, rather than �ij ����i�+ �� j�+ ��i−� j�� /2 �as done in
Ref. 18�, guarantees at equal ���, � a faster convergence in
the double summation �3� over all site energies �i, � j. These
observations may explain why in Ref. 18 the 3D current
distribution for low temperatures appeared to remain sub-

FIG. 6. �Color online� The left-hand graph
shows the temperature dependence of � for the
1D case with �=1, the right-hand side for 2D
with �=3.6. The error bar in each graph indicates
the effect on � when an error of 5% enters in the
determination of 
M; this would be a systematic
error, shifting all points simultaneously.
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stantial beyond the assumed linear boundary of critical-
percolation hops.

Percolation arguments have extensively been used to de-
rive and examine Mott variable-range hopping theory �see,
e.g., Refs. 15–17�. To make a connection, we define and
compare two partial mobilities: �s

*�
� is obtained from the
master equation by integrating the exact solution on the full
lattice only partly, up to the variable 
 �as in the scaling
approach�; by contrast, �p

*�
� is the mobility obtained by
exactly solving the master equation for the corresponding
partial lattice, i.e., with lattice bonds beyond 
 removed �as
in the percolation approach�. In Fig. 8 �s

*�
� reaches at the
point 
=
M about 90% of its saturation value, and we have
verified in Fig. 6 that for lower T it gets near 100%, consis-
tent with the scaling theory. This point is very close to the
threshold 
c where �p

*�
� starts to show percolation; below
the latter point �p

*�
� vanishes. So whereas the characteristic
scales 
M, 
c �and hence the corresponding T-dependent ex-

ponentials exp�−2
�	 seem close, the percolation picture can-
not account for the level of conductivity, since removing
bonds rather than ignoring their effective current contribu-
tion in the numerical integration renders a different network
with an essentially different current distribution.

It should be emphasized that the original percolation ap-
proach of Refs. 15–17 applies to a random-resistor network
in the variables R, �, whereas in Eq. �3� we consider data
from the master equation, and use the variables R, �. An
additional difference between the two models is that in cal-
culating the overall conductance from Eq. �5�, the random-
resistor calculation ignores the obviously present correlation
between the hop distance �Rij� and hop rate GijVij. Further-
more, the treatment of Ref. 17 derives the prefactor of Mott’s
law explicitly from the properties of the just-percolating net-
work, with many network bonds removed; as demonstrated
in Fig. 8 such removal of bonds may have an effect, with
consequences different for slightly different models. So we
conclude that quantitative numerical differences will remain
between our master-equation results and the outcome of the
percolation approach. An extensive numerical study of the
percolation behavior on a random-resistor network has been
performed recently.26

VII. THE ROLE OF FLUCTUATIONS

A striking conclusion from Fig. 8 is that while the integral
of the current distribution up to the Mott scale 
M approaches
the total current, with increasing accuracy for lower tempera-
tures, bonds just beyond this scale may not simply be cut. An
insight into this may already be obtained from Fig. 5, which
shows that even at such temperatures there exists a regime
beyond 
M in which the current distribution still deviates
somewhat from an exponential, i.e., hops are still correlated.
The explanation is that the very occurrence of variable-range
hopping points at a local lack of accessible energy levels,
i.e., to poor spatial statistics. Detailed balance in the master
equation can only give Fermi statistics at the expense of
correlated local chemical potentials and currents; these are
the correlated potentials and currents observed in the
simulations.18 A first estimate for a length scale Rfl beyond
which homogeneous Fermi statistics occurs and correlations
will vanish is

�F�Rfl���	d � � . �16�

Comparison with the Mott condition shows that a scale thus
defined will indeed be much larger than the Mott scale. In
terms of the dimensionless variable 
 we have for the ratio of
scales


 fl/
M � 
M
1/d 
 �1/�d�d+1�	, �17�

which weakly diverges in the limit of low temperatures.
�Note that the existence of a regime beyond 
M with devia-
tion from exponential behavior actually necessitates a refine-
ment of the asymptotic analysis leading from Eq. �14� to Eq.
�15�, i.e., to a proof that the residue � vanishes. However, it
may be easily verified that in a corrected expression �14� the
integrand remains dominated, and may be bounded from
above, by an exponential, leading to the same arguments.	

FIG. 7. Visualization of the relation between the site energies �i,
� j, their energy difference �, and the random-resistor energy vari-
able �. For fixed and equal upper boundaries ���=�=C the integra-
tion over ��� covers a larger part of parameter space �the band be-
tween parallel lines� than that over � �the shaded area�, leading to
faster convergence in the calculation of the simulated mobility.

FIG. 8. �Color online� Comparison between the mobilities �s
*�
�

and �p
*�
� as a function of 
 �values of 2
 are indicated�, where

�s
*�
� and �p

* are defined in the text, for a 2D system with �=3.6
and ���2 /�F�1/3=9.3. The dotted line indicates the position of 
M.
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So we propose a picture that beyond a scale 
 fl much
larger than the Mott scale single uncorrelated hops will al-
ways be possible within a distance kBT from the sample-
averaged Fermi level, and that on such a scale the system
obeys homogeneous Fermi statistics. Below 
 fl some very
large hops �Rij ,�ij� may occasionally become important to
avoid unfavorable local energy regions, but this reflects local
fluctuations in the network properties and in the resulting
VRH currents. In this regime all bonds �i , j� of one type
�Rij =R, ��ij�= ���� together may contribute little to the total
current at low temperature, but cutting them all—as in the
percolation approach—implies cutting also the locally im-
portant ones. Inevitably this will be at the expense of some
reduction in the total current; however, in the low-
temperature limit this effect remains dominated by the expo-
nential tail in the current distribution, and vanishes faster
than the total current itself. Only below the Mott scale 
M,
which self-consistently separates a scaling-dominated regime
from an exponential-dominated regime, all bonds become
essential in recovering the total low-temperature current of
the full network; here the VRH mechanism, with hops maxi-
mally of length RM, is necessary to overcome the large aver-
age spacing between local energy levels, in order to percolate
across regions of size Rfl.

It is interesting to note that the spatial fluctuations dis-
cussed here will become practically relevant in real samples
of reduced dimensions L with RM �L�Rfl, since the finite
sample size then affects the equilibration condition �16� and
hence cuts off part of the potentially contributing energy
states and VRH paths; effectively, this forces the charge
through steeper, wider-spaced energy landscapes with sig-
nificant sample-to-sample variations. On the basis of Eq.
�16� one may guess that in a sample of size Ld the hop-
energy scale �
�F

−1/d+1�, and hence the fluctuations in the
Mott energy and Mott length �and thus also the fluctuations
in the exponent of the mobility� become proportional to
L−d/d+1; assuming that for RM �L�Rfl exponential localiza-
tion is valid, i.e., that the conductance scales exponentially
with linear system size L, we guess that the logarithm of the
conductance would then fluctuate proportional to L1/d+1. In

fact, the fluctuations discussed in this paper are essentially
the same as the geometrical “intrinsic fluctuations in the
Mott hopping process” originally discussed by Lee23 and Se-
rota, Kalia, and Lee24 in the context of VRH conduction
through finite 1D samples, and later extended to 2D
configurations27 and to quantum effects.28 The case d=1
thereby creates special logarithmic size-dependent features,
leading to strong mesoscopic-conductance variations as ob-
served, e.g., in narrow-channel MOSFET devices.29

VIII. CONCLUSIONS

To summarize, in �R ,�� space the region of relevant Mott
hops bounded by 
M��� is a scaling regime, with a self-
organized hop distribution only determined by scaled vari-
ables. In this regime of relatively easy passages the effective
hop probabilities are well below the corresponding single-
hop Miller-Abrahams factors; this can be understood as be-
ing due to iterative hops before local escape. At the boundary
there is a crossover, via a regime with current fluctuations
intrinsic to VRH, towards a Miller-Abrahams-type single-
bond hopping distribution, i.e., to an exponential cutoff. The
scaling regime diverges for T→0. Most-frequent hops occur
around the origin while there is a peak of dominant contri-
butions well inside the scaling boundary. The position of the
boundary, determined by a Mott-type condition for a critical
hop, is temperature-sensitive, and due to scaling this tem-
perature dependence enters �* in a form as envisaged by
Mott.

ACKNOWLEDGMENTS

The authors acknowledge the support of H. B. Brom and
H. P. Huinink throughout this work, and the important con-
tributions of P. A. Bobbert to the simulation results. One of
the authors �M.A.J.M.� acknowledges a stimulating discus-
sion with B. I. Shklovskii. This work forms part of the re-
search program of the Dutch Polymer Institute �project 274�.

*Present address: Philips Research Eindhoven.
†Author to whom correspondence should be addressed. Electronic

mail: m.a.j.michels@tue.nl
1 For a review see, e.g., T. G. Castner, in Hopping Transport in

Solids, edited by M. Pollak and B. I. Shklovskii �North-Holland,
Amsterdam, 1991�, p. 1.

2 A. Faggionato, H. Schulz-Baldes, and D. Spehner, Commun.
Math. Phys. 263, 21 �2006�.

3 T. Vuletic, B. Korin-Hamzic, S. Tomic, B. Gorshunov, P. Haas,
M. Dressel, J. Akimitsu, T. Sasaki, and T. Nagata, Phys. Rev. B
67, 184521 �2003�.

4 H. C. F. Martens, I. N. Hulea, I. Romijn, H. B. Brom, W. F.
Pasveer, and M. A. J. Michels, Phys. Rev. B 67, 121203�R�
�2003�.

5 D. N. Tsigankov and A. L. Efros, Phys. Rev. Lett. 88, 176602

�2002�.
6 V. I. Arkhipov, E. V. Emelianova, and G. J. Adriaenssens, Phys.

Rev. B 65, 165110 �2002�.
7 Z. G. Yu and X. Song, Phys. Rev. Lett. 86, 6018 �2001�.
8 T. G. Castner, Phys. Rev. B 61, 16596 �2000�.
9 J. A. Reedijk, H. C. F. Martens, H. B. Brom, and M. A. J. Mich-

els, Phys. Rev. Lett. 83, 3904 �1999�.
10 M. C. J. M. Vissenberg and M. Matters, Phys. Rev. B 57, 12964

�1998�.
11 N. V. Lien and R. Rosenbaum, Phys. Rev. B 56, 14960 �1997�.
12 N. F. Mott, J. Non-Cryst. Solids 1, 1 �1968�; Philos. Mag. 19,

835 �1969�.
13 A. Miller and E. Abrahams, Phys. Rev. 120, 745 �1960�.
14 A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 �1975�.
15 V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B 4,

UNDERSTANDING MOTT’S LAW FROM SCALING… PHYSICAL REVIEW B 74, 195129 �2006�

195129-7



2612 �1971�.
16 M. Pollak, J. Non-Cryst. Solids 11, 1 �1972�.
17 B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped

Semiconductors �Springer, Berlin, 1985�.
18 W. F. Pasveer, P. A. Bobbert, H. P. Huinink, and M. A. J. Michels,

Phys. Rev. B 72, 174204 �2005�.
19 Z. G. Yu, D. L. Smith, A. Saxena, R. L. Martin, and A. R. Bishop,

Phys. Rev. B 63, 085202 �2001�.
20 P. N. Butcher, in Linear and Nonlinear Electronic Transport in

Solids, edited by J. T. Devreese and V. E. van Doren �Plenum,
New York, 1976�, p. 348.

21 J. A. McInnes and P. N. Butcher, Philos. Mag. B 39, 1 �1979�.
22 I. I. Fishchuk, A. Kadashchuk, and H. Baessler, Phys. Status So-

lidi C 3, 271 �2006�.
23 P. A. Lee, Phys. Rev. Lett. 53, 2042 �1984�.
24 R. A. Serota, R. K. Kalia, and P. A. Lee, Phys. Rev. B 33, 8441

�1986�.
25 B. Movaghar and W. Schirmacher, J. Phys. C 14, 859 �1981�.
26 H. P. Huinink, P. A. Bobbert, W. F. Pasveer, and M. A. J. Michels,

Phys. Rev. B 73, 224204 �2006�.
27 R. A. Serota, Solid State Commun. 67, 1031 �1988�.
28 A. M. Somoza, M. Ortuno, and J. Prior, Europhys. Lett. 70, 649

�2005�.
29 A. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Rev. Lett. 48,

196 �1982�.

W. F. PASVEER AND M. A. J. MICHELS PHYSICAL REVIEW B 74, 195129 �2006�

195129-8


