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We consider the problem of fermions interacting with gapless long-wavelength collective bosonic modes.
The theory describes, among other cases, a ferromagnetic quantum-critical point �QCP� and a QCP towards
nematic ordering. We construct a controllable expansion at the QCP in two steps: we first create a non-Fermi-
liquid “zero-order” Eliashberg-type theory, and then demonstrate that the residual interaction effects are small.
We prove that this approach is justified under two conditions: the interaction should be smaller than the
fermionic bandwidth, and either the band mass mB should be much smaller than m=kF /vF, or the number of
fermionic flavors N should be large. For an SU�2� symmetric ferromagnetic QCP, we find that the Eliashberg
theory itself includes a set of singular renormalizations which can be understood as a consequence of an
effective long-range dynamic interaction between quasiparticles, generated by the Landau damping term. These
singular renormalizations give rise to a negative nonanalytic q3/2 correction to the static spin susceptibility, and
destroy a ferromagnetic QCP. We demonstrate that this effect can be understood in the framework of the �4

theory of quantum criticality. We also show that the nonanalytic q3/2 correction to the bosonic propagator is
specific to the SU�2� symmetric case. For systems with a scalar order parameter, the q3/2 contributions from
individual diagrams cancel out in the full expression of the susceptibility, and the QCP remains stable.
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I. INTRODUCTION

Quantum-critical behavior in two-dimensional �2D� sys-
tems with continuous symmetry continues to attract substan-
tial interest from the condensed-matter community. Near
criticality, bosonic collective modes in either the spin or the
charge channel �depending on the problem� are soft, and mu-
tual feedback effects between bosonic and fermionic degrees
of freedom lead to a rather peculiar behavior of both the
fermionic and bosonic propagators. In this paper, we study in
detail this behavior for two-dimensional �2D� systems.

For systems with continuous symmetry, the dynamics of
low-energy bosons is dominated by Landau damping, and
the collective-mode propagator dressed by a particle-hole
bubble behaves as

��q,�m� =
�0

�−2 + q2 + ����m�/q�
. �1.1�

At �=�, the bosonic propagator becomes massless, signaling
an instability towards a particular ordering. The dynamical
exponent z, which measures how the frequency scales with
momentum at criticality ���qz�, is z=3.

Physically, the complexity of the problem resides in the
presence of gapless fermions at the quantum critical point
�QCP�. In ordinary QCP in localized electron systems, one
deals with only one type of massless modes, namely a
bosonic mode associated with the fluctuations of the order
parameter. In itinerant electron QCP, massless bosonic
modes interact with conduction electrons, which are gapless
at the Fermi surface, and this interaction affects both elec-
trons and bosons. One can still reduce the problem to inter-
acting bosons by formally integrating the fermions out of the
partition function. It was originally conjectured1 that this

leads to a conventional �4 field theory with the bare propa-
gator given by Eq. �1.1�, i.e., to a �4 theory in an effective
dimension d+z. Since z=3, the bosonic sector is above its
upper critical dimension for d	1, and the critical exponents
have mean-field values.

However, this description turns out to be oversimplified
by two reasons. First, it does not address the issue of what
happens to the fermions at the QCP. It turns out that for
fermions, the upper critical dimension is dc

+=3, such that in
d=2 the fermionic self-energy is singular and critically af-
fects the behavior of low-energy fermions. Second, the �4

theory for bosons is actually rather peculiar as the prefactors
for the �4 and higher-order terms are determined by low-
energy fermions, and are sensitive to the behavior of these
fermions near the QCP.

These two arguments imply that at the QCP in itinerant
electron systems, fermions and bosons should be considered
self-consistently and on equal footing. The key theoretical
challenge in this context is to develop a controlled computa-
tional scheme to describe the correct behavior of electrons
interacting with gapless bosonic collective degrees of free-
dom.

The problem of fermions interacting with bosons with the
propagator �1.1� at �=� was previously analyzed in the con-
text of 2D fermions interacting with a singular gauge field,2–6

and was also applied to a gauge theory of high-Tc
superconductors,7 and compressible quantum Hall effect.8

Later, this problem was studied in the context of 2D fermions
near a ferromagnetic instability,9–12 and, very recently, in the
context of fermions near an instability towards a nematic-
type ordering with angular momentum l=2.13–16 That last
transition was argued by some studies17 to be relevant to the
cuprates. Similar problems have been studied in the context
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of finite momentum spin18 and charge19 ordering transitions
in itinerant fermionic systems.

An analytic treatment of the problem was originally car-
ried out by Lee,5 and later on by Blok and Monien,6 and
Altshuler, Ioffe, and Millis2 for the interaction with the gauge
field. They showed that the fermionic self-energy scales as

��m�= ��m�2/3�0

1/3 sgn ��m� to second-order in perturbation,
pointing to a breakdown of the Fermi-liquid behavior. They
estimated higher-order terms and argued that the �2/3 form of
the self-energy survives to all orders in perturbation. On the
other hand, nonperturbative eikonal expansion3 and closely
related approaches based on 2D bosonization20,21 yielded a
different behavior, in which the fermionic Green’s function
decays exponentially with coordinate and time. This would
be consistent with a divergent perturbative expansion for the
self-energy. Altshuler and collaborators argued that this last
result only survives in the artificial limit of a vanishing num-
ber of fermionic flavors N→0: at any finite N �including the
physical case N=1�, the finite curvature of the fermionic dis-
persion prevents the perturbation series for the self-energy to
become singular �see also Ref. 22�.

The discussion on the interplay between perturbative cal-
culations and 2D bosonization re-emerged recently in the
context of the quantum critical point for a Pomeranchuk in-
stability towards nematic ordering. Metzner and
collaborators15 and, very recently, Khveshchenko and one of
us23 argued that 
�����2/3 is the correct result at criticality,
while Lawler et al.14 argued, based on 2D bosonization, that
nonperturbative effects change this behavior. Adding to the
controversy, Kopietz24 argued that higher-order corrections
to the self-energy hold in powers of �2/3 � ln ��n, where the
geometrical series of logarithms gives rise to an extra power
of frequency, such that 
��2/3−a.

In this paper, we re-analyze the problem. We consider a
ferromagnetic QCP �z=3 with spin SU�2� symmetry�, and a
QCP towards nematic ordering, towards Ising-type ferromag-
netism, and a gauge-field problem—these three last problems
are mathematically equivalent and correspond to z=3 and
U�1� symmetry of the order parameter. We construct a con-
trollable expansion at the QCP by creating a non-Fermi-
liquid “zero-order” theory by solving the set of coupled
equations for the fermionic and bosonic propagators, while
neglecting the vertex corrections as well as the momentum
dependence of the fermionic self-energy. This procedure is
often called the Eliashberg theory because of its resemblance
to the Eliashberg theory for the electron-phonon
interaction.25 We analyze the residual interaction effects us-
ing our zero-order propagator instead of free fermions. We
confirm an earlier result of Ref. 2 that the residual interaction
does not change the functional behavior of the self-energy.
We perform a careful analysis of the structure of the infrared
divergences in the theory. We analyze in detail the vertex
corrections at various momenta and frequencies, the inter-
play between the Migdal approximation and Ward identities,
the role of the curvature of the fermionic dispersion, and the
interplay between a direct perturbation theory for free fermi-
ons and an effective perturbation theory in which one ex-
pands around the Eliashberg solution. We also obtain the
leading correction to the fermionic density of states �DOS�.

A generic condition for the validity of the Eliashberg
theory is that bosons should be slow modes compared to

fermions �i.e., for a fixed frequency, the bosonic momentum
should be larger than the fermionic one�. Then fermions,
forced by the interaction to vibrate at frequencies near the
bosonic pole, are far from their own resonance and thus have
a small spectral weight, giving rise to only a small correction
to the electron-boson vertex �this is also known as the
Migdal theorem�. Typical bosonic momenta in Eq. �1.1� scale
as �1/3 and are obviously slower than free fermions whose
momenta scale as �. The situation becomes less clear once
the fermionic self-energy is included. We show that the cor-
rection to the static fermion-boson vertex is determined by
frequencies at which the fermionic self-energy is of order of
a bare �, and the static vertex correction is small, for a
fermion-boson coupling smaller than the fermionic band-
width. This coincides with the generic condition for the va-
lidity of the low-energy description since otherwise the phys-
ics is not restricted to the vicinity of the Fermi surface.

This generic condition, however, is not a sufficient one at
the QCP of spatially isotropic systems—we show that there
are corrections to the Eliashberg theory which come from the
scattering process in which one component of the bosonic
momentum is near the bosonic mass shell, while the other is
near the fermionic mass shell. We find that such corrections
are dangerous as the expansion around the Eliashberg solu-
tion then holds in powers of terms of order 1. The same
expansion around free fermions yields terms which formally
diverge as powers of �−1/3 if one neglects the curvature of
the Fermi surface.14,23 We show, in agreement with Ref. 2,
that in this situation, the way to construct a fully controllable
perturbation expansion around the Eliashberg theory at the
QCP is to either assume that the curvature of the Fermi sur-
face is large, or extend the theory to a large number of fer-
mionic flavors N. In this case, the self-energy diagrams with
vertex insertions are all small, and the theory is under con-
trol.

We emphasize that this smallness does not imply that the
theory is in the weak-coupling limit—the Eliashberg self-
energy �given by the one-loop diagram� does not “feel” the
curvature and diverges as �2/3 leading to non-Fermi-liquid
physics at the QCP. Another exception is the pairing vertex,
which does not feel the curvature as well, and is of order 1.

In the second part of the paper we show that there exists a
third singular scattering process in which both fermionic and
bosonic momenta vibrate near the fermionic mass shell. This
third process is qualitatively different from the first two scat-
tering processes in which at least one component of the
bosonic momentum is near the bosonic mass shell.

We show that this process �which by virtue of scattering
near the fermionic mass shell is within the Eliashberg theory�
gives rise to a nonanalytic momentum expansion of the static
vertex. We show that for a ferromagnetic SU�2� symmetric
QCP, this nonanalyticity eventually gives rise to a nonana-
lytic and negative correction to the static spin susceptibility.
This correction exceeds the q2 term in Eq. �1.1� and makes a
ferromagnetic QCP unstable.

The issue of whether the QCP is internally stable has been
the subject of numerous discussions in the recent literature.
This work was pioneered by Belitz, Kirkpatrick, and Vojta26

who found that in a generic 3D Fermi liquid far from the
QCP, the static spin susceptibility �s�q� has a negative
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nonanalytic momentum dependence, leading to a minimum
of �s

−1�q� located at some incommensurate momentum,
rather than at q=0. The same result was later obtained for 2D
systems.27 If one were to formally extend the Fermi-liquid
results to the quantum critical region, one would obtain that
the continuous QCP becomes unstable.28 It was a priori un-
clear, however, whether this extension procedure is justified,
since the Fermi-liquid behavior does not seem to survive as
one approaches the QCP.

To address this issue we explicitly compute the static spin
susceptibility at criticality, and show that it is negative and
nonanalytic at the smallest momenta. This implies that a fer-
romagnetic QCP is indeed unstable, as the Fermi-liquid
analysis suggests. We argue that the nonanalyticity in �s�q� is
associated with the Landau damping term, which gives rise
to an effective long-range dynamic interaction between qua-
siparticles both away from and at the QCP. The singular
fermionic self-energy at criticality only modifies, in not a
very essential way, the functional form of the nonanalyticity
compared to that in a Fermi liquid.

We also discuss the emergence of the nonanalytic term in
the static spin susceptibility in the framework of the Hertz-
Millis-Moriya �HMM� �4 theory of quantum criticality.1 As
we said above, this theory assumes that there exists a regular
expansion of the effective action in powers of the order-
parameter field �. We show that this is actually not the case,
and the prefactor of the �4 term is nonanalytic and depends
on the ratio between typical momenta and frequencies. We
show that this nonanalyticity feeds back as a nonanalytic
�q�3/2 correction of the quadratic term in �. We study how the
nonanalyticity in �s�q� affects the fermionic self-energy and
show that it gives rise to self-energy terms larger than �2/3

�beginning at the three-loop order�. The series of such terms
eventually leads to a breakdown of the Eliashberg theory for
the fermionic self-energy at the energy scale related to the
typical momentum scale at which �s�q� becomes negative.

We show that the nonanalytic corrections to the bosonic
propagator and the divergent corrections to the fermionic
self-energy are specific to the SU�2� spin-symmetric case.
For a nematic instability, as well as for a ferromagnetic in-
stability in systems with Ising symmetry, the dangerous
terms in the bosonic propagator and the fermionic self-
energy cancel out, and the QCP is stable.

The paper is organized as follows. In Sec. II we discuss
the model. In Sec. III we present a quick analysis of the
self-energies, justifying all at once the Eliashberg-like treat-
ment and the need to include the curvature of the fermionic
dispersion. In Sec. IV, we discuss the Eliashberg theory near
quantum criticality. In Sec. V, we analyze in detail the con-
ditions one has to impose in order for the Eliashberg theory
to be valid. This includes the computation of all vertex cor-
rections, as well as the momentum-dependent self-energy at
the two-loop level. We also compare the results obtained by
strict perturbative expansion using free fermions, and the
Eliashberg-type calculations.

In Sec. VI we address the issue of the stability of a ferro-
magnetic QCP. We revisit the scaling arguments that a ferro-
magnetic QCP must be stable in dimension D	1 and show
that the prefactor for the �4 term is actually a nonanalytic
function of the ratio of frequency and momentum. We show

that this nonanalyticity feeds back as a nonanalytic correc-
tion to the static spin susceptibility. We explicitly compute
the momentum-dependent term in �s�q� at the two-loop or-
der, both in the Fermi-liquid regime away from a ferromag-
netic QCP and at criticality. In both cases, we find that the
dominant term at small q is negative and nonanalytic. We
also show that the instability of a ferromagnetic QCP can be
also detected by computing the fermionic self-energy which
at the three-loop order acquires extra singular terms because
of the singularity in the static susceptibility. In Sec. VII, we
evaluate the charge susceptibility at two-loop and three-loop
orders and show that it remains analytic—all nonanalytic
contributions from individual diagrams cancel out. Finally, in
Sec. VIII, we present our conclusions and discuss the conse-
quences of the instability of a continuous QCP towards fer-
romagnetic ordering. Technical details are presented in Ap-
pendixes A–F. A short version addressing part of the results
of Sec. VI has been presented in Ref. 29. For convenience,
all the physical parameters used throughout the text are pre-
sented in Table I.

II. MODEL

The model we consider describes low-energy fermions
interacting with Landau-overdamped collective bosonic ex-
citations which are either gapless by symmetry reasons �as is
the case for the interaction with a gauge field�, or become
gapless at the quantum critical point �for the nematic and the
ferromagnetic problems�.

The underlying lattice models may be quite different for
these three cases, but the low-energy models are very similar,
the only difference being that in the case of the ferromag-
netic QCP the gapless bosonic excitations are in the spin
channel, whereas in the nematic case and the gauge field
problem they are in the charge channel.

The general strategy to derive the low-energy model is to
start with a model with fermion-fermion interaction, assume
that there is only one low-energy collective degree of free-
dom near the QCP, decouple the four-fermion interaction
term using the critical bosonic field as an Hubbard-
Stratonovich field, and integrate out of the partition function
all high-energy degrees of freedom, with energies between
the fermionic bandwidth W and some cutoff �.18,30

If this procedure was performed completely we would
obtain a full renormalization group treatment of the problem.
Unfortunately, there is no controllable way of doing so. It is
widely believed though that although the propagators of the
remaining low-energy modes possess some memory of the
physics at high energies, the integration of high-energy fer-
mions does not give rise to anomalous dimensions for the
bare fermionic and bosonic propagators in the low-energy
model. In practical terms, this assumption implies that the
bare propagator of the relevant collective mode is an analytic
function of momentum and frequency, and the fermionic
propagator has the Fermi-liquid form

G�k,�� =
Z0

i� − k
, �2.1�

where Z0�1 is a constant, and k is the renormalized band
dispersion. Near the Fermi surface,
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k = vFk� +
k�

2

2mB
. �2.2�

Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
m=mB.

One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions �with the propagator given by Eq.
�2.1�� and long-wavelength collective spin excitations whose
propagator �the spin susceptibility� is analytic near q=0 and
�=0:

�s,0�q,�� =
�0

�−2 + q2 + A�2 + O�q4,�4�
. �2.3�

Here A is a constant, and � is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the �2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one �s,0�q�. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:

Hsf = �
k,�
kck,�

† ck,� + �
q

�s,0
−1�q�SqS−q

+ g �
k,q,�,�

ck,�
† ���ck+q,� · Sq, �2.4�

where �= ��x ,�y ,�z� are Pauli matrices. Here Sq with q
�� /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
U�q� and assume that only the forward scattering is relevant
�U�0�=U�:

H = �
k,�
kck,�

† ck,� +
1

2�
q

U �
k,k�,�,�

ck,�
† ck+q,�ck��

† ck�−q,�.

�2.5�

In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices ��� ·���=−������+2������,
one can demonstrate31 that in each of the channels, the
random-phase approximation �RPA� summation is exact, and
the fully renormalized four-fermion interaction U��,��

full �q� is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity �2.2�
m bare quasiparticle mass, m=kF /vF �2.2�
m* effective �renormalized� quasiparticle mass �4.8�
mB band mass, determines the curvature of the Fermi

surface
�2.2�

g spin-fermion coupling constant �2.4�
� ferromagnetic correlation length �2.3�
�0�

2 value of the spin susceptibility at q=0 �2.3�
N number of fermionic flavors

ḡ=g2�0 effective four-fermion interaction �4.6�
�= Nmḡ

�vF
Landau damping coefficient �4.5�

�= 3ḡ�
4�vF

dimensionless coupling constant, it measures the
mass enhancement: �= m*

m −1
�4.6�

�0= 3	3ḡ3

8�3�vF
3 � ḡ2

NEF
frequency up to which 
��� dominates over � in

the fermionic propagator
�4.9�

�Max=	�vF
3 �	NḡEF frequency up to which the fermionic and the

bosonic mass shells are well separated
�5.3�

�= ḡ2

�vF
3 � ḡ

NEF
small parameter, measuring the slowness of the
bosonic modes compared to the fermionic ones;

the same small parameter justifies the low-energy
description

�5.1�

�=
mB

mN
small parameter related to the curvature of the

fermionic dispersion
�5.13�
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U��,��
full �q� = U
�������1

2
+ G�� + ���

i ���
i �1

2
+ G�� ,

�2.6�

where i= �x ,y ,z�, and

G� �
1

2

1

1 − U��q�
; G� � −

1

2

1

1 + U��q�
, �2.7�

with ��q�=− m
2� �1−a2�q /kF�2�, a	0.

For positive values of U satisfying mU /2��1, the inter-
action in the spin channel is much larger than the one in the
charge channel. Neglecting then the latter, we can simplify
the Hamiltonian �2.5�:

H = �
k,�
kck,�

† ck,� +
1

2�
q

Ueff�q�

� �
k,k�,�,�,�,�

ck,�
† ���ck+q,� · ck��

† ���ck�−q,�, �2.8�

where Ueff�q�= �1/2�U2��q� / �1+U��q��. Performing a
Hubbard-Stratonovich decomposition in the three fields Sq,
one recasts Eq. �2.8� into Eq. �2.4� with

�
g = U

a

2

�0 = 2
kF

2

Ua2

ḡ = g2�0 = �U/2�kF
2

�−2 =
kF

2

a2� 2�

mU
− 1� � . �2.9�

The QCP is reached when mU /2�=1, i.e., �−2=0. This co-
incides with the Stoner criterion for a ferromagnetic
instability.32

We emphasize that the bosonic propagator in Eq. �2.3�
does not contain the Landau damping term. This is because
we only integrated out the high-energy fermions, whereas the
Landau damping of a collective mode of energy � comes
from fermions of energy ���, and can only be generated
within the low-energy theory. The dynamics of both the
bosonic fields Sq and the fermionic c and c† is determined
self-consistently by treating both fluctuations on equal foot-
ing.

To put under control the computations carried out later in
the paper, it is necessary to extend the model by introducing
N identical fermion species, while keeping the SU�2� spin
symmetry. The Hamiltonian �2.4� can then be rewritten as

Hsf = Hf + Hb + Hint,

where

Hf = �
k,j,�
kck,j,�

† ck,j,�

Hb = �
q

�s,0
−1�q�Sq · S−q

Hint = g �
k,q,j,�,�

ck,j,�
† ���ck+q,j,� · Sq, �2.10�

where the index j=1. . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. �2.10� as the

starting point of our analysis. In the case of a QCP in the
charge channel, or a ferromagnetic instability with Ising
symmetry, the bosonic vector field S becomes a scalar field
designated as �. The interacting term is also modified, the
Pauli matrices being replaced by ��� for the interaction with
charge fluctuations, and by ���

Z in the Ising case. The corre-
sponding interaction Hamiltonians are

�Hint
Charge = g �

k,q,j,�,�
ck,j,�

† ���ck+q,j,��q

Hint
Ising = g �

k,q,j,�,�
ck,j,�

† ���
Z ck+q,j,��q

. �2.11�

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. �2.4� using a
perturbation expansion around noninteracting fermions. Our
goal here is threefold: to relate the Landau damping coeffi-
cient to the fermion-boson coupling constant g, to distinguish
between 
��� and 
�k�, and to demonstrate the importance
of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-loop
order. We verified that to this order, there is no qualitative
difference between the quantum critical point in the spin or
in the charge channel. We then restrict our presentation to the
spin-fermion model near a ferromagnetic QCP.

A. Bosonic self-energy: Landau damping term

The full bosonic propagator depends on the self-energy
��q ,�� according to

�s�q,�� =
�0

�−2 + q2 +��q,��
. �3.1�

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig. 1,
and reads

��q,�� = 2Nḡ� d2kd�

�2��3 G�k,��G�k + q,� +�� ,

�3.2�

where ḡ=g2�0.
The curvature of the fermionic dispersion does not affect

much the result of this computation as it only leads to small
corrections in q /mBvF. Neglecting the quadratic term in the

FIG. 1. �a� Polarization bubble. �b� One-loop fermionic self-
energy. �c� Two-loop fermionic self-energy.
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fermionic propagators, we introduce the angle � defined as
k+q=k+vFq cos � and perform the integration over k,
which gives us

��q,�� = i
Nḡm

2�2 �
−�

+�

d����� +�� − �����

� �
0

2�

d�
1

i� − vFq cos �
=

Nmḡ

�

���
	�vFq�2 +�2

.

�3.3�

At the QCP, the bosonic mass shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.,
near a mass shell q and � satisfies ��q ,���q2. It
follows that, at the QCP, near the bosonic mass shell,
vFq /��vF�mḡvF

2 /�2�1/3�1 at small enough frequency, so
that vFq is the largest term in the denominator of ��q ,��.
The expression of the bosonic self-energy then reduces to

��q,�� = �
���
q

, �3.4�

where �= Nmḡ
�vF

.
This expression describes the Landau damping with a

prefactor depending on the fermion-boson coupling constant.
This term is larger than a regular O��2� term, and fully
determines the dynamics of the collective bosonic mode.

B. One-loop fermionic self-energy

We now turn to the fermionic self-energy, right at the
QCP, where �−1=0. To the lowest order in the interaction, the
fermionic self-energy contains one bosonic line, as repre-
sented in Fig. 1�b�, and its analytic form writes


1
free�k,�� = 3ig2� d2qd�

�2��3 G0�k + q,� +����q,�� .

�3.5�

The superscript “free” implies that we use the free fermionic
G0�k ,�� in the integral for the self-energy.

In a direct perturbation theory in g, one would have to use
the bare form of the bosonic propagator, Eq. �2.3�, which
leads to 
���� ln �. However, this result is useless, as we
already know that the Landau damping term completely
overshadows a regular frequency dependence in Eq. �2.3�. It
makes more sense then to estimate the perturbative self-
energy using the full bosonic propagator Eq. �3.1�. This is
not a fully self-consistent procedure, but we use it here to
estimate the functional forms of the self-energy at various
orders in perturbation around free fermions.

It is instructive to distinguish between 
�kF ,��=
���
and 
�k ,0�=
�k�. Substituting the renormalized bosonic
propagator with the Landau damping term into Eq. �3.5�, the
frequency-dependent self-energy reads


1
free��� =

3iḡ

�2��3 � d� qdq d�
1

q2 + �
���
q

�
1

i�� +�� − vFqcos �
. �3.6�

Here � is the angle between kF and q, and we linearized the
fermionic dispersion. Evaluating the integral over the angle,
and using that the typical internal bosonic momentum
q��1/3 is much larger than ���, we obtain


1
free��� =

3ḡ

2�2vF
�

0

�

d�� dqq

q3 + ����
= �0

1/3�2/3, �3.7�

where

�0 =
3	3ḡ3

8�3vF
3�

=
3	3ḡ2

8�2NmvF
2 . �3.8�

This result has been obtained in Ref. 5. It shows that in
D=2, the interaction between bare fermions and critical
bosons leads to a breakdown of the Fermi-liquid behavior: at
low energies, the �2/3 term in Eq. �3.7� is larger than the bare
� in the fermionic propagator. This obviously makes one
wonder if higher-order insertions lead to even more singular
contributions.

We next compute the one-loop self-energy 
�k�, given by


1
free�k� =

3iḡ

�2��3 � d� qdq d�
1

q2 + �����/q�

�
1

i� − k − vFqcos �

=
3ḡ

�2��2k� d� dq

q2 + �����/q�
q���

��2 + �vFq�2�3/2 .

�3.9�

One can make sure that the integral is infrared convergent,
i.e., 
free�k��k, with an interaction dependent prefactor,
which also depends on the upper cutoff of the theory, �. This
suggests that the momentum dependent part of the fermionic
self-energy is regular at the QCP and only leads to a finite
mass renormalization.

C. Two-loop fermionic self-energy

We next calculate the contribution to the fermionic self-
energy 
��� from diagrams at the two-loop level. For illus-
trative purposes, we consider the diagram presented in Fig.
1�c�, which writes


2
free��� � g4� d�1d2q1� d�2d2q2G�kF + q1,� + �1�

� G�kF + q1 + q2,� + �1 + �2�G�kF + q2,� + �2�

� ��q1,�1���q2,�2� , �3.10�

where we use the full bosonic propagator, the free fermionic
one, and we restrict ourselves to the frequency dependence.
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We first compute this integral expanding the dispersion of
the internal fermions to linear order, since the quadratic term
was not significant in the computation of the one-loop
bosonic and fermionic self-energy. Choosing the x axis along
the external k=kF and integrating over q1

x and q2
x, we are left

with


2
free��� �

ḡ2

vF
2�
�

0

� d�1dq1y

q1y
2 + ���1�/q1y

�
�−�1

� d�2dq2y

q2y
2 + ���2�/q2y

� �0
2/3�1/3, �3.11�

where �0 is defined in Eq. �3.8�. At low energy, this two-loop
self-energy diverges faster than the one-loop self-energy ob-
tained in Eq. �3.7�. Estimating higher-order diagrams, we
find that they form a series in powers of ��0 /��1/3, such that
the perturbative expansion around free fermions breaks up at
���0. This result is in line with the one obtained by Lawler
et al.14 using a two-dimensional bosonization scheme. The
scale �0 is related by �0=vF /x0 to the spatial scale at
which the equal-time fermionic Green’s function G�x�, ob-
tained from bosonization, begins decaying exponentially
�G�x��e−�x/x0�1/3

�.
However, the divergence of the perturbation theory can be

cured once the curvature of the fermionic dispersion is in-
cluded, as we now show. We re-evaluate the two-loop self-
energy �3.10�, using now the full fermionic dispersion, Eq.
�2.2�. After integrating over the momentum component q1

x

and q2
x, one has


2
free��� �

ḡ2

vF
2�

0

� d�1dq1y

q1y
2 + ����1�/q1y�

�
�−�1

� d�2dq2y

q2y
2 + ���2�/q2y

�
1

i� − q1yq2y/mB
�

mB
2 ḡ2

�2vF
2 � ln2 � . �3.12�

This result agrees with Ref. 2. We see that, when the
curvature of the fermionic dispersion is included, the two-
loop self-energy turns out to be small compared to its one-
loop counterpart, at low energy. In a separate study,23 one of
us �A.C.� and D. Khveshchenko reconsidered the bosoniza-
tion procedure in the presence of the curvature and obtained
the same results as in Eq. �3.12�.

D. Summary

As a conclusion, this first approach suggests that both the
fermionic and the bosonic self-energies are important at the
QCP. The bosonic self-energy sets the dynamics of the
bosons, while the fermionic self-energy is nonanalytic and
parametrically larger than the bare � term at low energy,
which implies a breakdown of the Fermi-liquid behavior at
criticality.

We also found that only the frequency-dependent part of
the self-energy matters, the momentum-dependent one only
leads to a regular renormalization of the effective mass. Fi-
nally, we found that the curvature of the Fermi surface plays
an important role in regularizing the perturbation expansion.

The full account of these effects cannot be obtained from
this simple analysis and one has to develop a controllable

way to treat the bosonic and fermionic self-energies on equal
footing. Since we found that only the frequency-dependent

��� is relevant, a way to proceed is to verify whether an
Eliashberg-like theory, similar to the one developed in the
context of phonon superconductivity,25 may be such a con-
trollable approximation.

IV. ELIASHBERG THEORY

The Eliashberg procedure allows us to compute the fermi-
onic self-energy 
��� and the bosonic polarization ��q ,��,
by solving the self-consistent set of coupled Dyson’s equa-
tions, neglecting all contributions coming from the vertex
corrections and the momentum-dependent fermionic self-
energy.

Specifically the Eliashberg theory follows three steps:
�i� neglect both the vertex corrections and the momentum

dependent part of the fermionic self-energy, i.e., approximate


�k,�n� = 
��n� ,

gTot = g + �g = g; �4.1�

�ii� construct the set of self-consistent Dyson’s equations:

G−1�k,�n� = i�n − vF�k − kF� + i
��n�

��q,�m� =
�0

�−2 + q2 +��q,�m�
, �4.2�

with the following fermionic and bosonic self-energies:

�4.3�

The fermionic Green’s functions in Eq. �4.3� are full �they
are represented diagrammatically by a straight line� and
��q ,�m� is the full bosonic propagator �represented by a
wavy line�;

�iii� check a posteriori that the neglected terms �g and

�k�, are all parametrically small.

The evaluation of the momentum integral for the fermi-
onic self-energy in the Eliashberg theory has to be carried
out with care. Since fermions are faster than bosons, the
leading contribution to 
��� is obtained if one integrates
over the momentum component transverse to the Fermi sur-
face only in the fermionic propagator and sets this compo-
nent to zero in the bosonic propagator �this implies that the
momentum integral is factorized�. One can show that the
corrections that arise from keeping the transverse component
of momentum in the bosonic propagator are small to the
same parameter as �g /g and should therefore be neglected,
as keeping them would be beyond the accuracy of the theory.
The factorization of the momentum integration is what dis-
tinguishes the Eliashberg theory from the fluctuation ex-
change �FLEX� approximation. In the FLEX approximation,
one also neglects vertex corrections, but does not factorize
the momentum integral in Eq. �4.3�.
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The evaluation of the bosonic and fermionic self-energies
within the Eliashberg theory is presented in Appendix A and
B. We list here the main results.

At large but finite correlation length � and for a bosonic
momentum and frequency satisfying vFq�
��� we obtain:

���q,�� = �
���
q

and


��� = ��F����3� ,

�4.4�

where F�x�1�=1+O�x�, and F�x�1�= 2
	3

x−1/3. The param-
eter � is the same as for free fermions,

� =
Nmḡ

�vF
, �4.5�

and � is the dimensionless coupling

� =
3ḡ

4�vF�
−1 , �4.6�

where ḡ=g2�0. At finite �−1 and vanishing �, the self-energy
has a Fermi-liquid form:


��� = �� . �4.7�

The Fermi-liquid theory is stable, and the low-energy quasi-
particles have a finite effective mass:

m* = m�1 + �� . �4.8�

The effective mass diverges proportionally to � in the vicin-
ity of the QCP.

At �� ���3�−1, however, the system is in the quantum-
critical regime. Here the Fermi-liquid theory breaks down in
the sense that the quasiparticle damping becomes compa-
rable to its energy. We have


��� = �0
1/3���2/3sgn��� , �4.9�

where �0=3	3ḡ2 / �8�2NmvF
2� is the same as in Eq. �3.8�.

At the QCP, �−1=0, the region of Fermi-liquid behavior
collapses, and the �2/3 dependence of the self-energy extends
down to the lowest frequencies. The expression for 
��� is
valid for all frequencies below the cutoff �. However, only
frequencies ���0 are actually relevant as at higher frequen-
cies the system behaves as a nearly ideal Fermi gas. Note
that the curvature of the fermionic dispersion is unimportant
here and only accounts for small corrections containing
higher powers of frequencies.

Comparing Eqs. �4.4� and �4.9� with Eqs. �3.4� and �3.7�,
we see that the self-energies in the Eliashberg theory coin-
cide with the one-loop perturbative results around free fer-
mions. This arises from the fact that the momentum integra-
tion is factorized in the Eliashberg theory, and the full
fermionic propagator appears in both self-energies only via
the fermionic density of states �DOS�:

N��� =
i

�
� dk

1

� + 
��� − k
. �4.10�

This DOS reduces to N���=sgn���, independently on the
self-energy: it remains the same as for free fermions. Note

that Eq. �4.4� for the bosonic self-energy is only valid as long
as the interplay between the external momentum and fre-
quency is such that vFq�
���. In the opposite limit, the
vertex corrections cannot be neglected as we argue in the
next section.

We also argue in the next section that the extension of the
model to N fermionic flavors is essential for the validity of
the current approach. The large-N Eliashberg theory is, how-
ever, somewhat tricky, as it can be readily seen from Eqs.
�4.5� and �4.9� that both self-energies contain factors of N
through their prefactors. These factors can be rescaled out of
the Eliashberg theory by rescaling kF,

kF → kF/N , �4.11�

and leaving vF intact. This change of kF also rescales both
masses: m→m /N and mB→mB /N.

In terms of the rescaled variables, both the fermionic self-
energy and the Landau damping term become independent
on N:

���q,�� =
�0

�−2 + q2 + ����/q

G�k,�� =
1

i�� + 
���� − vFk� − N�k�
2/2mB�

.
�4.12�

However, after the rescaling, the “zero-order” Eliashberg
theory does not become completely free from N—the factor
N now appears in front of the k�

2 term, which, we recall, is
present in the dispersion because of the curvature of the
Fermi surface.

As a consequence, we do not formally take the N→�
limit of our model �otherwise, the fermionic Green’s function
in Eq. �4.12� would just vanish�. Instead, we carry out an
expansion where we keep N large, yet finite, allowing us to
use 1/N as a small parameter.

Furthermore, one can verify, using our expression for the
effective Lagrangian below, that once we rescale the fermi-
onic and bosonic fields to compensate for the rescaling of kF
and eliminate N from the quadratic part of the effective ac-
tion, we do not obtain a factor 1 /N in the interaction term. In
other words, the curvature term in the fermionic propagator
is the only place where the factor N is present. This already
suggests �as we confirm in the next section� that the curva-
ture plays a major role in our 1/N expansion.

From this perspective, our large-N expansion is different
from the “conventional” large-N expansion, in which the
zero-order theory is independent on N, but the interaction is
small in 1 /N. For that class of theories, the N=� limit is well
defined as the bare, noninteracting theory. In our case, like
we said, only large, but finite N values make sense.

For the SU�2� ferromagnetic case, we show below that
Eq. �4.12� is incomplete. There are extra contributions to
both ��q ,�� and 
��� which also belong to the Eliashberg
theory, showing up at the three-loop level and higher for the
fermionic self-energy. These terms, however, appear due to
rather specific reasons related to the presence of an effective
dynamic long-range interaction in the theory and all cancel
out for the gauge field problem, at a nematic QCP and for an
Ising ferromagnetic QCP. We consider these extra terms in
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the next section and proceed here without taking them into
consideration.

We can reformulate the Eliashberg theory by introducing
the following effective Lagrangian describing the fermion-
boson interaction:

L = LF + LB + Lint,

with

LB = T�
q,n

Sq,n�
−1�q,�n�S−q,−n,

LF = T �
k,n,�,j

ck,j,n,�
† G−1�k,�n�ck,j,n,�,

Lint = gT2 �
n,m,k,q

Sq,mck,j,n�
† ���ck−q,j,n−m,�, �4.13�

where n, m number Matsubara frequencies, �, � are spin
indices, and j is a flavor index. The upper limit of the fre-
quency summation is the cutoff �.

We emphasize that there is no double counting in the
bosonic propagator �4.13�. The integration of high-energy
fermions above the cutoff � leads to the momentum depen-
dence of the static bosonic propagator, whereas the interac-
tion at frequencies below � gives rise to the Landau damp-
ing, without affecting the static part.

To summarize, the Eliashberg-type theory at the QCP con-
tains a nonanalytic fermionic self-energy which scales as
�2/3 and breaks down the Fermi-liquid description of fermi-
ons. At the same time, the bosonic propagator is regular—the
only effect of the interaction with low-energy fermions is the
appearance of a Landau damping.

We will see below that for a charge QCP �and for a spin
QCP with a scalar order parameter� this Eliashberg theory is
entirely stable. For a ferromagnetic SU�2� symmetric QCP,
the Eliashberg theory has to be extended, as we will see in
Sec. VI, to incorporate extra singular terms associated with
the existence of long-range dynamic interaction between
quasiparticles.

We emphasize that even for a charge QCP the fully renor-
malized bosonic susceptibility does not necessary coincide
with the one in Eq. �4.12� and may, in particular, acquire an
anomalous dimension33 if d is low enough. However, this
can only be due to infrared divergent corrections to the
Eliashberg theory, which are fully captured by the effective
low-energy model of Eq. �4.13�. Such an anomalous dimen-
sion emerges at the antiferromagnetic QCP in d=2 �Refs. 20
and 33�, but not in our case.

V. VALIDITY OF THE ELIASHBERG THEORY

The essential part of the Eliashberg procedure is an a
posteriori verification that the neglected terms in the self-
energies are small. Quite generally, the validity of this pro-
cedure is based on the idea that the fermions are fast excita-
tions compared to the bosons, and hence the fermionic and
bosonic mass shells are well separated in energy.

When scattering off physical mass-shell bosons, the fer-
mions are forced to vibrate on the bosonic mass shell, which

is far away from their own. The electronic spectral function
near the bosonic mass shell is then small and this reduces the
self-energy that arises from true fermion-boson scattering. In
the case of the electron-phonon interaction, this is known as
the Migdal theorem.

The computation of the fermionic self-energy 
��� gives
us an idea of what the typical intermediate momenta and
frequencies are in the problem. One can make sure that at
criticality the typical fermionic momenta k−kF are of order

��� /vF=�0

1/3�2/3 /vF. On the other hand, the typical
bosonic momenta q� along the direction of kF �i.e., trans-
verse to the Fermi surface� are of the same order as the
typical fermionic momenta, while the momenta q� transverse
to kF �i.e., along the Fermi surface� are of order
����1/3��0

1/3�2/3 /vF. We see that for a given frequency �,
the typical �q � =	q�

2 +q�
2 are much larger than k−kF, i.e., the

effective boson velocity is much smaller than vF. One then
expects that the Migdal theorem holds.

The ratio of the typical fermionic k−kF and bosonic �q� at
the same frequency � is ��0� /�vF

2�1/3. At ���0, this ratio
then becomes

� = � �0
2

�vF
3 �1/3

�
ḡ

EF
, �5.1�

and the slowness of the bosonic mode is then ensured in the
quantum critical regime provided that ��1. This condition
coincides, in our case, with the condition that the interaction
should be smaller than the bandwidth. This is a necessary
condition for the effective low-energy model to be valid, for
if it is not satisfied, one cannot distinguish between contri-
butions coming from low and from high energies.

However, the smallness of � is not sufficient. In the inte-
gral for the fermionic self-energy, only one component of the
bosonic momentum, namely q�, is much larger than k−kF,
the other one is comparable: q��k−kF. One needs to check
whether the corrections to the Eliashberg theory scale as the
ratio of k−kF to the modulus of �q� or one of its components.

To address these issues, we explicitly compute the vertex
corrections and the fermionic self-energy at the two-loop
level.

A. Vertex corrections

We consider the vertex corrections due to the insertion of
one bosonic propagator �three-leg vertex� and two bosonic
propagators �four-leg vertex�. The behavior of these vertex
corrections strongly depends on the interplay between the
internal and external momenta and frequencies. We present
the results below and discuss all the technical details of these
calculations in Appendix C.

1. Three-leg vertex with zero external momentum and frequency

We begin with the simplest three-leg vertex, with strictly
zero incoming frequency � and momentum q. The one-loop
vertex renormalization diagram contains one bosonic line
and is presented in Fig. 2�a�. In analytic form, it writes
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��g

g
�

q=�=0
� g2� d�d2pG�kF,��2��p,��

� ḡ� d�d2p

����/p + p2

1

�i
̃��� − vFpx − N�py
2/2mB��2

,

where we defined 
̃���=�+
��� and we have chosen kF
along the x axis, so that px= p� and py = p�.

Since the poles coming from the fermionic Green’s func-
tions are in the same half plane, the integral over qx is only
nonzero because of the branch cut in the bosonic propagator.
At the branch cut px� py, so that we can safely drop the
quadratic term in the fermionic propagators. Introducing po-
lar coordinates, and integrating successively over the angle
between kF and p, then over the modulus p, we obtain

��g

g
�

q=�=0
�

ḡ

�vF
3�

0

�Max

d�

̃���
�

, �5.2�

where �Max is the frequency up to which bosons are slow

modes compared to fermions, i.e., up to which 
̃��� /vF

� ����1/3. This frequency exceeds �0, so to find it we have

to use 
̃�����. We then obtain

�Max = 	�vF
3 � 	ḡEF. �5.3�

Note that for small values of �, �Max��0, and the maxi-
mum frequency up to which the bosons can be treated as
slow modes well exceeds the upper limit of the quantum
critical behavior.

Substituting 
̃ and �Max into Eq. �5.2�, we obtain

��g

g
�

q=�=0
� 	� . �5.4�

This correction to the vertex can then be neglected provided
that � is small.

2. Three-leg vertex with finite external momentum

We now turn to the three-leg vertex with zero external
frequency but a finite bosonic momentum q. The one-loop
renormalization is given in Fig. 2, and its analytic form
writes

��g

g
�

q,�=0

� g2� d�d2pG�kF + p + q,��G�kF + p,����p,��

� ḡ� d�d2p

����/p + p2

1

i
̃��� − vFpx − N�py
2/2mB�

�
1

i
̃��� − vFqx − vFpx − N�py
2/2mB� − N�qypy/mB�

,

where px is the projection of p along kF.
As before, the integral over px reduces to the contribution

from only the branch cut in the bosonic propagator. At the

branch cut, px� py, hence we can neglect the quadratic term
in the fermionic Green’s function, which then allows us to
integrate over py. Expanding in qx, and subtracting the con-
stant term at zero momentum calculated in Eq. �5.2�, we
obtain �see Appendix C for details�

��g

g
�

q,�=0
− ��g

g
�

q=�=0
� i

qx

kF
�

�vFqx�

d�

���
ln�i
̃����

�
qx

kF
ln�qx� . �5.5�

When not only the bosonic momentum q is finite but also
the external fermionic momentum for the static three-leg ver-
tex is away from kF, the q� ln q dependence of the static
�g /g survives, but the argument of the logarithm is the
maximum of bosonic q and fermionic k−kF �we directed
both along x�.

In general, the typical value of qx is much smaller than kF,
hence the momentum dependent part of this vertex correc-
tion is small. However, we argue in the next sections that
because of the logarithmic term in Eq. �5.5�, the insertion of
this vertex correction into the SU�2� static susceptibility
gives rise to a nonanalytic q3/2 term.

We also emphasize that although the calculations of
�g
g �q=�=0 and �g

g �q,�=0 look similar, the characteristic bosonic
momenta are different for the two cases. At q=�=0, typical
bosonic momenta in Eq. �5.2� are of order ����1/3, i.e., near
the bosonic mass shell. On the other hand, typical bosonic

momenta in Eq. �5.5� are of order 
̃��� /vF, i.e., near the
fermionic mass shell.

3. Generic three-leg vertex

We next consider the same vertex with small but finite
external momentum q and frequency �. This diagram, pre-
sented in Fig. 2�b�, reads

��g

g
�

q,�

� g2� d�d2pG�kF + p + q,� +��G�kF + p,����p,��

� ḡ� d�d2p

����/p + p2

1

i
̃��� − vFpx − N�py
2/2mB�

�
1

i
̃�� +�� − vFqx − vFpx − N�py
2/2mB� − N�qypy/mB�

,

�5.6�

where we have chosen kF along the x axis, so that qx=q�

and qy =q�.

FIG. 2. Three-leg vertices: �a� zero external momentum and
frequency; �b� finite momentum; �c� generic vertex.

RECH, PÉPIN, AND CHUBUKOV PHYSICAL REVIEW B 74, 195126 �2006�

195126-10



Integrating over px first, one obtains two contributions:
one arising from the poles in the fermionic Green’s functions
�which now can be in different half planes since � is finite�,
and the other from the branch cut in the bosonic propagator.
The latter leads to the same result as Eq. �5.2�, up to small
corrections due to the finiteness of the external q and �.
Focusing on the other contribution, one has

��g

g
�

q,�
� i

ḡ

vF
�

0

�

d�� dpy

�py�
���� + �py�3

�
1

i
̃�� − �� + i
̃��� − vFqx − N�qypy/mB�
,

�5.7�

where the simplification of the frequency integral comes
from the pole structure in px.

This generic correction to the vertex strongly depends on
the interplay between the external qx, qy, and �.

When q=0, but � is finite, the integration over py gives

��g

g
�

q=0,�
�

ḡ

vF�
1/3�

0

� d�

�1/3

1


̃�� − �� + 
̃���
�

ḡ

vF�
1/3�0

1/3

= O�1� . �5.8�

We see that the finite external frequency leads to a vertex
correction that is not small, and one can make sure that
higher-order corrections are of the same order. The series of
vertex corrections have been summed up in Ref. 34 �for a
charge vertex�, where �g /g was proved to diverge like
��0 /��1/3 at low frequency, as expected from the Ward iden-
tity.

When q and � are both finite,

��g

g
�

q,�
= F�
���

vFqx
� , �5.9�

where

F�x� = �
0

1 dz

z1/3

1

�1 − z�2/3 + z2/3 + i/x
�5.10�

has the following asymptotic behavior:

�F�x� 1� = O�1�

F�x� 1� = O�x�
. �5.11�

If the typical external momentum q is on the bosonic mass
shell, then qx�qy �����1/3, and one has

��g

g
�

q,�
�

���
vFqx

� 	�� �

�Max
�1/3

. �5.12�

This is obviously small in �.
It turns out that the behavior of the vertex correction is

more complex and the result for �g /g strongly depends on
the direction of q compared to the direction of fermionic
momentum k=kF. This directional dependence is important
for our purposes as we know from previous self-energy cal-
culations that in the integral for the self-energy only the y
component of the bosonic momentum is near a bosonic mass

shell and scales as ����1/3, the x component is actually of the

order of 
̃��� /vF, i.e., is near a fermionic mass shell and is
much smaller. We therefore take a more careful look at the
vertex correction.

For the case where qx� 
̃��� /vF and qy �����1/3, one
would argue from Eq. �5.12� that the vertex correction now
becomes of order O�1� and is no longer parametrically small.
However, the computation that led to Eq. �5.12� cannot be
extended so easily to the strongly anisotropic case, as for an

external qx� 
̃��� /vF and qy �����1/3, the curvature of the
fermionic dispersion becomes relevant and changes the re-
sult. The full dependence on qx and qy is rather complex and
we restrict ourselves to the case when

� =
1

N

mB

m
� 1. �5.13�

In this situation, qy
2 /mB��vFqx� /��vFqx, i.e., the quadratic

term in the fermionic propagator dominates. Performing the
integration, we then find that

��g

g
�

q,�
� �2���

qy
3 �2/3

ln2
� ����1/3

qy
 � �2 ln2� .

�5.14�

It follows that even when only one component of the
bosonic momentum is near a bosonic mass shell, the vertex
correction is small if � is small. This is the second condition
for the Eliashberg theory to be controllable at criticality.

The smallness of � can be ensured by either extending the
theory to large values of N, or by considering a very strong
curvature of the Fermi surface which implies that mB�m.
Even though the latter can hardly be satisfied for realistic
Fermi surfaces, we emphasize that the curvature of the dis-
persion plays a crucial role in the theory, for even in the case
of N�1, the vertex correction is of order O�1� without this
curvature.

4. Four-leg vertex

We consider now higher-order corrections to the vertex
through the example of a four-leg vertex correction with two
crossed bosonic lines, also called a Cooperon insertion. Ana-
lytically, the expression for this renormalized vertex, pre-
sented diagrammatically in Fig. 3, writes

�2�q,�� � g4� d�d2p��� + �

2
,
p + q

2
�

� ��� − �

2
,
q − p

2
�G�� + �

2
,kF +

p + q

2
�

� G�� − �

2
,kF +

q − p

2
� . �5.15�

FIG. 3. �a� Cooper pairing vertex. �b� Four-leg vertex.
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After integrating over px �projection of p along kF� and �,
were are left with

�2�q,�� �
ḡ2

vF

�

�qy�3
� dz

	�z2 + q2/qy
2�2 − 4z2

2i
��/2� − vFqx − N�qy
2/4m��1 + z2�

�
1

�z2 + 2z + q2/qy
2�3/2 + �����/�qy�3�

�
1

�z2 − 2z + q2/qy
2�3/2 − �����/�qy�3�

, �5.16�

where we have changed py into z= py / �qy�.
This renormalized four-leg vertex �2�q ,�� has to be com-

pared with the bare four-leg vertex, whose analytic form is
given by the bosonic propagator multiplied by g2:

�1�q,�� �
ḡ

q2 + ����/q
. �5.17�

In the case of a typical external momentum
qx�qy �����1/3, the ratio �2 /�1 is of order �. For a typical

qx� 
̃��� /vF and qy �����1/3, we obtain, to logarithmic ac-
curacy,

�2

�1
� �� 1. �5.18�

This last result again critically depends on the curvature of
the Fermi surface: neglecting the quadratic terms in the fer-
mionic propagators, one would obtain �2 /�1=O�1�. We see
that likewise to the three-loop vertices, the smallness of the
crossed vertex �2�q ,�� requires both � and � to be small.

5. Interplay between the Landau damping and the fermionic
self-energy

The system behavior at strongly anisotropic external mo-

menta qx� 
̃��� /vF and qy �����1/3 �as encountered in the
three-leg vertex for finite q and �, and the four-leg vertex�
allows us to underline a few important points related to the
role of the curvature.

We have found above that for these momenta, some ver-
tex corrections are O�1� for any N, if one does not take into
account the curvature of the fermionic dispersion, and are
small, and inversely proportional to both the curvature and
N, if �=mB / �mN� is small.

The reason for this behavior is a peculiar interplay be-
tween the Landau damping and the fermionic self-energy,
specific to the ferromagnetic case. Namely, the characteristic
values of both the linear and the quadratic term in the fermi-
onic dispersion scale with the frequency in exactly the same
way. This is related to the fact that the mismatch between the
momenta near the fermionic and the bosonic mass shell at a
given frequency is the same as the mismatch between the
longitudinal and transverse components of the fermionic dis-
persion.

Indeed, the typical x component of the external momen-
tum is of order 
��� /vF, and scales as the square of the y
component, whose typical value qy ��1/3 is the same as near
a bosonic mass shell. The x component enters the fermionic

dispersion as a single power while the y component comes
with a power of 2, meaning that in the dispersion one has to
compare qx to qy

2. Ultimately, the two terms entering the fer-
mionic dispersion behave like

vFqx � 
̃��� � �0
1/3�2/3, �5.19�

qy
2

2mB
�

����1/3

mB
�

m

mB
�0

1/3�2/3 �5.20�

and thus differ precisely by m /mB. Besides, the qy
2 / �2m� term

comes with an overall extra factor of N as we argued in Eq.
�4.12�. This is the only place where N appears in the theory.
The relative factor between the qy

2 and qx terms is then
Nm /mB=1/�. When � is large, the qy

2 term is subleading
compared to the qx term, the curvature is irrelevant, and the
correction to the spin-fermion vertex does not depend on N.
When � is small, the qy

2 term dominates over qx, and the
fermionic dispersion contains N. In this situation, the vertex
correction becomes small in 1 /N.

6. Pairing vertex

By contrast to the previous vertices we studied, the pair-
ing vertex in the Cooper channel is not sensitive to the cur-
vature of the Fermi surface. This leads to a vertex of order
O�1� even in the large-N limit and the pairing problem then
has to be carried out exactly within the Eliashberg theory.

This vertex renormalization is presented in Fig. 3 and its
analytic form is given by

��g

g
�

Cooper
� g2� d�d2q��q,��G�kF + q,��

�G�− kF − q,− � −��

� ḡ� d�d2q

����/q + q2

1

i
̃��� − vFqx − N�qy
2/2mB�

�
1

− i
̃�� +�� − vFqx − N�qy
2/2mB�

. �5.21�

Integrating over qx, restricting ourselves to the contribu-
tion from the fermionic poles �the one from the branch cut
can be proved to be smaller�, we find that the quadratic terms
cancel out, leaving us with

��g

g
�

Cooper
�

ḡ

vF
�

���

D d�


̃�� +�� + 
̃���
�

0

� dqyqy

�� + qy
3 .

�5.22�

Performing the remaining integral, the prefactor simplifies
and we obtain

��g

g
�

Cooper
�

ḡ

�1/3�0
1/3vF

ln��
D
� � ln��

D
� , �5.23�

where we assumed that we were in the quantum critical re-
gime, i.e., �� ���0.

We emphasize that the prefactor of the ln in Eq. �5.23� is
O�1�, even when one takes into account the curvature of the
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fermionic dispersion. The result of Eq. �5.23� confirms pre-
vious studies10 advocating that the system at a ferromagnetic
QCP is unstable towards pairing.

B. Self-energy corrections

1. Corrections to the self-energy at the two-loop level

We found in our analysis of the vertex corrections that the
result depends on the interplay between the typical momen-
tum and frequency. In our estimates, we considered two re-
gions of external q and �, namely qx�qy �����1/3 and

qx� 
̃��� /vF, qy �����1/3. In both cases, we found that ver-
tex corrections are small. We verify here that the two-loop
self-energy, obtained by inserting vertex corrections into the
one-loop self-energy diagram, is also small.

The two-loop self-energy diagram is presented in Fig.
1�c�. We have


2��� � g4� d�1d2q1� d�2d2q2��q1,�1���q2,�2�

�G�kF + q1,� + �1�G�kF + q2,� + �2�

�G�kF + q1 + q2,� + �1 + �2� �5.24�

� ḡ2� d�1d2q1� d�2d2q2
q1

���1� + q1
3

q2

���2� + q2
3

�
1

i
̃�� + �1� − vFq1x − N�q1y
2 /2mB�

�
1

i
̃�� + �2� − vFq2x − N�q2y
2 /2mB�

�
1

i
̃�� + �1 + �2�−vF�q1x + q2x�−N�q1y + q2y�2/2mB

,

�5.25�

where we recall 
̃���=�+
���.
Integrating successively over q1x and q2x, and rescaling

the remaining momentum components by introducing
x=q1y / �� ��1 � �1/3 and y=q2y / �� ��2 � �1/3, we obtain


2��� �
mBḡ2

NvF
2 �

0

�

d�2�
�−�2

�

d�1
1

��2�1�2�2/3

� �
−�

� dxdy

xy + i�

�xy�
�1 + �x�3��1 + �y�3�

, �5.26�

where �=mB


̃��+�1�+
̃��+�2�−
̃��+�1+�2�

N��2�1�2�1/3 .

As the typical frequencies �1 and �2 are of order �, the
typical value of � is of order ��1. Expanding then in Eq.
�5.26� to first order in � and performing the remaining inte-
grals, we obtain in the quantum critical regime


2��� �
mBḡ2

NvF
2 �

0

�

d�2�
�−�2

�

d�1
� ln2�

��2�1�2�2/3

� 
����2 ln2� , �5.27�

where 
���=
1���=�0
1/3�2/3 is the self-energy in the

Eliashberg theory.
This result agrees with the one obtained in Ref. 2, and

shows that 
2����
1���� �g
g �q,� where �g

g �q,� is given by
Eq. �5.14�. This last result implies that the typical internal q
and � for the Eliashberg self-energy and for 
2��� are the
same.

It is also instructive to compare these two-loop results,
obtained as an expansion around the Eliashberg solution, to
the perturbation expansion around free fermions. In the lat-
ter, we found in Eq. �3.12� that 
2����� ln2� whereas in
the former we have 
2�������0

1/3�2/3�ln2�, Eq. �5.27�. The
free-fermion result can be reproduced if we neglect the self-
energy in Eq. �5.26�. We see that the expansion around free
fermions does not reproduce the correct frequency depen-
dence of 
2���. This obviously implies that if one expands
around free fermions, there exist higher-order terms associ-
ated with insertions of the self-energy 
��� into the internal
fermionic lines, which may overshadow the two-loop result
around free fermions. Accordingly, near the QCP, the expan-
sion around free fermions does not converge, even if the
curvature of the fermionic dispersion is included. On the
other hand, the expansion around the Eliashberg solution is
regular and holds in powers of the small parameters � and �.

2. Momentum dependence of the self-energy and the density of
states

Along with the vertex corrections, we also neglected the
momentum dependence of the fermionic self-energy in order
to proceed with the Eliashberg scheme. We now verify
whether the momentum dependent part of the self-energy

�k ,�=0�=
�k� remains small when evaluated with the full
fermionic propagator. The k-dependent self-energy is given
by


�k,0� = 3ig2� d2qd�

�2��3 G�k + q,����q,��

=
3iḡ

�2��3 � d�d2q

i
̃��� − k+q

q

���� + q3 . �5.28�

Defining the angular variable � as k+q=k+vFq cos �, inte-
grating over it, and expanding to linear order in k we obtain


�k,0� = − 3ik�
ḡ

2�2�
0

�

d�
̃���

�� q2dq

�q3 + ���������vFq�2 + 
̃���2�3/2
.

�5.29�

A simple experimentation with the integrals shows that

the integration over momentum is confined to q� 
̃��� /vF,
while the frequency integral is confined to ���Max, where
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�Max, defined in Eq. �5.3�, is the scale where ����1/3

= 
̃��� /vF. The computation of 
�k� is given in Appendix
B, and the result is


�k,0� = − ik
3� 1.3308

2	2�3/2
	� = − ik0.253	� . �5.30�

Using our definition of 
, we then obtain that 
�k ,0� gives
rise to a small, regular correction to the quasiparticle mass
k− i
�k ,0�=k

*=vF
*�k−kF�, where

vF
* = vF�1 − 0.253	�� . �5.31�

Like the vertex correction at zero external bosonic mo-
mentum and frequency, this small correction is of order
O�	�� and comes from frequencies of order �Max.

The momentum dependent self-energy, unlike the fre-
quency dependent part, generally gives rise to corrections to
the fermionic density of states �DOS�,

N��� = − N0� dk

�
ImG�k,�� , �5.32�

where N0 is the DOS of free fermions.
Assuming that 
�k� is small and expanding in it in the

fermionic propagator, we obtain, in real frequencies,

N���
N0

= 1 − Im��
�k�
k

�
k=i
̃�−i��

� . �5.33�

Substituting Eq. �5.30� into Eq. �5.33�, we find that the den-
sity of states just shifts by a constant. In order to extract the
frequency dependence of the density of states, one has to
evaluate the momentum dependent self-energy to the next

order in k and on the mass shell, where k= i
̃���.
The evaluation of the self-energy near a mass shell gen-

erally requires extra caution as the self-energy may possess
mass-shell singularities.31 We, however, have checked in Ap-
pendix F that in our case the self-energy does not possess
any mass-shell singularity, and the self-energy remains finite
on the mass shell.

The calculation of the self-energy up to the second order
in k is displayed in Appendix B, and the result is


�k,�� = ik�
0.45

8�

�
����
EF

ln
�1

���
. �5.34�

Substituting this self-energy into the expression for the DOS
and converting to real frequencies, we find at small �

N��� � N0
1 − � �
�1

�2/3

ln
�Max

�
 , �5.35�

where we explicitly defined

�1 =
128�5/2

�0.45�3/233/4

EF
2

ḡ
. �5.36�

The correction to the fermionic DOS was earlier com-
puted by Lawler et al.14 using the bosonization technique.
They obtained the same �2/3ln � dependence as in Eq.
�5.35�. The agreement with Ref. 14 is, however, likely acci-

dental as they evaluated N��� in the expansion around free
fermions, while we obtained N��� by evaluating the

k-dependent self-energy at k= i
̃�−i��. If we neglected the
Eliashberg self-energy �i.e., expanded around free fermions�,
we would obtain an � ln � correction to the DOS. This last
result agrees with the one obtained by Ref. 23 using the same
technique as in Ref. 14.

C. Summary

We have shown in this section that there are two condi-
tions for the validity of the Eliashberg theory that one can
recast as the smallness of two parameters:

��
ḡ2

�vF
3 �

ḡ

EF
� 1, ��

mBḡ

�vF
�

mB

Nm
� 1. �5.37�

The first condition is quite generic for a low-energy
theory since it requires that the fermion-fermion interaction
mediated by the exchange of a boson should be smaller than
the Fermi energy. Otherwise, the physics is not restricted to
the vicinity of the Fermi surface anymore. The parameter �
plays the same role as the Migdal parameter for the electron-
phonon interaction: it sets the condition that fermions are fast
excitations compared to bosons. In the scattering processes
that are small in �, fermions are forced by the interaction to
vibrate at frequencies near the bosonic mass shell. They are
then far from their own resonance and thus have a small
spectral weight.

However, the condition ��1 is not sufficient to construct
a fully controllable perturbation expansion around the non-
Fermi-liquid state at the QCP. In spatially isotropic systems
there exist vertex corrections for which the external momen-
tum has a component on the fermionic mass shell. These
corrections do not contain �. However, they are sensitive to
the curvature of the Fermi surface, and are small if � is small
which can be achieved either by imposing mB�m or by
extending the theory to a large number N of fermionic fla-
vors.

A word of caution is due here. In evaluating the renormal-
ization of the static vertex, we silently assumed that 	���,
i.e., ḡ /EF� �mB /Nm�2. At very large N, this is no longer
valid. For this situation, i.e., when ��	�, our estimates
show that the static vertex is even smaller than 	�.

Finally, the pairing vertex in the Cooper channel stays of
order O�1�, signaling the possibility of a pairing instability
close to the quantum critical point. Nevertheless, we assume,
based on explicit calculations worked out in Ref. 10, that the
quantum critical behavior extends in the parameter space to a
region where the superconductivity is not present.

VI. INSTABILITY OF THE FERROMAGNETIC QUANTUM
CRITICAL POINT

We found that the Eliashberg theory for fermions interact-
ing with gapless long-wavelength bosons is stable and con-
trolled by two small parameters. We verified this by calcu-
lating the fermionic self-energy in a two-loop expansion
around the Eliashberg solution.
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One may wonder whether the same conclusions hold for
the bosonic self-energy as well. In particular, what are the
corrections to the static susceptibility �s�q ,0�? Naively one
could assume that they are unimportant and do not change
the bare q2 behavior of the inverse bosonic propagator at the
QCP.

For a ferromagnetic SU�2� QCP, for which the massless
bosons are spin fluctuations, we show in this section that the
corrections to the static spin susceptibility are nonanalytic:
they scale like q3/2, and do not contain any prefactor except
for a proper power of kF. Such terms obviously overshadow
the regular q2 of the bare susceptibility at small enough mo-
menta. These terms therefore belong to the Eliashberg
theory, which has to be extended to incorporate them.

The physics behind the q3/2 term in ��q ,0� at a ferromag-
netic QCP is, by itself, not directly related to criticality: far
away from the QCP, the spin susceptibility also contains
negative, nonanalytic �q� term.26,27,35–38 This term gradually
evolves as the correlation length � increases, and transforms
into the q3/2 term at the QCP. Both these nonanalyticities, at
and away from the QCP, emerge because the boson-mediated
interaction between fermions contain a long-range dynamic
component, generated from the Landau damping.

For charge fluctuations, the q3/2 terms appear in the indi-
vidual diagrams for the susceptibility but cancel out in the
full formula for ��q ,��. We discuss the physical origin of
the difference between spin and charge susceptibilities in the
next section.

One of the reasons why the nonanalyticity of the static
spin susceptibility at the QCP has not been analyzed much
earlier is because it was widely believed that an itinerant
fermionic system near a ferromagnetic QCP is adequately
described by a phenomenological 2+1D �4 bosonic theory
�in our case, the role of � is played by the vector field S�
with the dynamic exponent z=3 and a constant prefactor for
the �4 term.1 In dimensions d 4−z=1, the model lies
above its upper critical dimension and the �4 term is simply
irrelevant.

In this section, we derive the effective �4 theory from the
spin-fermion model Hamiltonian, and show that it contains
two elements absent from the phenomenological approach.
First, the prefactor of the �4 term strongly depends on the
ratio between the external momenta and frequencies, and
contains a nonanalytic term in addition to the constant one.
Second, there also exists a cubic �3 term whose prefactor,
although vanishing in the static limit, also strongly depends
on the interplay between the external momenta and frequen-
cies. We can recast the nonanalytic q3/2 term in the static spin
susceptibility as arising from these cubic and quartic terms in
�.

We also prove that the nonanalyticity appears in the
temperature-dependent uniform static susceptibility �s�T�.
We show below that �s

−1�T��T � ln T�, again with a negative
prefactor.

Finally, we show that the instability of the ferromagnetic
QCP can also be seen from the fermionic self-energy, which
acquires singular terms beginning at the three-loop order in
the case of spin fluctuations.

A. Hertz-Millis-Moriya theory revisited

In order to derive a quantum critical �4 model, one has to
integrate the fermions out of the partition function, noticing
that the Lagrangian of the spin-fermion model is quadratic in
the fermions.

Expanding then in the number of bosonic fields S, the
quartic term in the effective action reads

� d2qd2pd2p�d�d!d!�

�2��9 A�p,p�,q,!,!�,��

��Sp+q/2 · Sq/2−pSp�−q/2 · S−p�−q/2

+ Sp+q/2 · S−p�−q/2Sq/2−p · Sp�−q/2

− Sp+q/2 · Sp�−q/2S−q/2−p� · Sq/2−p� , �6.1�

where p, p�, q are bosonic momenta, and !, !�, � are
bosonic frequencies.

Our goal here is to prove that the prefactor A is not a
regular function of momenta and frequencies. To simplify the
presentation, we choose to study only the dependence of A
on q and � and set p, p�, !, !� to zero �see Fig. 4�.

The analytic form of this prefactor then writes

A�q,�� � Ng4� d�� d2kG�k,��2� G�k + q,� +��2.

�6.2�

Defining � as the angle between k and q, and performing
the integration over k and the angular variable, we find

A�q,�� �
mg4

�0�
�

0

1

dz
��vFq/
����2 − 2�z2/3 + �1 − z�2/3�2�
��vFq/
����2 + �z2/3 + �1 − z�2/3�2�5/2 ,

�6.3�

where we defined z=� /�, and neglected at this stage a regu-
lar part that comes from large values of k and for which the
curvature is relevant.

We see that A�q ,�� depends on the interplay between the
momentum and frequency. We can identify two regimes.

�i� If �q � ��� �� � �1/3, i.e., if the bosonic momenta are
near the bosonic mass shell, the self-energy in the denomi-
nator can be neglected, the frequency factors in the numera-
tor and the denominator are canceled out, and we obtain

A��� �
mg4

�vF
3 �

1

�0
2�m . �6.4�

We see that A can be safely replaced by a constant O���.
This is consistent with the previous works.1 The agreement is
not surprising as the relation q��� �� � �1/3 is assumed in

FIG. 4. “�4” and “�3” type diagram.

QUANTUM CRITICAL BEHAVIOR IN ITINERANT… PHYSICAL REVIEW B 74, 195126 �2006�

195126-15



power counting based on z=3 scaling. Note that the condi-
tion �q � ��� �� � �1/3 only specifies the magnitude of q, one of
its components �e.g., qx� can be much smaller.

�ii� If q� 
̃��� /vF��0
1/3�2/3 /vF �at ���0�, i.e., when a

boson resonates near a fermionic mass shell, the z=3 scaling
arguments are not applicable. We have in this regime

A�q,�� �
mg4

�0�
�

m

�0
2

1
	�
�Max

�
. �6.5�

In this case, A��� is a singular function of frequency, and
cannot be replaced by a constant.

We see therefore that the prefactor of the �4 term is ac-
tually singular outside the scaling regime of a z=3 theory.

In the similar spirit, one can construct a cubic term in the
bosonic fields:

� d2qd2pd�d!

�2��9 B�p,q,!,��Sp · �Sq−p/2� S−q−p/2� ,

�6.6�

where the prefactor B is a convolution of three fermionic
Green’s functions as presented in Fig. 4, and is given by

B�q,p,�,!� � Ng3� d� � d2kG�k − p,� − !�

�G�k − p/2 − q,� − !/2 −��G�k,�� .

�6.7�

Proceeding as for the quartic term, we set for simplicity
p=0, !=0, and integrate over k and the angular variable,
leading to

B�q,�� �
mg3

�0
2/3�1/3�

0

1

dz

�
�z2/3 + �1 − z�2/3�

��vFq/
����2 + �z2/3 + �1 − z�2/3�2�3/2 ,

�6.8�

where we again introduced the rescaled frequency z=� /�.
We can again identify two regimes.
�i� In the z=3 regime where q�����1/3, one can expand

for large
vFq


��� , which leads to

B�q,�� �
mg

�0
�� �

�Max
�2/3

, �6.9�

where �Max is given by Eq. �5.3�. This term is small in the
quantum critical regime where ���0��Max�

3/2, and can
be safely neglected.

�ii� For q�
���, the remaining integral is of order O�1�
and the result writes

B�q,�� �
mg

�0

1
	���Max

�
�1/3

, �6.10�

which is large and cannot be neglected.

We demonstrate in the next section how the singular be-
havior of the �3 and �4 terms leads to a nonanalytic contri-
bution to the static spin susceptibility.

B. Nonanalyticity in the static spin susceptibility

We now estimate the effect of these singularities on physi-
cal quantities. Both the �3 and �4 terms in the effective
action give rise to corrections to the �2 term, i.e., to the spin
susceptibility. These corrections are obtained diagrammati-
cally by contracting the external legs of the �3 and �4 terms,
as shown in Fig. 5. The computations are described in detail
in Appendix D.

The contributions from the �4 terms have been considered
in our short publication.29 The contributions from cubic
terms were missed, and were first considered in Ref. 39 in
the analysis of the spin susceptibility in the paramagnetic
phase, away from a QCP.

In analytic form, we have, using ��q ,0�=�0 / ��−2+q2

+��q ,0��, and �=�1�q ,0�+�2�q ,0�+�3�q ,0�+�4�q ,0�:

�1�q,0� = �1
S Nḡ2

�2��6�0
� d2kd�d2ld���l + q,��G��,k�

�G�� +�,k + l�G�� +�,k + q + l�G��,k + q� ,

�2�q,0� = �2
S Nḡ2

�2��6�0
� d2kd�d2ld���l,��G��,k�2

�G�� +�,k + l�G��,k + q� ,

�3�q,0� = �3
S N2ḡ3

�2��9�0
2 � d2kd�d2k�d��dld���l,��

���q + l,��G��,k�G��,k + q�

�G�� +�,k + l + q�G���,k��G���,k� + q�

�G��� +�,k� + l + q� ,

�4�q,0� = �4
S N2ḡ3

�2��9�0
2 �d2kd�d2k�d��dld���l,����l + q,��

�G��,k�G��,k + q�G�� +�,k + l + q�

�G���,k��G��� +�,k� + l�G��� +�,k� + l + q� .

�6.11�

The factors of N come from the fermionic loops and the
numerical prefactors from the following spin summations:

FIG. 5. Corrections to the polarization bubble from diagrams
with one and two extra bosonic lines.
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�
�1

S = �
�,�,�,�

���
Z ������

Z ��� = − 2

�2
S = �

�,�,�,�
���

Z ��� · ������
Z = 6

�3
S = �

�,�,�,�,,�
���

Z ���� · ������� · ������
Z = 8

�4
S = �

�,�,�,�,,�
���

Z ���� · ������� · ������
Z = − 8.

�6.12�

These four diagrams are related by pairs. To verify this, it
is useful to expand the products of Green’s functions accord-
ing to

G��1,k1�G��2,k2� =
G��1,k1� − G��2,k2�

G−1��2,k2� − G−1��1,k1�
.

�6.13�

Applying this to �2�q ,0�, we find that it splits into two parts.
In one part, the poles in k are located in the same half plane,
leading to a vanishing contribution. The remaining term in
�2�q ,0� is related to �1�q ,0� in such a way that

�1�q,0� = −
2�1

�2
�2�q,0� �6.14�

�see Appendix D for details�.
Similarly, �3�q ,0� and �4�q ,0� are related as

�3�q,0� = −
�3

�4
�4�q,0� . �6.15�

Collecting all four contributions and using the relations
between prefactors, we obtain

��q,0� =�A�q,0� +�B�q,0� ,

�A�q,0� =�1�q,0� + 2�2�q,0�

= 16
Nḡ2

�2��6�0
�d2Kd�d2ld���l,��G��,k�2

�G�� +�,k + l�G��,k + q� , �6.16�

�B�q,0� =�3�q,0� +�4�q,0�

= 16
N2ḡ3

�2��9�0
2 � d2kd�d2k�d��dld���l,��

���q + l,��G��,k�G��,k + q�

�G�� +�,k + l + q�G���,k� + q�

� G���,k��G��� +�,k� + l + q� . �6.17�

1. Fermi-liquid regime

Away from criticality, the correlation length � is finite,
and at low frequency, the system is in the Fermi-liquid re-
gime. The fermionic self-energy is 
���=��, Eq. �4.7�.

The spin susceptibility in this regime has been analyzed in
Refs. 27 and 35–39. It was shown there that to the lowest

order in the interaction, �B�q ,0�=�A�q ,0�, i.e., ��q ,0�
=2�A�q ,0�. Beyond leading order, �B�q ,0� and �A�q ,0� are
not equivalent but are of the same sign and of comparable
magnitude. For simplicity, we assume that the relation
�B�q ,0�=�A�q ,0� holds in the whole Fermi-liquid regime.
We show below that even at the QCP, �B�q ,0� and �A�q ,0�
are quite similar �at criticality �B�q ,0��1.3�A�q ,0��.

Introducing cos �= k·l
�k��l� and cos ��= k·q

�k��q� , and successively
integrating over �k�, � and ��, Eq. �6.16� can be rewritten as

��q,0� =
8ḡ�q�

�3�1 + ��vF
�

0

�

dz�
0

�/2

d��
0

�

d�
1

1/�̃�2 + tan �

�
cos � sin �

�i sin � − cos � cos ��2

�
z

	1 + z2�sin � + i cos � cos ��2
, �6.18�

where we defined �̃=
�vF

1+� , and introduced the new variables z

and �, which satisfy z cos �= l
q and z sin �=

�1+���

vFq .
The universal part of ��q ,0� can be isolated by subtract-

ing from it the constant part ��0,0�. The integral over z then
becomes convergent. Integrating successively over z, �, and
�, we obtain

��q,0� = −
4

�2

ḡ

vF�1 + ��
�q�H�1 + �

�̃�2 � , �6.19�

where H�0�= 1
3 , and H�x�1��2/ �3x2�. We do recover the

nonanalytic �q� correction to the static spin susceptibility in
D=2, as obtained in earlier studies.26,27,35,36

Note that Eq. �6.20� does not contradict the Fermi-liquid
relation �s�q→0,�=0�� �1+F1,s� / �1+F0,a�, where F1,s and
F0,a are Landau parameters. The Fermi-liquid theory only
implies that the static spin susceptibility saturates to a con-
stant value as q→0, but does not impose any formal con-
straint on the q dependence of �s�q ,��.

As one gets closer to the QCP, �=3ḡ / �4�vF�
−1� diverges

and the prefactor of the �q� term vanishes as

��q,0� = −
16

9�
�−1�q� . �6.20�

This is not surprising since the Fermi-liquid regime extends
on a region of the phase diagram that shrinks and ultimately
vanishes as one approaches the QCP.

Now, two different scenarios are possible:
�i� the divergence of � at the QCP completely eliminates

the nonanalyticity and the expansion of ��q ,0� begins as q2,
like in a bare spin susceptibility;

�ii� the self-energy 
�����2/3 at the QCP still leads to a
nonanalytic term ��q ,0�� �q��, with 1���2, which domi-
nates over the bare q2 term.
We show in the next subsection that the second scenario is
realized, and at the QCP, one has ��q ,0�� �q�3/2.

2. At criticality

At the QCP, we have to take into account two new ele-
ments: the bosonic propagator is massless ��−1=0� and the
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fermionic self-energy is no longer Fermi-liquid-like, it is
given by Eq. �4.9�.

The full calculation of �A�q ,0� and �B�q ,0� is presented
in Appendix D. We just outline here the main steps of the
computation and show where the q3/2 term comes from.

Consider first �A�q ,0�. Using Eq. �6.16� as a starting
point, and substituting the full form of the spin susceptibility,
Eq. �A8�, we then expand k+l and k+q, and integrate suc-
cessively over ly �projection of l perpendicular to kF� and k,
leading to

�A�q,0� = 16i
mḡ2

�2��5�
0

2�

d��
−�

+�

dlx�
−�

+�

d��
−�

0

d�

�
1

�i
�� +�� − i
��� − vFlx�2h�	lx
2 + c2
2���
������1/3 �

�
1

������1/3

1

i
�� +�� − i
��� − vFlx + vFq cos �
,

�6.21�

where c�1.198 78 �see Eq. �A6��, and h�x� is the bosonic
propagator ��l ,�� /�0 integrated over the momentum com-
ponent ly. The asymptotic behavior of h�x� is given by

�h�x � 1� =
�

x

h�x � 1� =
4�

3	3
+ �ln 2 − 1�x2 −

x2 ln x2

2
.

�6.22�

Since the integrand in Eq. �6.21� has poles in lx located in
the same half plane, the only nonvanishing contributions to
� comes from the nonanalyticities in h�x�.

There are two nonanalyticities in h�x�. The first one
comes from the 1/x behavior at large x, which extends to
x�1. This is a conventional nonanalyticity associated with
bosons vibrating near their own mass shell, since at x�1,
lx� ly ��� �� � �1/3.

Subtracting the constant �A�0,0�, expanding in q in Eq.
�6.21� and substituting lx��� �� � �1/3, we find for this contri-
bution to �

��A
�1� � q2 mḡ2

vF
3�5/3�

0

�Max d�

�2/3 �
	�q2, �6.23�

where �Max�	�vF
3 .

We see that the integration over the momentum range
relevant to the z=3 scaling regime yields a regular q2 con-
tribution to the static susceptibility. Not only is this contri-
bution regular in q, but it is also small in �. This result is
similar to the one we obtained in Eq. �5.2� for the static
vertex at a vanishing momentum.

However, Eq. �6.22� shows that h�x� has a nonanalytic
x2 ln x term already at small x, i.e., far from the bosonic mass
shell: the branch cut associated with the logarithmic term
emerges at vFlx�
���. The typical value of ly in the integral
that leads to this x2ln x term is also of the same order, al-
though larger in the logarithmic sense. This implies that this
second nonanalyticity comes from a process in which the

bosons are vibrating near a fermionic mass shell and far from
their own.

Furthermore, this logarithmic term in Eq. �6.22� comes
exclusively from the Landau damping term in the bosonic
propagator—the q2 term in ��l ,�� can be safely omitted.
Indeed, one has

�
−�

�

dly
1

����/	lx
2 + ly

2
= f��� −

lx
2ln lx

2

2��
. �6.24�

Substituting the logarithmic term from Eq. �6.22� into the
formula �6.21� for �A�q� and again subtracting the nonuni-
versal constant term �A�0,0�, we find that the integral over
lx is convergent. Introducing z= lx / �c
����, one can perform
the integral over z over the contour of Fig. 6, which leads to
the following contribution to �, which we label as
�A

�2��q ,0�:

�A
�2��q,0� −�A�0,0�

=
4mḡ2

c2�4�vF
q2�

0

�/2

d��
1

+�

dy�
0

+� d�


���2

��
0

1

dw
cos2 �

�c−1��1 − w�2/3 + w2/3� + y�3

�
1 − y2

�y + c−1��1 − w�2/3 + w2/3��2 + �vFq cos �/c
����2 ,

�6.25�

where we defined w=� /�.

Introducing the new variables t=� c
���

vFq cos �
�3/2

and
v= t�y+c−1��1−w�2/3+w2/3��, it becomes possible to separate
the integrals, leading to the following final result:

�A�q,0� −�A�0,0� ��A
�2��q,0� −�A�0,0�

= − 0.8377q3/2 mḡ2

�4�vF
3/2�0

1/2

= − 0.1053	kFq3/2. �6.26�

We emphasize that this dependence comes from bosonic
modes vibrating at the fermionic mass shell. This explains
why the result of Eq. �6.26� is not small in �, as this small
parameter measures the softness of the mass-shell bosons
compared to the mass-shell fermions.

FIG. 6. Integration contour: the hatched region stands for a
branch cut, and the cross for a pole.
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The integrals for �B�q ,0� cannot be exactly evaluated
analytically, but an approximate calculation �presented in
Appendix D� yields

�B�q,0� −�B�0,0� = − 0.14q3/2	kF, �6.27�

such that the total

��q,0� −��0,0� = − 0.25q3/2	kF. �6.28�

We see that ��q ,0� is still nonanalytic in q and the pref-
actor is negative. At small q, the negative q3/2 term well
exceeds the regular q2 term. This implies that the static spin
susceptibility is negative at small momenta, i.e., a ferromag-
netic QCP is unstable. We discuss the consequences of this
instability in the concluding section. The momentum qmin
below which �s is negative is determined by

�−1�qmin� � qmin
2 − 0.25qmin

3/2 	kF = 0, �6.29�

which gives qmin=0.06kF. Parametrically, qmin is of order kF,
which is the largest momentum scale in our problem. Strictly
speaking, this suggests that the whole quantum critical
theory for the ferromagnetic case is not valid, for the quan-
tum critical behavior extends up to energies of order �0, i.e.,
up to momenta of order q��0 /vF��2kF�kF. Numerically,
however, qmin is much smaller than kF. This implies that for
reasonable values of �, there exists an intermediate momen-
tum and energy range qmin�q��0 /vF where the system is
in the quantum critical regime, but the static spin suscepti-
bility is still positive.

The q3/2 nonanalyticity can also be viewed as emerging
from the q ln q momentum dependence of the static vertex.
Using Eq. �5.5�, one can rewrite

��q,0� � Nḡ� d2kd�
1

i
��� − k

��g/g��q,�=0

i
��� − k+q
.

�6.30�

Performing the contour integration over k, and changing
variables into y=k /
��� and t=	�0� / �vFq�3/2, we obtain

��q,0� � 	kFq3/2. �6.31�

We note in this regard that the nonanalytic momentum de-
pendence of the fermion-boson static vertex also comes from
bosons vibrating near the fermionic mass shell, i.e., it
emerges due to the same physics as we outlined above.

C. Temperature dependence of the static uniform spin
susceptibility

In this section, we show that the static uniform suscepti-
bility is negative at finite temperature above a ferromagnetic
QCP. To demonstrate this, we compute the static uniform
�A�q=0,�=0,T�=�A�T�, assuming that �−1=0. The contri-
bution from �B�T� is of the same sign and comparable in
magnitude. We have

�A�0,T� = 16i
mḡ2

�2��3T �
p�0
�p� d2q

�
1

q2 + ���p�/q
1

�i
��p� − vFqx − qy
2/2m�3 .

�6.32�

Since the poles in qx from the fermionic Green’s functions
are all in the same half plane, one expects that qx

Typ

�����1/3 and thus dominates over the qy
2 term, which in turn

can be neglected in the fermionic Green’s functions. It then
becomes possible to perform the integral over qy, which
gives

�A�0,T� = 2i
mḡ2

�3�vF
3 T �

p�0

�p

��p��0

���p�1/3

dqx

qx
2ln�qx�

�i
̃��p� − vFqx�3
.

�6.33�

Integrating over the half space where there is no triple pole,
we find that the integral is determined by the branch cut in
ln �qx�. Evaluating the integral we obtain

� dqxqx
2ln�qx�

�i
̃��p� − vFqx�3
= sgn��p�

i�

vF
3 ln� EF

�
̃��p��
� .

�6.34�

Thus

�A�0,T� =
2mḡ2

3�2�vF
3 T �

p�0
ln

EF

��p�
. �6.35�

To perform the summation over p, we notice that when the
summand does not depend on p,

T �
−�/T

�/T

A = 2A� �6.36�

is independent on T. Then the same sum but without the
p=0 term just gives 2A�−AT. Using this, we obtain with
logarithmic accuracy

T �
p�0

ln
EF

��p�
= − T ln

EF

T
+ ¯ , �6.37�

where dots stand for O�T� terms. Substituting this into Eq.
�6.35�, we obtain the final result:

�A�0,T� = −
2kF

2

3�2�
T

EF
ln�EF

T
� . �6.38�

Although small, because of the prefactor in �, this term
dominates at low temperature over any regular T2 term. The
sign of this T ln�EF /T� term is opposite to the sign of a
conventional correction to scaling HMM theory, which
comes from a constant part of the prefactor for the �4 term.
In the HMM theory the temperature dependence of the spin
susceptibility is bTd+z−2z, b	0, which in d=2 leads to a
linear in T contribution with positive prefactor. The negative
sign of nonanalytic temperature correction in Eq. �6.38� im-
plies that the static spin susceptibility is negative right above
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the QCP. This is another indication that the ferromagnetic
QCP is unstable.

D. Self-energy at the three-loop level

Finally, we show how one can detect the instability of a
ferromagnetic QCP from an analysis of higher-order self-
energy diagrams. This analysis is complimentary to the cal-
culations that we have already done in the previous subsec-
tions. We show that upon inserting the contributions from the
diagrams presented in Fig. 5 into the fermionic self-energy,
we obtain series of singular corrections in powers of �min/�,
where ���min�1/3=qmin, and qmin is the scale at which the
static susceptibility �s�q� becomes negative, Eq. �6.29�.

To illustrate this, we consider one of the three-loop dia-
grams, represented in Fig. 7. In the case of a spin interaction,
we obtained a finite result after collecting the various dia-
grams, so we restrict ourselves here with just one of these
contributions. The analytic form of the diagram in Fig. 7
writes


3��� � ḡ� d�1d2q1
A�q1,�1�

i
�� − �1� − vFq1x − Nq1y
2 /2m

� � 1

q1
2 + ���1�/q1

�2

, �6.39�

where A�q1 ,�1� is the dynamic fermionic bubble given by

A�q1,�1� � Nḡ2� d2kd�� d2q2d�2
1

q2
2 + ���2�/q2

�
1

i
��� − k

1

i
�� + �1 + �2� − k+q1+q2

�
1

i
�� − �1� − k+q1

1

i
�� + �2� − k+q2

.

Approximating A�q1 ,�1� by its singular static part q1
3/2	kF

and substituting into Eq. �6.39� we obtain


3��� � ḡ	kF� d�1d2q1� q1

q1
3 + ���1��

2

�
q1

3/2

i
�� − �1� − vFq1x − Nq1y
2 /2m

. �6.40�

A simple analysis of this expression shows that the domi-
nant contribution to 
3��� comes from q1x�q1y ����1�1/3

since the integral over q1x is determined by the branch cut in
the bosonic propagator. One can then safely drop the qua-
dratic term in the fermionic propagator and integrate over the
angle � between kF and q1. This leads to


3��� � ḡ	kF�
0

�

d�1� dq1
q1

9/2

�q1
3 + ��1�

�
1

	�vFq1�2 + 
���2
�

ḡ	kF

vF
	��0

� d�1

	�1

.

�6.41�

Collecting the prefactors, we find


3��� � �ḡ��1/2. �6.42�

We see that the nonanalyticity in the static spin suscepti-
bility feeds back into the fermionic self-energy leading to a
contribution from the three loop self-energy whose fre-
quency dependence is more singular than the �2/3 depen-
dence that we obtained assuming that the static susceptibility
is regular. Comparing these two contributions, we see that
they become comparable at a frequency

�0
1/3�min

2/3 � 	ḡ�min ⇒ �min �
qmin

3

�
�

EF
2

ḡ
, �6.43�

where qmin is given by Eq. �6.29�. Parametrically, qmin is not
small since qmin�kF, and �min�EF /� is larger than EF.
However, qmin�0.06kF is small numerically so that �min is
four orders of magnitude smaller than EF /�.

E. Summary

To summarize, we found that the Eliashberg theory for an
SU�2� symmetric ferromagnetic QCP has to be extended to
include extra singular terms into both the spin susceptibility
and the fermionic self-energy. These terms originate from the
“anti-Migdal” processes in which slow bosons are vibrating
near the fermionic mass shell. Physically, these extra pro-
cesses originate from the dynamic long-range interaction be-
tween fermions, which is still present at the QCP despite the
fact that fermions are no longer good quasiparticles.

We demonstrated that these extra nonanalytic terms can
be understood in the framework of HMM �4 theory of quan-
tum criticality. We showed that the prefactor for the �4 term
is nonanalytic and depends on the interplay between momen-
tum and frequency. The nonanalytic bosonic self-energy is
the feedback from the nonanalytic �4 term to the quadratic
�2 term.

We found that these extra terms in the Eliashberg theory
make a ferromagnetic QCP unstable below a certain momen-
tum and energy scale. We detected the instability by analyz-
ing the momentum and temperature dependence of the spin
susceptibility, and also the fermionic self-energy at three-
loop order.

VII. STATIC SUSCEPTIBILITY IN THE NON-SU(2)
SYMMETRIC CASE

The problem of fermions interacting with bosonic collec-
tive modes with a propagator similar to the one we consid-
ered is quite general, and one can wonder to what extent our

FIG. 7. Three-loop contribution to the fermionic self-energy.
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analysis for a ferromagnetic case can be extended to the case
of an interaction with charge fluctuations, a nematic QCP, or
a ferromagnetic instability with Ising symmetry.

The essential difference between these cases and the fer-
romagnetic one lies in the symmetry of the order parameter.
In an SU�2� spin-symmetric ferromagnetic case, the order
parameter �magnetization� is a three-dimensional vector,
while in the other cases, it is a scalar.

As we already discussed, the Eliashberg theory and the
analysis of its validity at the two-loop level can be carried
out equally for systems with vector and with scalar order
parameter: the only unessential difference is in the numerical
prefactors. On the other hand, the evaluation of the correc-
tions to the static susceptibility leads to different results for
scalar and vector order parameters, as we now demonstrate.

A. Ising ferromagnet

Consider first the situation of a magnetically mediated
interaction, where we change the spin symmetry of the
bosons from SU�2� to Ising. The Ising case was argued to be
relevant for metamagnetic quantum critical points.40

The use of Ising spins does not change the expression for
the Green’s functions but replaces the Pauli matrix � at the
fermion-boson vertex by �z. As a consequence, the compu-
tations performed for the SU�2� case still hold, but the inter-
play between different diagrams changes because of a
change in the numerical prefactors. In particular, instead of
Eq. �6.12� we now have

�1
Ising = �2

Ising = 2,

�3
Ising = �4

Ising = 0. �7.1�

Under these circumstances, the nonanalytic contributions
from the diagrams in Fig. 5 cancel each other out. As a
result, the static spin susceptibility remains analytic and
scales as �−1�q��q2 with a positive prefactor at the QCP.

This result can be extended to the case of a nematic in-
stability, following the same arguments.

B. Charge channel

For a charge vertex, one has to replace the Pauli matrices
present at the vertex by Kronecker symbols ���. We then
have

�1
Charge = �2

Charge = �
�,�,�,�

������������ = 2,

�3
Charge = �4

Charge = �
�,�,�,�,,�

���������������� = 4.

Substituting these �Charge into the expressions for �, we
find that the diagrams �1 and �2 as well as �3 and �4
cancel each other out. This leaves only regular q2 term in the
static charge susceptibility.

C. Physical arguments

The cancellation of the nonanalytic terms in the charge
susceptibility is not a direct consequence of the conservation
laws. These laws impose constraints �Ward identities� on the
behavior of the susceptibilities in the opposite limit q=0,
��0 ��c�q=0,�� vanishes as a uniform perturbation cannot
affect a time independent, conserved quantity�.

Instead, the absence of the nonanalytic terms in the charge
channel is related to the fact that this susceptibility measures
the response of the system to a change in the chemical po-
tential. We showed that the origin of the singular behavior of
the static spin susceptibility lies in the Landau damping term
in the bosonic propagator �see Eqs. �6.24� and �6.28��. The
Landau damping does not depend in a singular way on kF
�i.e., on the density of electrons�, and therefore there is no
singular response of the system to a change in the chemical
potential.

Conversely, the effect of a magnetic field on the Landau
damping is singular: for a fermionic bubble with opposite
spin projections of the two fermions, �±��� � /	�2+ �vFl�2

is replaced by �� � /	��+2i"BH�2+ �vFl�2 in the presence of
a small magnetic field H. As a consequence, taking the sec-
ond derivative of �± with respect to H, and setting then H
=0, one obtains, for vFl��, a nonanalytic d2�± /dH2

�� / l3. This nonanalyticity gives rise to a q3/2 term in the
static spin susceptibility.38,39 For an Ising ferromagnet, this
effect does not exist as there are no bubbles with opposite
spin projections in the theory.

The above reasoning shows that the nonanalyticity ap-
pears in the spin response but not in the charge one. To
further verify this argument, we computed the subleading,
three-loop diagrams for the charge susceptibility and found
that the nonanalytic contributions from individual diagrams
all cancel out. We present the calculations in Appendix E.

The same argument holds for the self-energy at the three-
loop and higher orders. The singular �1/2 term obtained in
Eq. �6.42� appears in individual diagrams, but in the case of
a QCP in the charge channel �or an Ising QCP in the spin
channel� the total singular contribution cancel out.

D. Summary

To summarize, the extra singular additions to the Eliash-
berg theory are specific to the SU�2� spin case and all cancel
out for the charge QCP, the gauge-field problem, the nematic
QCP, and the spin QCP for a scalar �Ising� order parameter.

VIII. CONCLUSIONS

We have constructed a fully controllable large-N quantum
critical theory describing the interaction of fermions with
gapless long-wavelength collective bosonic modes. Our ap-
proach, similar but not identical to the Eliashberg theory for
the electron-phonon interaction, allows us to perform de-
tailed calculations of the fermionic self-energy and the vertex
corrections at the QCP.

We constructed a controllable expansion at the QCP as
follows: we first created a non-Fermi-liquid “zero-order”
theory by solving a set of coupled equations for the fermi-
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onic and the bosonic propagators, neglecting the vertex cor-
rections as well as the momentum dependence of the fermi-
onic self-energy, and then analyzed the residual interaction
effects in a perturbative expansion around our zero-order
theory.

We have proved that this approach is justified under two
conditions: �i� the interaction ḡ should be smaller than the
fermionic bandwidth �which we assumed for simplicity to be
of the same order as EF�, and �ii� either the band mass mB
should be smaller than m=kF /vF, or the number of fermionic
flavors N should be large. When N=O�1� and mB�m, the
corrections are of order O�1�. We found that the corrections
that are small in ḡ /EF come from bosons near their reso-
nance, as in the Eliashberg theory for the electron-phonon
interaction. The corrections small in mB / �Nm� come from
bosons for which one of the momentum component �the
larger one� is near the bosonic resonance, while the other
component is close to the fermionic mass shell.

For an SU�2�-symmetric quantum critical point towards
ferromagnetic ordering, we found that there exists an extra
set of singular renormalizations which come from bosons
with both momentum components vibrating near the fermi-
onic mass shell. These processes can be understood as a
consequence of an effective long-range dynamic interaction
between quasiparticles, generated by the Landau damping
term. These singular renormalizations are not small and have
to be included into the Eliashberg theory. They give rise to a
negative nonanalytic q3/2 correction to the static spin suscep-
tibility, signaling that the ferromagnetic QCP is unstable.

We also demonstrated that the nonanalytic q3/2 term
can be understood in the framework of the �4 theory of
quantum criticality. We showed how the effective long-range
dynamic interaction between fermions affects the structure
of the �4 theory, once fermions are integrated out: we
found that the prefactors of the �3 and �4 terms appearing
in the effective action are nonanalytic and depend on the
interplay between the typical external momentum and
frequency.

We showed that the nonanalytic corrections to the bosonic
propagator are specific to the SU�2�-symmetric case when
the order parameter is a vector. For systems with a scalar
order parameter, like a QCP in the charge channel, a nematic
QCP, or a ferromagnetic QCP with Ising symmetry, the q3/2

contributions from individual diagrams cancel out in the full
expression of the susceptibility.

The consequences of the instability of the ferromagnetic
QCP still needs to be fully understood. We only considered
the behavior of the spin susceptibility at a finite q, and found
that the system is unstable towards an incommensurate state
�a similar state has recently been analyzed in detail in Ref.
42�. Belitz, Kirkpatrick, and others28,39,41,43 considered in de-
tail the behavior of the thermodynamic potential as a func-
tion of the magnetization, and found a negative, nonanalytic
term which favors a first-order transition to ferromagnetism.
Our results are not in conflict with these works, but rather
point on a different, competing instability near a ferromag-
netic QCP. The full analysis of what actually substitutes a
continuous second-order transition in itinerant ferromagnets
is clearly called on.
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APPENDIX A: BOSONIC SELF-ENERGY

In this section, we compute the bosonic self-energy at the
one-loop level, in the case of both free and fully renormal-
ized fermions. We prove that for an external bosonic momen-
tum on the bosonic mass shell, this self-energy becomes in-
dependent on the actual form of the fermionic self-energy,
and reduces to the usual Landau damping term, whereas an
extra term has to be included if this same external momen-
tum is on the fermionic mass shell.

After performing the sum over spin matrices, we are left
with the following expression:

��q,�� = 2Nḡ� d2kd�

�2��3 G�k,��G�k + q,� +�� .

�A1�

Introducing the angle � defined by k+q=k+vFq cos �, this
writes

��q,�� = N
ḡm

4�3 � d�dkd�
1

i�� + 
���� − k

�
1

i�� +� + 
�� +��� − k − vFq cos �
.

�A2�

Proceeding with a contour integration over k, and notic-
ing that � and 
��� have the same sign, we get

��q,�� = iN
ḡm

2�2�
−�

+�

d��
0

2�

d����� +�� − �����

�
1

i�� + 
�� + �� − 
���� − vFq cos �
.

�A3�

Performing the integration over �, and rearranging a little
bit the integration over �, we are left with

��q,�� = N
mḡ

�vF
�

0

�

d� sgn���

�
1

	�vFq�2 + �� + 
�� − �� + 
����2
.

�A4�

We know from direct perturbative calculation that the fer-
mionic self-energy goes like 
���=�0

1/3�2/3, where �0
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��ḡ. It follows that if the external bosonic momentum is on
the bosonic mass shell, i.e., if q��1/3, it dominates over the
frequency-dependent term in the integral, so that

��q,�� = N
mḡ

�
�

0

�

d�
sgn���

vFq
= N

mḡ

�vF

���
q

. �A5�

We recover here the expression of the Landau damping
term with a prefactor depending on the details of the inter-
action considered in our model. This result is independent on
the fermionic self-energy provided that vFq� ��+
����.

However, if the external bosonic momentum is on the
fermionic mass shell, i.e., if vFq�
���, the frequency-
dependent term can no longer be neglected. Defining z= �

� ,
one then has

��q,�� = N
mḡ

�
� �


���
�

� �
0

1

dz
1

	�vFq/
����2 + �z2/3 + �1 − z�2/3�2
.

�A6�

This formula is of limited use as it is modified by vertex
corrections. For the calculations of the static spin suscepti-
bility, we actually only need the leading O�1/q� and the sub-
leading, O�1/q3� terms in ��q ,��. We show in Appendix C
that these two terms still can be evaluated without taking into
account the vertex corrections �see Eq. �C20� below�. Ex-
panding Eq. �A6� in 1 /q up to the third order, we find, at
���0,

��q,�� = �
���
q
�1 −

c2
2���
2vF

2q2 � , �A7�

where c�1.198 78. It is convenient to rewrite this expres-
sion in a condensed form, by plugging back the 
���2 term
into the denominator, leaving only the ��� dependence in the
numerator, i.e.,

��q,�� = N
mḡ

�

���
	�vFq�2 + c2
���2

. �A8�

Finally, one should keep in mind that we actually only need
in our further calculations the 1/q and 1/q3 terms from the
small-q expansion of this last expression.

APPENDIX B: FERMIONIC SELF-ENERGY

In this section, we compute the fermionic self-energy at
the one-, two-, and three-loop levels, for an external momen-
tum taken to be on the Fermi surface. We also analyze the
momentum dependence of the one-loop fermionic self-
energy.

1. One loop

a. At the Fermi level

After summing over the spin matrices, the fermionic self-
energy at the one-loop level is given by


��� = 3ig2� d2qd�

�2��3 G�kF + q,� +����q,��

=
3ig2

�2��3 � d�dqd�
�0

�−2 + q2 + �����/q�

�
q

i�� +� + 
�� +��� − vFq cos �
, �B1�

where we defined � as the angle between k and q, and con-
sidered an external fermionic momentum k�kF. The i pref-
actor comes from the convention G−1=G0

−1+ i
.
Since the pole in q from the fermionic propagator is in a

definite half plane, the integral in q is dominated by poles
coming from the bosonic Green’s function, so that one can
perform the integral over the angular variable and simplify
the result as follows:


��� = −
3g2

�2��2 � d�dq
�0

q3 + ���� + q�−2

�
q2sgn�� +��

	�vFq�2 + �� +� + 
�� +���2

= −
3ḡ

�2��2�
−�

+�

d��
0

+�

dq
q2sgn�� +��

vFq

�
1

q3 + ���� + q�−2 . �B2�

Defining the new variables z= �

� and u=
vFq

� , this leads to


��� =
3ḡ

2�2

�2

�vF
3�

0

1

dz�
0

+�

du
u

z + au + bu3 , �B3�

where we have used a= 1
�vF�

2 and b= �2

�vF
3 .

Let us denote by I the last double integral, and define the
new variables y=	 b

a3 z= ����3�z and t=	b
au= ��

vF
u. Now I

reduces to

I = � vF

��
�2�

0

���3

dy�
0

+�

dt
t

t3 + t + y
= � vF

��
�2

h����3� .

�B4�

Substituting this back into our expression for the self-energy:


��� =
3

2�m�2h����3� , �B5�

with the following asymptotic behavior: h�x→0�= �x
2 and

h�x→� �= �x2/3

	3
.

In the two regimes we are interested in, this last result can
be rewritten as


��� = ��� for �−1 � 1,

�0
1/3�2/3 for �−1 → 0,

�B6�

where the constant prefactors are defined as
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�� =
3

4�

ḡ�

vF
,

�0 =
3	3

8�3

ḡ3

�vF
3 .

�B7�

b. Momentum dependence

For definiteness, we set �−1=0. We first compute the
momentum-dependent part of the one-loop fermionic self-
energy at zero external frequency:


�k,� = 0� = 3ig2� d2qd�

�2��3 G�k + q,����q,��

=
3iḡ

�2��3 � d�d2q

i
̃��� − k+q

q

���� + q3 . �B8�

Expanding k+q=k+vFq cos � and integrating over �, we ob-
tain


�k,0� =
3ḡ

4�2 � d� sgn��� � q2dq

q3 + ����

�
1

��vFq�2 + �
̃��� + ik�2�1/2
. �B9�

At k=0, the integral vanishes by parity. Expanding to linear
order in k we obtain


�k,0� = − 3ik�
ḡ

2�2�
0

�

d�
̃���

�� q2dq

�q3 + ���������vFq�2 + 
̃���2�3/2
.

�B10�

Simple estimates show that the result depends on the in-

terplay between ����1/3 and 
̃��� /vF. Introducing the scale

�Max, defined as the frequency at which ����1/3= 
̃��� /vF

�see Eq. �5.3��, and rescaling variables as q= ���Max�1/3y,
�=�Maxx, we re-write Eq. �B10� as


�k,0� = − 3ik�
ḡ�Max

2�2vF
3�

I , �B11�

where

I = �
0

�

dx�
0

�

dy
xy2

�x2 + y2�3/2�x + y3�
� 1.3308. �B12�

Substituting �Max= ��vF
3�1/2, we obtain Eq. �5.30�.

To obtain the frequency dependence of the fermionic den-
sity of states at small �, we have to evaluate the second-

order term in k at the mass shell, where k= i
̃��� and con-
vert the result to real frequencies. Therefore we now keep
both � and k finite, and use


�k,�� =
3iḡ

�2��3 � d�d2q
q

���� + q3

1

i
̃�� +�� − k+q

.

�B13�

Writing, as before, k+q=k+vFq cos � and integrating over
�, we obtain


�k,�� =
3ḡ

4�2 � d�q2dq

���� + q3

sgn�� +��
	�
̃�� +�� + ik�2 + �vFq�2

.

�B14�

We assume and then verify that the internal vFq are still

larger than 
̃��+�� and k, and expand


�k,�� = −
3ḡ

8�2vF
3 � d� sgn�� +�� � dq

q����� + q3�

��
̃�� +�� + ik�2. �B15�

The lower limit of the momentum integral is �
̃��+��
+ ik� /vF. At the mass shell, ik= 
̃���. Substituting, we find


�k,�� = −
3ḡ

8�2vF
3 � d� sgn�� +�� � dq

q����� + q3�

��
̃�� +�� − 
̃����2. �B16�

We only need the contribution which is confined to ���.
The contributions from �� � � ��� diverge in our expansion
procedure, and account for the regular O�k� and O��� terms
in the self-energy. The last term is even smaller in � than the
regular O�k� term and is totally irrelevant. As ��� is

small, 
̃����
���=�2/3�0
1/3.

Because of the sgn factor in the numerator of Eq. �B14�,
there are two distinct contributions from ���. For both of
them, the momentum integral is logarithmic �which justifies
the expansion� and yields �1/3�ln��1 /��, where �1

�N2EF
2 / ḡ. The first contribution comes from �� �� ��� and

to logarithmic accuracy is


�k,��A = −
ḡ

8�2vF
3�

sgn����
−���

��� d�

���

��
���� +�� − 
������2ln
�1

���
. �B17�

Rescaling the frequency, we obtain from Eq. �B17�


�k,��A = −
ḡI1

4�2vF
3�

����
����ln

�1

�
, �B18�

where

I1 =
1

2
�

−1

1 dx

�x�
��1 + x�3/2 − 1�2 = 0.254. �B19�

Another comes from �� �	 ���, and is
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�k,��B =
ḡ
���

4�2vF
3�

ln
�1

�������

� d�

�

��
���� +�� + 
�� − ���� − 2
���� .

�B20�

Rescaling, we obtain


�k,��B =
ḡI2

4�2vF
3�

����
����ln

�1

���
, �B21�

where

I2 = �
1

� dx

x
��1 + x�2/3 + �x − 1�2/3 − 2x2/3� = − 0.195.

�B22�

Combining 
�k ,��A and 
�k ,��B, we obtain


�k,��= −
0.45ḡ

4�2vF
3�

����
����ln

�1

���
. �B23�

Substituting the expression for � in this last expression, we
obtain Eq. �5.34�.

2. Two loop

We compute here one of the contributions to the two-loop
self-energy, given by Fig. 1. This contribution originates
from the insertion of the vertex correction into the Eliashberg
self-energy.

We have


2��� � g4� d�1d2q1� d�2d2q2��q1,�1���q2,�2�

�G�kF + q1,� + �1�G�kF + q2,� + �2�

�G�kF + q1 + q2,� + �1 + �2� , �B24�

which gives, once we replace each propagator by its full
expression,


2��� � ḡ2� d�1d2q1� d�2d2q2
q1

���1� + q1
3

q2

���2� + q2
3

1

i
̃�� + �1� − vFq1x − N�q1y
2 /2mB�

1

i
̃�� + �2� − vFq2x − N�q2y
2 /2mB�

�
1

i
̃�� + �1 + �2� − vF�q1x + q2x� − N��q1y + q2y�2/2mB�
, �B25�

where we use the shorter notation 
̃���=�+
���.
Integrating successively over q1x and q2x, closing each

contour on the upper half plane, one has


2��� �
mBḡ2

NvF
2 � d�1� d�2#��,�1,�2� � dq1y� dq2y

�
�q1y�

�q1y�3 + ���1�
�q2y�

�q2y�3 + ���2�

�
1

��2�1�2�1/3

1

�q1yq2y/��2�1�2�1/3� + i�
, �B26�

where �=mB


̃��+�1�+
̃��+�2�−
̃��+�1+�2�

N��2�1�2�1/3 and #�� ,�1 ,�2�
comes from the choice of a contour for the integration and is
given in our case by

#��,�1,�2� = ���� + �1� − ��� + �1 + �2��

����� + �2� − ��
̃�� + �1 + �2�

− 
̃�� + �1��� . �B27�

It is convenient at this stage to rescale the perpendicular
components of the bosonic momenta. Introducing x
=q1y / �� ��1 � �1/3 and y=q2y / �� ��2 � �1/3, we obtain


2��� �
mBḡ2

NvF
2 � d�2� d�1�

0

�

dxdy
#��,�1,�2�
��2�1�2�2/3

�
i�

x2y2 + �2

xy

�1 + x3��1 + y3�
, �B28�

where we rearranged the double integral over x and y to
make it real.

Since all internal frequencies typically go like �, the typi-
cal value of � is given by the small parameter � given in Eq.
�5.13�. Expanding the double integral for small values of �,
the leading contribution from the integral over x and y reads

�
0

�

dxdy
1

x2y2 + �2

xy

�1 + x3��1 + y3�
� ln2� . �B29�

If one considers now free fermions, it becomes possible to
reduce the expression of the two-loop self-energy to


2
free��� �

mB
2 ḡ2

N2vF
2 �

0

�

d�2�
�−�2

�

d�1
ln2�mB�/N��2�1�2�2/3�

�2�1�2

�
mB

2 ḡ2

N2�vF
2��

0

1

dz2�
1−z2

1

dz1
ln2�mB

3�/N3�z1z2�
z1z2

� �2� ln2� , �B30�
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where we only kept the leading contribution in the last ex-
pression, and �=mB /mN is one of the small parameters de-
fined in the text.

Now, in the case of dressed fermions, we need to take


̃���=�0
1/3�2/3. The procedure is identical to the free fer-

mion case, but the final expression is a bit more complicated:


2
Dressed��� �

mB
2 ḡ2

N2�2vF
2�0

1/3�2/3�
0

1

dz2�
1−z2

1

dz1
1

z1z2

���1 − z1�2/3 + �1 − z2�2/3 + �z1 + z2 − 1�2/3�

� ln2� �1 − z1�2/3 + �1 − z2�2/3 + �z1 + z2 − 1�2/3

�N�2/3/mB�0
1/3�z1

1/3z2
1/3 � .

�B31�

Expanding the ln2, one is left with a double integral that only
contributes as a numerical prefactor, and the dominant term
is then given by


2��� � 
1����2ln2� , �B32�

where 
1���=�0
1/3�2/3 is the self-energy in the Eliashberg

theory.

3. Three loop

We now turn to the computation of the three-loop self
energy. We are only interested here in one diagram, given in
Fig. 7, where we try to analyze the feedback of the nonana-
lytic susceptibility into the higher-order diagrams for the fer-
mionic self-energy. For spin interaction, there is no cancel-
lation between different diagrams for the static susceptibility,
which justifies that we restrict ourselves to just one contri-
bution.

The analytic expression for this diagram is


3��� � ḡ� d�1d2q1
A�q1,�1�

i
�� − �1� − vFq1x − Nq1y
2 /2mB

� � 1

q1
2 + ���1�/q1

�2

, �B33�

where A�q1 ,�1� is the factor from the fermionic bubble:

A�q1,�1� � Nḡ2� d2kd�� d2q2d�2
1

q2
2 + ���2�/q2

�
1

i
��� − k

1

i
�� + �1 + �2� − k+q1+q2

�
1

i
�� − �1� − k+q1

1

i
�� + �2� − k+q2

.

Approximating A�q1 ,�1� by its singular static part q1
3/2	kF

and substituting into the expression of 
3 we obtain


3��� � ḡ	kF� d�1d2q1� q1

q1
3 + ���1��

2

�
q1

3/2

i
�� − �1� − vFq1x − N�q1y
2 /2mB�

. �B34�

The integral over q1x is determined by the branch-cut in the
bosonic propagator and one then expects that this very inte-
gral is dominated by q1x����1�1/3. It follows that the term
in q1x dominates inside the fermionic propagator allowing us
to neglect the curvature term. Defining the angle � between
kF and q1, and integrating over it, this leads to


3��� �
ḡ	kF

vF
� d�1dq1sgn�� − �1�

	q1
2 + 
�� − �1�2/vF

2

q1
9/2

�q1
3 + ���1��2 .

�B35�

Since the dominant contribution comes from q1
����1�1/3, one can neglect the fermionic self-energy in the
denominator. This in turn allows us to simplify the frequency
integral, which then writes


3��� �
ḡ	kF

vF
�

0

�

d�1� dq1
q1

7/2

�q1
3 + ��1�2 �

ḡ	kF

	�vF
�

0

� d�1

	�1

,

�B36�

where we introduced z=q1 / ���1�1/3, so that the integral over
z just contributes to the numerical prefactor.

Collecting prefactors, one finally has


3��� � 	ḡ� . �B37�

APPENDIX C: VERTEX CORRECTIONS

In this section, we compute the various vertex corrections
analyzed in the text.

1. q=�=0

Consider first the simplest three-leg vertex, with strictly
zero incoming frequency � and momenta q, as presented in
Fig. 2�a�. Its analytic expression writes

��g

g
�

q=�=0
� g2� d�d2pG�kF,��2��p,��

� ḡ� d�d2p

����/p + p2

1

�i
̃��� − vFpx − N�py
2/2mB��2

,

where we defined 
̃���=�+
��� and we have chosen kF

along the x axis.
Since both poles coming from the fermionic Green’s func-

tions are in the same half plane, the integral over qx is finite
only because of the branch cut in the bosonic propagator.
Since at the branch cut px and py are of the same order, we
can drop the curvature term in the fermionic propagators and
introduce polar coordinates for the internal bosonic momen-
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tum. Defining � as the angle between kF and p, and integrat-
ing over it, one has

��g

g
�

q=�=0
� ḡ� d�dp

p3 + ����
p2�
̃����

��vFp�2 + 
̃���2�3/2
. �C1�

Introducing the frequency �Max up to which bosons are
slow modes compared to fermions, i.e., up to which

����1/3	
̃��� /vF, one can split the frequency integral into
two parts, and define in each of them the reduced momentum

z= p /Min(����1/3 , 
̃��� /vF) so that the integral over z only
contributes to the numerical prefactor, leading to

��g

g
�

q=�=0
� ḡ�

0

�Max

d�

̃���
�vF

3�
�

ḡ

�vF
3 
̃��Max� . �C2�

One can easily make sure that the frequency �Max at which

����1/3= 
̃��� /vF exceeds �0, such that one should use


̃���=� to find �Max. Substituting, we obtain �Max

��NḡEF�1/2, and

��g

g
�

q=�=0
� 	� . �C3�

2. q=0, � finite

Considering the same vertex, now with a finite external
frequency, one has

��g

g
�

q=0,�
� g2� d�d2pG�kF + p,� +��

�G�kF + p,����p,�� � ḡ� d�d2p

����/p + p2

�
1

i
̃��� − vFpx − N�py
2/2mB�

�
1

i
̃�� +�� − vFpx − N�py
2/2mB�

, �C4�

where we chose the x axis along kF.
From the pole structure in px of this expression, one ex-

pects two contributions to this integral. A first term comes
from the branch cut in the bosonic propagator, however, this
contribution ultimately leads to the same result as the q=�
=0 vertex, up to small corrections from the finiteness of �.
The second contribution arises from taking the poles in the
fermionic propagators. At zero external frequency, these two
poles were in the same half plane of px, so we could close the
integration contour over a different half plane and only con-
sider the contribution from the branch cut in the bosonic
propagator. At a finite �, there is a range where � and �
+� have different signs, and the two poles are in different
half planes of px. The result after integration reads

��g

g
�

q=0,�
�

ḡ

vF
�

0

�

d�� dpy

�py�
���� + �py�3

�
1


̃�� − �� + 
̃���
, �C5�

where we slightly rearranged the frequency integral.
Performing the integration over py, we are left with

��g

g
�

q=0,�
�

ḡ

�1/3vF
�

0

�

d�
�−1/3


̃�� − �� + 
̃���
�

ḡ

��0�vF
3�1/3

� const, �C6�

where we assumed that � is small, i.e., 
̃���=�0
1/3�2/3. This

vertex thus reduces to a numerical constant, that does not
contain any small parameter.

3. q finite, �=0

Conversely, the same vertex taken at finite external mo-
mentum q, but zero external frequency writes

��g

g
�

q,�=0

� g2� d�d2pG�kF + p + q,��G�kF + p,����p,��

� ḡ� d�d2p

����/p + p2

1

i
̃��� − vFpx − N�py
2/2mB�

�
1

i
̃��� − vFqx − vFpx − N�py
2/2mB� − N�qypy/mB�

,

where px is the projection of p along kF.
Like its q=0 counterpart, this vertex is characterized by

poles in px from the fermionic propagators lying in the same
half plane. The only nonzero contribution then comes from
the branch cut in the bosonic propagator. At the branch cut,
px� py which allows us to neglect the quadratic curvature
terms in the fermionic Green’s functions.

This makes possible a direct integration over py. This in-
tegral can be separated from the rest of the expression, and
reads

� dpy
p

���� + p3 =
1

�px�
�

−�

+�

dz
	1 + z2

�1 + z2�3/2 + �����/�px�3�

=
2px

2

�����0

+�/2

du
1

�px�3/���� + �cos u�3 ,

�C7�

where we successively defined z= py / �px� and z=tan u.
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This last integral can be approximated by its asymptotic
form, namely

� dpyp

���� + p3 =�
�

�px�
, if �px�3 � ��

4�

3	3

1

������1/3 −
1

2

px
2

����
ln

px
2

������2/3

+ �ln 2 −
1

2
� px

2

����
, if �px�3 � �� .

�
�C8�

The only nonvanishing contribution once we take the in-
tegral over px comes from the ln term. After expanding in qx,
this contribution reads

��g

g
�

q,�=0
− ��g

g
�

q=�=0
�

ḡvF

�
qx

�� d�

��� � dpx

px
2ln px

2

�i
̃��� − vFpx�3
.

�C9�

Defining the scaled momentum z=vFpx / 
̃��� and per-
forming the integration over z, one obtains two terms, the
dominant one being

��g

g
�

q,�=0
− ��g

g
�

q=�=0
� i

ḡ

�vF
2 qx�

�vFqx�

d�

�
ln�i
̃���� ,

�C10�

where the frequency integral runs over �
̃��� �	 �vFqx� since
as we expanded in vFqx, we assumed that it was smaller than

�
̃����.
Performing the remaining integral, one finds

��g

g
�

q,�=0
− ��g

g
�

q=�=0
�

qx

kF
ln�qx� . �C11�

4. q, � finite

Finally, we consider the general vertex where both exter-
nal bosonic momentum and frequency are nonzero. In ana-
lytic form, this writes

��g

g
�

q,�
� g2� d�d2pG�kF + p + q,� +��

G�kF + p,����p,��

� ḡ� d�d2p

����/p + p2

1

i
̃��� − vFpx − N�py
2/2mB�

�
1

i
̃�� +�� − vFqx − vFpx − N�py
2/2mB� − N�qypy/mB�

,

where px is defined as px=p ·kF.

Integrating over px first, there are two contributions. One
comes from the branch cut in the bosonic propagator, and
gives similar results to the �q=0, �=0� and the �q finite,
�=0� vertices up to small correction from the finiteness of
the external frequency. We neglect it here and focus on the
other contribution which comes from the poles in the fermi-
onic propagators:

��g

g
�

q,�
� i

ḡ

vF
�

0

�

d�� dpy

�py�
���� + �py�3

�
1

i
̃�� − �� + i
̃��� − vFqx − N�qypy/mB�
,

�C12�

where the simplification of the frequency integral comes
from the poles in px.

This vertex correction strongly depends on the interplay
between the external qx, qy, and �, and is in particular quite
sensitive to the momentum anisotropy. We now analyze the
various possibilities.

For the generic case where qx�qy �we use the notation q
to designate them�, one can neglect the quadratic term in the
fermionic dispersion, allowing us to perform the integration
over py, leaving us with

��g

g
�

q,�
� i

ḡ

vF�
1/3�

0

� d��−1/3

i
̃�� − �� + i
̃��� − vFqx

.

�C13�

Restricting ourselves to the quantum critical regime �i.e., �

��0� for which 
̃���=�0
1/3�2/3, one has

��g

g
�

q,�
= F� vFqx


���
� , �C14�

where F�x�=�0
1 dz

z1/3
1

�1−z�2/3+z2/3+ix
, has the following asymptotic

behavior:

�F�x � 1� = O�1�

F�x � 1� = O�1

x
� . � �C15�

If the typical q is on the bosonic mass shell, then qx�qy
�����1/3, and one has

��g

g
�

q,�
�

���
vFqx

� 	�� �

�Max
�1/3

. �C16�

However, we encountered in previous computations �e.g.,
self-energies� that a strong anisotropy can be observed be-
tween the components of the bosonic momentum, with
qy�qx. In this case, the full expression of the vertex correc-
tion is a bit complicated and we choose to present here the
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most relevant case for which the curvature term dominates
over vFqx in the fermionic propagator. The vertex correction
then no longer depends on qx and writes

��g

g
�

q,�
�

ḡ

vF
�

0

�

d��
0

�

dpy
py

�� + py
3

�

̃�� − �� + 
̃���

�
̃�� − �� + 
̃����2
+ �N�qypy/mB��2

.

�C17�

Defining u= py / ����1/3 and z=� /�, it is possible to rewrite
the vertex correction in this regime as

��g

g
�

q,�
� G�� ����1/3

qy
� , �C18�

where �=
mB

Nm and G�x� is the following double integral:

G�x� = �
0

� duu

1 + u3�
0

1 dzz−1/3��1 − z�2/3 + z2/3�
��1 − z�2/3 + z2/3�2 + u2z2/3/x2

� x2ln2 x, if x � 1. �C19�

Finally, for the computations of the full dynamic polariza-
tion bubble we also need the vertex averaged over the direc-
tions of q. The generic structure of this vertex, which we
define as ��g /g� is the same as in Eq. �C14�, i.e.,

���g

g
��

q,�
= F̃� vFq


̃���
�, F̃�0� = O�1� ,

F̃�x � 1� = O�1

x
� . �C20�

However, it is essential for our further analysis that the ex-

pansion of F̃�x� at large x holds in odd powers of 1 /x, i.e.,

F̃�x�1�=a1 /x+a3 /x3+ ¯ . In particular, there is no term
O�1/x2�, which we found in the polarization operator with-
out vertex corrections �see Eq. �A7��.

5. FOUR-LEG VERTEX

In this paragraph, we compute the renormalized four-leg
vertex �2�q ,�� presented in Fig. 3, which reads

�2�q,�� � g4� d�� d2p��� + �

2
,
p + q

2
�

� ��� − �

2
,
q − p

2
�G�� + �

2
,kF +

p + q

2
�

� G�� − �

2
,kF +

q − p

2
� . �C21�

Performing the integration over px, projection of p along
kF, we obtain

�2�q,�� �
ḡ2

vF
�

0

� d�dpy

��� − �� + �q2 + py
2 − 2qypy�3/2

1

i
̃�� + �/2� + i
̃�� − �/2� − vFqx − N�qy
2 + py

2/4mB�

�
	�q2 + py

2�2 − 4qy
2py

2

��� + �� + �q2 + py
2 + 2qypy�3/2 . �C22�

It is convenient at this stage to define the reduced variables z=� /� and y= py / �qy�:

�2�q,�� � ḡ
����1/3

�qy�3
�

0

1 dzdy

���/�qy�3��1 − z� + �1 − y�3
1

i��1 − z�2/3 + �1 + z�2/3� − �vFqx/
���� − �1 + y2/����qy�3/���2/3

�
�1 − y2�

���/�qy�3��1 + z� + �1 + y�3
, �C23�

where we assumed that ���0, and we used that in all our computations, the perpendicular component of the bosonic
momentum is always either dominant or comparable to the parallel one, so that one has qy �q.

Comparing this renormalized vertex with the bare one given by �1�q ,���
ḡqy

−2

1+����/�qy�3
, one has for the ratio of the two:

�2

�1
�

����1/3

�qy�
�

0

1 dzdy

���/�qy�3��1 − z� + �1 − y�3
1

i��1 − z�2/3 + �1 + z�2/3� − vFqx/
��� − ��1 + y2�/����qy�2/����2/3�

�
�1 − y2�

���/�qy�3��1 + z� + �1 + y�3
, �C24�
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which only depends on two parameters: the ratios
vFqx


��� and
�qy�3

�� .
In the generic case of an external bosonic momentum on

the mass shell, i.e., qx�qy �����1/3 one has

�2

�1
�

���
vFqx

� 	�� �

�Max
�1/3

. �C25�

On the contrary, for a typical qx�
��� /vF and qy

�����1/3:

�2

�1
� � , �C26�

up to logarithmic factors.

APPENDIX D: STATIC SPIN SUSCEPTIBILITY

1. Diagrams

In this appendix we present the details of our calculations
of the singular terms in the static spin susceptibility. We dis-
cuss in great detail the calculation of the first two diagrams
in Fig. 5 �vertex and self-energy correction diagrams�. These
two diagrams can be computed explicitly both away from
and at the QCP. We labeled the total contribution from these
two diagrams as �A�q ,0�. The remaining two diagrams
�their total contribution is �B�q ,0�� cannot be computed ex-
plicitly at the QCP, and we compute them in an approximate
scheme.

In explicit form, the first two diagrams in Fig. 5 are given
by

�1a�q,0� = �a
ḡ2

�2��6 � d2Kd�d2ld�G��,k�2

�G�� +�,k + l�G��,k + q���l,�� , �D1�

�1b�q,0� = �b
ḡ2

�2��6 � d2Kd�d2ld�G��,k�

�G�� +�,k + l�G�� +�,k + q + l�

�G��,k + q���l,�� , �D2�

where �a,b are numerical prefactors coming from spin sum-
mation. For symmetry reasons, one has to count the first
diagram twice, so that the total contribution reads

�A�q,0� = 2�1a�q,0� +�1b�q,0� . �D3�

a. First diagram

To prove our point, we try to expand the products of fer-
mionic Green’s functions into a simpler form:

G��,k�2G�� +�,k + l�G��,k + q�

=
G��,k�2G��,k + q�

$�l,�,��
−

G��,k�G��,k + q�
$�l,�,��2

+
G�� +�,k + l�G��,k + q�

$�l,�,��2 , �D4�

where $�l ,� ,��= i�
��+��−
����−vFlx.
The interest of such a splitting up is that one can reduce

this drastically by performing the integration over k. In fact,

� d�kG
a��,k�G��,k + q� = 0, �D5�

for a=1,2 since all the poles in �k are in the same half plane.
For this reason, we are left with

�1a�q,0� = �a
ḡ2

�2��6 � d2Kd�d2ld���l,��

�
G�� +�,k + l�G��,k + q�

$�l,�,��2 . �D6�

Let us keep this expression as it is for the moment and move
on to the second diagram.

b. Second diagram

Following the same path, we can rewrite the product of
fermionic Green’s functions as

G��,k�G�� +�,k + l�G�� +�,k + l + q�G��,k + q�

=
G��,k�G��,k + q� − G��,k�G�� +�,k + l + q�

$�l,�,��2

+
G�� +�,k + l�G�� +�,k + l + q�

$�l,�,��2

−
G�� +�,k + l�G��,k + q�

$�l,�,��2 , �D7�

with the expression of $ defined above.
Once again, the integration over �k may give zero if the

poles are in the same half plane, which reduces our previous
expression to

�1b�q,0� = − �b
ḡ2

�2��6 � d2Kd�d2ld���l,��

� �G�� +�,k + l�G��,k + q�
$�l,�,��2 ��

+
G��,k�G�� +�,k + l + q�

$�l,�,��2 � . �D8�

Changing k into k−q in the second part of the integral, we
have
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�1b�q,0� = − �b
ḡ2

�2��6 � d2Kd�d2ld���l,��

� �G�� +�,k + l�G��,k + q�
$�l,�,��2 ��

+
G��,k − q�G�� +�,k + l�

$�l,�,��2 � . �D9�

One can then notice that �k−q=�k−vFq cos � changes to �k+q
if one changes � into �−�. This finally leads to

�1b�q,0� = − 2�b
ḡ2

�2��6 � d2Kd�d2ld���l,��

�
G�� +�,k + l�G��,k + q�

$�l,�,��2 . �D10�

From what precedes, we have

�A�q,0� = 2�1 −
�b

�a
��1a�q,0� . �D11�

Spin summation prefactors can be easily computed, and are
given by

��a = ��,�,�,�
���

Z ��� · ������
Z = 6

�b = ��,�,�,�
���

Z ������
Z ��� = − 2.

This finally leads to

�A�q,0� =
8

3
�1a�q,0� . �D12�

2. Away from the QCP

In the Fermi-liquid regime we have

�A�q,0� =
16Nḡ2

�2��6 � d2Kd�d2ld�
1

�i�1 + ��� − k�2

�
1

i�1 + ���� +�� − k+l

1

i�1 + ��� − k+q

�
1

�−2 + l2 + �����/l�
. �D13�

where we used for the fermionic self-energy 
���=��,
since we are deep in the Fermi-liquid phase in this case.

Defining cos �= k·l
�k��l� and cos ��= k·q

�k��q� , and integrating
over k and �, one has

�A�q,0� = i
16Nmḡ2

�2��5 �
0

2�

d��
0

2�

d���
−�

+�

d��
0

�

�
dll

�−2 + l2 + ����/l
�

�i�1 + ��� − vFl cos ��2

�
1

i�1 + ��� − vFq cos �� − vFl cos �
. �D14�

The integral over �� then gives

�A�q,0� = −
4Nmḡ2

�4 �
0

�

d��
0

�

d��
0

�

dl

�
l

�−2 + l2 + ��/l

�

��1 + ��� + ivFl cos ��2

�
1

	�vFq�2 + ���1 + �� + ivFl cos ��2
. �D15�

It is convenient to rescale the variables at this stage, in-

troducing ��=
�1+���

vFq and l�= l
q , so that the previous expres-

sion reduces to

�A�q,0� = −
4Nmḡ2

�4vF�1 + ��2 �q��
0

�

d��
0

+�

d���
0

�

dl�

�
l

�−2 + ��vF/�1 + ������/l��
��

��� + il� cos ��2

�
1

	1 + ��� + il� cos ��2
, �D16�

where we kept only the leading order in q.
Defining z and � as z cos �= l� and z sin �=��, one is

left with

�A�q,0� = −
4Nmḡ2

�4vF�1 + ��2 �q��
0

�

d��
0

�

dz�
0

�/2

d�

�
cos �

�−2 + ��vF/�1 + ���tan �

z sin �

�sin � + i cos � cos ��2

�
1

	1 + z2�sin � + i cos � cos ��2
. �D17�

Subtracting the constant part �A�0,0� �and neglecting it�,
and integrating over z, this leads to

�A�q,0� =
4Nmḡ2

�4vF�1 + ��2 �q��
0

�/2 d� cos � sin �

�−2 + ��vF/�1 + ���tan �

� �
0

�

d�
1

�sin � + i cos � cos ��4 . �D18�

The angular integration over � can be done explicitly and
gives

�
0

� d�

�sin � + i cos � cos ��4 =
�

2
sin ��5 sin2 � − 3� .

�D19�

Substituting this into the expression of �A, we are left
with the following final result:

�A�q,0� = −
2ḡ

�2vF�1 + ��
�q�H� 1 + �

�vF�
2� , �D20�

where H is defined as
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H�x� = �
0

�/2

d�
cos � sin2 ��3 − 5 sin2 ��

tan � + x
, �D21�

and satisfies, in the two limits,

H�0� =
1

3
, H�x � 1� �

2

3x2 . �D22�

As one approaches the QCP, � gets bigger, and one can
take the asymptotic form of H�x� for small x: H�0�=1/3.
Rearranging the prefactor for this limit, we are left with

�A�q,0� =
�→�

−
8

9�
�−1�q� . �D23�

3. At criticality

At the QCP, we have

�A�q,0� =
16Nḡ2

�2��6 � d2Kd�d2ld�
1

�i
��� − k�2

�
1

i
�� +�� − k+l

1

i
��� − k+q
�

1

l2 + �����/l�
,

�D24�

where we considered that, close to criticality, the self-energy
dominates completely the bare � term in the fermionic
propagators.

We expand both energies as k+l=k+vFlx+
ly
2

2mB
and k+q

=k+vFq cos �, and perform the integration over k, leading
to

�A�q,0� = i
16Nmḡ2

�2��5 �
0

2�

d��
−�

+�

dlx�
−�

+�

d��
0

�

d��
−�

� dlyl

���� + l3

1

�i
�� − �� + i
��� − vFlx − N�ly
2/2mB��2

�
1

i
�� − �� + i
��� + vFq cos � − vFlx − N�ly
2/2mB�

. �D25�

The integration over lx brings two contributions. One
comes from the poles in the fermionic propagator, and can be
neglected here since both poles are in the same half plane.
The other contribution comes from the branch cut in the
bosonic propagator, and since at the branch cut lx� ly, one
can safely drop the quadratic term in the fermionic propaga-
tors. This allows us to integrate over ly. Out of the terms
arising from this integral, the only nonvanishing ones come
from the nonanalyticities of the integrated bosonic propaga-
tor defined as

� dly��l,�� =� dly
1

l2 + �vF���/	�vFl�2 + c2
���2
.

�D26�

We use here the full form of the polarization operator, Eq.
�A8�, as we will see that typical vFlx 
��� and typical ly
are only larger in a logarithmic sense.

This integral was performed in a slightly different form in
Eq. �C8�, but the method is the same: introducing u such that
tan u=

vFly

	�vFlx�2+
���2 , one has

� dly��l,�� =
�vFlx�2 + c2
���2

�vF
2 ���

� �
0

�/2 du

cos3 u − � cos2 u + 
, �D27�

where we introduced �=
c2
���2��vFlx�2+c2
���2�1/2

�vF
3 ��� and 

=
��vFlx�2+c2
���2�3/2

�vF
3 ��� .

In the process of integrating over lx, two nonanalytic con-
tributions arise from Eq. �D27�. One comes from lx

% ����1/3 and goes like �

������1/3 . Plugging this back into �A

and subtracting �and neglecting� a constant term, we obtain
for this term, which we label �A

�1��q ,0�,

�A
�1��q,0� � Nmḡ2vF

2q2�
−�

+�

dlx�
−�

+�

d��
0

�

d�

�
1

�lx�
1

�i
�� − �� + i
��� − vFlx�5 ,

�D28�

where we subtracted �A�0,0� and expanded in q.
We further simplify the integrals, noticing that the fermi-

onic propagator is dominated by vFlx since lx����1/3�:

�A
�1��q,0� � q2Nmḡ2

vF
3 �

0

�Max

d�� dlx
�

lx
6

� q2 Nmḡ2

vF
3�5/3�

0

�Max d�

�2/3 � 	�q2, �D29�

where we substituted lx�����1/3 in the last steps. We see
that �A

�1��q ,0� is analytic in q and furthermore small in �.
This term can therefore be safely neglected.

The other nonanalytic contribution from Eq. �D27� comes
from typical vFlx�
���. It can be seen from an expansion
of Eq. �D27� for small values of both � and , and goes like
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−
�vFlx�2 + c2
���2

2vF
2����

ln��vFlx�2 + c2
���2� . �D30�

One can explicitly verify that to get the logarithm, we only
need the polarization operator ��l ,�� to order 1 / l3. Like we
argued in Appendix C, to this order, the polarization bubble
can be evaluated with the full fermionic Green’s functions
but without vertex corrections.

Substituting Eq. �D30� into the expression for �A and
subtracting a constant part, we obtain

�A
�2��q,0� = i

8Nmḡ2

�2��5�vF
q�

0

2�

d��
−�

+�

dlx�
−�

+� d�

��� �0

�

d�

�
cos ���vFlx�2 + c2
���2�

�i
�� − �� + i
��� − vFlx�3

�
ln��vFlx�2 + c2
���2�

i
�� − �� + i
��� + vFq cos � − vFlx
.

�D31�

Using the �↔−� symmetry, and splitting the integral over
� into two parts, one can rearrange this expression as

�A
�2��q,0� = i

Nmḡ2

c�5�vF
2 q�

0

�

d��
−�

+�

dz�
0

+� d�

�
�

0

�

d�
1


���
cos ��1 + z2�

„i��
�� − �� + 
����/c
���� − z…3

�
ln�1 + z2�

i��
�� − �� + 
����/c
���� + vFq cos �/c
��� − z
, �D32�

where we defined z=vFlx / �c
����.
Let us now isolate the integral over z, given by

J = �
−�

+�

dz
�1 + z2�ln�1 + z2�

�ia − z�3�ia + b − z�
, �D33�

where a=

��−��+
���

c
��� and b=
vFq cos �

c
��� , and a 0.

Performing the contour integration in the lower half plane �where lies the branch cut�, one gets

J = − 2��
1

�

dy
1 − y2

�y + a�3�y + a − ib�
= − 2��

1

�

dy
�1 − y2��y + a + ib�

�y + a�3��y + a�2 + b2�
. �D34�

Once Eq. �D34� is plugged back into Eq. �D32�, only the imaginary term survives due to the symmetry of the integral in �.
We are left with

�A
�2��q,0� =

4Nmḡ2

c2�4�vF
q2�

0

�/2

d��
1

+�

dy�
0

+�

d��
0

1

dw
1


���2

cos2�

�c−1��1 − w�2/3 + w2/3� + y�3

�
1 − y2

�y + c−1��1 − w�2/3 + w2/3��2 + �vFq cos �/c
����2 , �D35�

where we changed variables, defining w=� /�.

Introducing the new variable t=� c
���

vFq cos �
�3/2

, this rewrites
as

�A
�2��q,0� =

4Nmḡ2

c3/2�4�vF
3/2�0

1/2q3/2�
0

�/2

d��cos ��3/2

� �
1

+�

dy�
0

1

dw
1

�c−1��1 − w�2/3 + w2/3� + y�3

� �
0

+�

dt
1 − y2

1 + t4/3�y + c−1��1 − w�2/3 + w2/3��2 .

�D36�

A final change in variables leads to

�A
�2��q,0� =

4Nmḡ2

c3/2�4�vF
3/2�0

1/2q3/2�
0

�/2

d��cos ��3/2

� �
1

+�

dy�
0

1

dw
1 − y2

�c−1��1 − w�2/3 + w2/3� + y�9/2

� �
0

+�

dv
1

1 + v4/3 , �D37�

where v= t�y+c−1��1−w�2/3+w2/3��3/2.
Performing the integral over y, one is left with three in-

dependent integrals contributing to the numerical prefactor:
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�A
�2��q,0� = −

32Nmḡ2

105�4�vF
3/2�0

1/2q3/2�
0

�/2

d��cos ��3/2

� �
0

1

dw
5c + 2��1 − w�2/3 + w2/3�
�c + �1 − w�2/3 + w2/3�5/2

� �
0

+�

dv
1

1 + v4/3 . �D38�

These integrals can be performed separately and read

�
0

�/2

d��cos ��3/2 =
	2�3/2

6���3/4��2 � 0.8740,

�
0

+� dv
1 + v4/3 =

3�	2

4
� 3.3322,

�
0

1

dw
5c + 2s�w�

�c + s�w��5/2 � 0.9438, �D39�

where we used the notation s�w�= �1−w�2/3+w2/3.
Collecting all integrals, and rearranging the prefactor, the

final result for the contribution of the first two diagrams then
writes

�A
�2��q,0� = − 0.1053	kFq3/2. �D40�

This term is nonanalytic in q and does not contain � in the
prefactor. This term is obviously much larger than �A

�1�

��q ,0�, hence �A�q ,0���A
�2��q ,0�.

4. Other two diagrams

The computation of the other two diagrams in Fig. 5 pro-
ceeds along the same way. Far away from criticality, when
�vF�

2 / �1+�� is small, and one can just expand perturba-
tively in the interaction, the sum of these two “drag” dia-
grams, which we label here and in the main text as �B, was
shown in Ref. 39 to be equal to �A�q ,0� to the leading order
in ḡ �which in our model is ḡ3, see Eqs. �D20�–�D22��. Near
criticality such a simple relation no longer holds, but
�A�q ,0� and �B�q ,0� remain of the same sign and of com-
parable magnitude.

At criticality, we obtained for �B�q ,0�

�B�q,0� =
1

123/4�4q3/2	kFI , �D41�

where in rescaled variables �e.g., momentum is in units of q�

I =� d�dxx�
0

2�

d�
S2�x,�,��

S1�x,��S1�x + cos �,��
�D42�

and S�x ,� ,�� and S1�x ,�� are given by

S�x,�,�� = �
0

�

d��
0

2� d�1

i
* − x cos��1�

�
1

i
* − cos�� + �1� − x cos �1
, �D43�

S1�x,�� = �
0

� d�

x2 + �
*�2 , �D44�

where we introduced 
*=
*�� ,��= ��−��2/3+�2/3.
We could not evaluate this integral explicitly, and we

compute it under the following simplifying assumptions:
�i� We compute S1�x ,�� by expanding to leading order in

�
* /x�2, evaluating the frequency integral and plugging the
result back into the denominator. This way, we approximated
S1�x ,�� by

S1�x,�� �
�

x2 + �c�2/3�2 , �D45�

where c�1.2 �see Eq. �A6��. This procedure is similar to the
one which led to Eq. �A8�, but here we cannot justify that
only the 1/x and 1/x3 terms are relevant.

�ii� We replace 
* by the same c�2/3 in the integrand for
S�x ,� ,��.

�iii� We assume that the internal momenta are larger than
the external ones, i.e., x�1 �x is measured in units of q�,
neglected terms of order O�1� compared to O�x� and set the
lower limit of the integration over x to some number b.

�iv� We choose b by applying the same approximate com-
putation scheme to �A�q ,��, requesting that the result coin-
cides with the exact expression, Eq. �D40�.

Carrying out this calculation for �B�q ,0� we obtain

�B�q,0� � − 0.14	kFq3/2. �D46�

This is the result that we cited in the text.

APPENDIX E: TWO-LOOP RENORMALIZATION OF THE
CHARGE SUSCEPTIBILITY

In this appendix we show that the singular contributions
to the static charge susceptibility from individual diagrams
cancel out in the full expression of �c�q�. The cancellation of
the singularities in the charge response has been extensively
studied in 1D systems.44

There are ten different two-loop diagrams for the charge
susceptibility, presented in Fig. 8. The last two diagrams are

FIG. 8. The ten two-loop diagrams for the
charge susceptibility.
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identical to the ones we considered in the main text. We
already argued there that these two diagrams cancel out in
the case of a QCP in the charge channel.

The other eight diagrams have to be considered together.
We demonstrate that the total contribution from these eight
diagrams vanishes once one linearizes the dispersion of the
intermediate fermions. This still leaves out the contributions
from nonlinear terms in the dispersion, but one can show that
these contributions are regular.

To begin with, consider one of these diagrams, e.g., dia-
gram 7 in Fig. 8. In analytic form, the contribution from this
diagram is

�7�q� = 2� d2q1d�1d2q2d�2GkGk+qGk+q1
Gk+q2+q

� Gk+q1+q2
Gk+q1+q2+q�q1

�q2
, �E1�

where we labeled qi= �qi ,�i�, and the combinatoric factor 2
comes from the summation over spin indices.

Introduce now

GkGk+qi
=

1

�qi

�Gk − Gk+qi
� , �E2�

where

�qi
= i�i − qicos �i, �E3�

and �i is the angle between k�kF and qi. Shortening the
notations further as q1�1 and q2�2, using the symbolic
notation �1,2 for the six-dimensional integral over q1 and q2,
and applying Eq. �E2�, we obtain

�7�q� = 2�
1,2
�1�2
Gk+qGk+1+2

�1
2�2

2 −
Gk+qGk+1+2

�1�2��1 + �2�2

− 2

Gk+qGk+1

�2
2��1

2 − �2
2� . �E4�

Similarly,

�8�q� = 2�
1,2
�1�2
 Gk+qGk+1+2

�1�2��1 + �2�2 − 2
Gk+qGk+1

�1
2��1

2 − �2
2�

�E5�

and further

�5�q� = 2�
1,2
�1�2
 Gk+qGk+1+2

�1�2��1 + �2�2 + 2
Gk+qGk+1

�1
2��1

2 − �2
2� ,

�E6�

�3�q� = 2�
1,2
�1�2
−

Gk+qGk+1+2

�1
2�2

2 

 + 2

Gk+qGk+1

�1
2�2

2 ��1
2 + �2

2

�1
2 − �2

2� , �E7�

�2�q� = 4�
1,2
�1�2

Gk+qGk+1

�1
2�2

2 � �2
2

�1
2 − �2

2� , �E8�

�1�q� = 4�
1,2

�1�2

�1
2�2

2
Gk+qGk+1+2
�2

2

�1
2 − �2

2

 − Gk+qGk+1

3�2
2 − �1

2

�1
2 − �2

2  , �E9�

�4�q� = �
1,2

�1�2

�1
2�2

2�Gk+qGk+1+2 − 2Gk+qGk+1� , �E10�

and finally,

�6�q� = �
1,2

�1�2

�1
2�2

2
Gk+qGk+1+2
�1

2 + �2
2

��1 + �2�2 − 2Gk+qGk+1 .

�E11�

Collecting the prefactors for Gk+qGk+1+2 and Gk+qGk+1 from
all of the eight contributions we find that they cancel out.

APPENDIX F: MASS-SHELL SINGULARITY

In this appendix, we analyze in more detail the form of
the self-energy near the fermionic mass shell. The interest to
the mass-shell behavior of the self-energy was triggered by
recent studies of the self-energy near a mass shell in a 2D
Fermi liquid31 and for 2D Dirac fermions.45 In both cases,
the lowest-order self-energy diverges at the mass shell,
which forces to re-sum the perturbative series.

At first glance, the same situation holds in our analysis at
the QCP. Evaluating the self-energy in a two-loop expansion
around free fermions and using the fermionic dispersion with
the curvature, we obtain near the mass shell:46


�k,�� �
1

N2 �i� − k�
N ln
i� − k

k
2

. �F1�

This result implies that the “effective” quasiparticle residue
for the Eliashberg theory, Zeff�d
 /dk logarithmically di-
verges on the mass shell of free fermions. Without the cur-
vature of the dispersion, the divergence would be stronger
than logarithm.

The issue we now have to address is whether Z still di-
verges on the mass shell if we expand around the Eliashberg
solution, i.e., around fermions with

G0�k,�� =
1

i
̃��� − k

, �F2�

where, we remind, 
̃���=�+
���.
It turns out that this is not the case: the expansion around

the Eliashberg solution leads to a finite residue Z. At the
two-loop order, we obtain, instead of Eq. �F1�


�k,�� �
1

N2�
0

1

dz�
1−z

1

dz��i
���&z,z� − k�

�
ln
N�i
���&z,z� − k�

k
2

, �F3�

where
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&z,z� = �1 − z�2/3 + �1 − z��2/3 + �z + z� − 1�2/3. �F4�

For simplicity, we restricted ourselves to the quantum critical

regime where 
̃����
���. If &z,z� were equal to a constant,
as it is when the system is in the Fermi-liquid regime, and

���=��, then Z would diverge at �= / �1+��. However,
since 
��−��+
��� does not reduce to 
���, we have two
additional integrations over z and z�, and the logarithmic
singularity is washed out. In particular, at k= i
���, i.e., at
the “Matsubara mass shell,” we have

Zeff �
1

N2
�2

6
ln2N − 4.08 ln N + 2.88 , �F5�

in which case Zeff is just a constant. Combining this with our
earlier result that the renormalization of k is also finite, Eq.
�5.30�, we obtain for the full fermionic Green’s function at
the smallest � and k

G�k,�� =
Zeff

i
̃��� − k
*

, �F6�

where k
* differs from k by a constant factor.
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