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We calculate the temperature dependence of the transport properties of heavy-fermion systems such as
resistivity, optical conductivity, thermoelectric power, the electronic part of the thermal conductivity, and the
“figure of merit.” The one-particle properties of the periodic Anderson model are obtained within dynamical
mean-field theory for the paramagnetic phase using Wilson’s numerical renormalization group and the modified
perturbation theory as impurity solvers. We discuss the dependence of the transport properties on the band
filling, valence, and Coulomb correlation U. The typical experimental findings can be reproduced and under-
stood, in particular the temperature dependence of the resistance and the thermoelectric power and their
absolute magnitude for both metallic heavy-fermion systems and Kondo insulators. For large values of U, we
find a negative Seebeck coefficient S�T� for an intermediate-temperature regime as observed in S�T� of
CeCu2Si2. We analyze different estimates for possible characteristic low-temperature scales of the lattice. Our
results indicate a one-parameter scaling of thermodynamic and some transport properties with a strongly
occupancy-dependent scaling function. This is consistent with a strong-coupling local Fermi-liquid fixed point
of the effective site governing all low-lying excitations for T→0 in the paramagnetic phase.
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I. INTRODUCTION

For nearly 30 years the investigation of heavy-fermion
systems �HFSs� has been one of the most fascinating and
interesting fields in condensed matter physics both experi-
mentally and theoretically.1,2 The heavy-fermion phenom-
enon exists in a number of lanthanide and actinide com-
pounds and manifests itself in the apparent existence of
quasiparticles with very large effective mass m* at low tem-
peratures T. This is seen already in the specific heat, the
electronic part of which shows the usual linear temperature
dependence c=�T at very low T for many metallic heavy-
fermion systems but with a � coefficient being 100–1000
times larger than in usual metals. However, this � coefficient
itself is strongly T dependent and rapidly decreases to “nor-
mal” values at higher T. Similarly, the static magnetic sus-
ceptibility ��T� crosses over from a Curie law ��T��1/T at
high temperatures to a Pauli-type behavior for very low T: it
approaches a finite value ��T=0�, which is also strongly en-
hanced compared to the Pauli susceptibility of normal met-
als; the ratio between � and � �Wilson ratio� is of order 1,
indicating that both enhancements are caused by the same
physical processes.

The heavy-fermion behavior is driven by the local mo-
ments of incompletely filled f shells of the lanthanide or
actinide ions. At high temperature, the weakly coupled f
electrons cause mainly incoherent and with decreasing tem-
perature logarithmically growing spin-flip scattering for the
conduction electrons. Below a characteristic temperature
scale, a crossover to a coherent low-temperature phase is
observed. The f electrons contribute significantly to the for-
mation of heavy quasiparticles while their moments are dy-
namically screened. Some heavy-fermion compounds such
as SmB6 or Ce3Bi4Pt3 exhibit similar behavior at high tem-
perature, but for low T a crossover to an insulating heavy-

fermion ground state with a narrow gap at the Fermi energy
is found.3 These heavy-fermion systems are termed Kondo
insulators even though the insulating behavior is driven by
Fermi volume effects. In this case, the strong correlation in-
duces only a narrowing of the band gap rather than the insu-
lator transition itself as in Mott-Hubbard insulators.

One particularly fascinating aspect of heavy-fermion
compounds is that despite the existence of local moments
they can undergo a superconducting phase transition, as
observed4 in, e.g., CeCu2Si2. In other systems magnetic
phase transitions are reported, with a large variety of types of
order depending on the composition.1,5 In the weak-coupling
or local-moment regime, the local f moments tend to order
antiferromagnetically, while in the Kondo regime itinerant

magnetism with an incommensurate ordering vector Q� and
strongly reduced ordered moments is observed.6 This cross-
over from local to itinerant magnetism has been studied in
CeCu�1−x�2Ge2 by variation of the coupling constant upon
doping and has been attributed to the strongly temperature-
and coupling-dependent residual quasiparticle-quasiparticle
interaction.6–9

In this paper, we focus on the calculation of transport
properties of heavy-fermion systems in the paramagnetic
phase. Characteristic information on heavy-fermion systems
is obtained by measurements of the transport coefficients.
The Seebeck coefficient S�T�, or the thermoelectric power, is
often nonmonotonic, can exhibit different extrema, and even
sign changes10–15 related to particle-hole asymmetries. Much
of the recent interest in the heavy-fermion thermoelectricity
is stirred by its large narrow peak at low temperatures which
might be useful for solid-state cooling devices.16

For high T, the resistivity ��T� is determined by a nega-
tive temperature coefficient, and one usually observes a loga-
rithmic, “Kondo”-like increase of the resistivity ��T� with
decreasing T. In Kondo insulators, ��T� crosses over from
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low values to an activation behavior for smaller T, reflecting
the insulating ground state. In metallic heavy-fermion
systems—for example, CePd3 �Ref. 17�, CeAl3 �Ref. 18�, or
CeCu6 �Ref. 19�—a maximum is observed in ��T� before the
resistivity approaches a small residual value for T→0. At
low temperatures T, ��T� often obeys a T2 law in such ma-
terials. The logarithmic increase of ��T� above a characteris-
tic low-energy scale Tlow �for a discussion of low-energy
scales see Sec. VI� is related to growing spin-flip scattering
of the conduction electrons with decreasing temperature as a
manifestation of the Kondo effect. Since the resistivity must
vanish for T→0 in a translational-invariant system with a
nondegenerate ground state, a maximum in ��T� must con-
nect these two regimes. The observation of a T2 behavior
well below the characteristic temperature scale Tlow in com-
bination with a strongly enhanced � coefficient of the spe-
cific heat indicates the formation of a Landau Fermi-liquid
by the heavy quasiparticles.

We show in a comprehensive study that the low-
temperature transport properties of heavy fermions can be
understood in terms of a minimalistic model of the interac-
tion between local and itinerate degrees of freedom within
dynamical mean-field theory.20,21 Spin-flip scattering be-
tween these degrees of freedom yields a logarithmically in-
creasing resistivity with decreasing temperature. Our calcu-
lations reproduce the experimentally observed maximum and
the T2 behavior at low temperatures characteristic of coher-
ent transport in the Fermi-liquid phase. The calculated opti-
cal conductivity exhibits a very narrow Drude peak and an
optical excitation gap characteristic of heavy-fermion
materials.22 The midinfrared peak is located in the correct
frequency range but with a too narrow width compared to the
experiment22 due to the lack of local crystal electric field
excitations in our model.

We find very large absolute values for the thermoelectric
power exceeding 150 �V/K close to the Kondo insulator
regime at temperatures of the order of Tlow. In this case, the
purely electronic figure of merit can be larger than 1. The
absolute magnitude of the thermoelectric power agrees very
well with the typical experimental reported values.10–15 The
sign changes of S�T� depend very sensitively on the particle-
hole asymmetry and the band filling. Also in the experiment,
the details of the thermoelectric power vary strongly between
different materials.10–15

The experimental evidence2,23 compiled over the past ten
years also indicates that even for heavy-fermion systems
with a paramagnetic ground state, the temperature depen-
dence of the specific heat and the magnetic susceptibilities
often do not agree with the predictions of Fermi-liquid
theory.24 Therefore, the phenomenological term “non-Fermi-
liquid” was attributed to such regimes appearing in a large
variety of different materials.2,23 Despite a tremendous ex-
perimental and theoretical effort it is, however, still not clear
whether the non-Fermi-liquid effects observed in heavy-
fermion compounds are related to novel low-lying nonlocal
excitations in concentrated systems, true local non-Fermi-
liquid physics,25,26 or simply competing local energy
scales.27

The physics in heavy-fermion compounds is driven by the
interaction between two distinct subsystems: localized,

strongly correlated f electrons hybridizing with extended
conduction bands. The periodic Anderson model �PAM�
takes these ingredients into account, comprising of spin-
degenerate conduction electrons, a lattice of correlated local-
ized f electrons, and a hybridization �cf. Sec. II A�. The con-
duction electrons experience spin-flip scattering from the
magnetic moments of the f shells. On the other hand, the
model also accounts for the RKKY interaction between two
localized magnetic moments in the particle-hole channel,7,8

leading to the competition between the Kondo screening and
magnetic ordering.28 While these qualitative aspects have
been known for almost 30 years, a reliable calculation of the
full phase diagram of the PAM in more than one dimension
has not been possible yet.

In this work, we apply dynamical mean-field theory20,21

�DMFT� mapping the PAM on an effective single-impurity
Anderson model29 �SIAM�, which becomes exact30,31 in the
limit of infinite spatial dimension32 for lattice models of cor-
related electron systems. As impurity solvers for the effective
SIAM we use Wilson’s numerical renormalization group33

�NRG� for all interaction strength and the modified perturba-
tion treatment34,35 �MPT� for small values of U. The NRG
provides an accurate and nonperturbative description of the
effective site36 and yields the correct low-energy scale TK for
the SIAM �cf. Sec. VI B�: TK�exp�−1/g�, with the dimen-
sionless coupling g=J�0�0�, the spin-flip scattering rate J,
and �0�0� being the density of states of the noninteracting
conduction band of width D at its band center. Furthermore,
the NRG provides detailed information on the possible fixed-
point structure of the effective site. Compared to other pos-
sible and frequently used DMFT impurity solvers such as
quantum Monte Carlo37 �QMC�, exact diagonalization �ED�,
and noncrossing-approximation,38–40 �NCA�, the NRG and
MPT have the advantage to be applicable also for very low
temperatures. This seems to be essential for the reproduction
of Fermi-liquid behavior and simultaneously identifying the
relevant low-temperature scale.

The transport properties are calculated in the linear re-
sponse regime using Kubo formulas. They relate the quanti-
ties of interest—e.g., the frequency-dependent
conductivity—to the charge and heat current-current re-
sponse functions, which are two-particle Green functions.
These response functions greatly simplify in any local ap-
proximation since current-operator vertex corrections
vanish41 even in the presence of crystal field levels:41,42 only
the free particle-hole propagator enters. From the f- and
band-electron self-energies calculated within the DMFT-
NRG and DMFT-MPT, the static conductivity is obtained
from the transport integrals in the limit �→0, as well as the
thermoelectric power S�T� and the electronic part of the ther-
mal conductivity 	�T�. Recently, a very comprehensive study
of the transport properties in heavy-fermion systems as well
as Kondo insulators using the local-moment approach
�LMA� has been published in a series of papers by Logan
and collaborators.43–45 Previously, Costi and Manini46 inves-
tigated the low-energy scales and temperature-dependent
photoemission in the S=1/2 Kondo lattice model using the
DMFT-NRG.

The scope of our paper is to calculate the resistivity, op-
tical conductivity, the thermoelectric power, and the figure of
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merit for arbitrary interaction strength and band filling within
a single approach, the DMFT-NRG. We address the question
of the existence of several low-temperature scales in the pe-
riodic Anderson model which might manifest themselves in
the transport properties. The quality of the DMFT-NRG cal-
culations is critically examined by a comparison with the
modified perturbation theory in the weak-coupling regime
�U→0�, accurately described by the DMFT-MPT.

The paper is organized as follows: In Sec. II we introduce
the model and the notations as well as the DMFT and the two
impurity solvers used: the NRG and MPT. In order to gain
physical inside into the temperature evolution of the trans-
port properties, we discuss the single-particle properties such
as the temperature-dependent f-electron spectral function
and self-energy of the PAM in Sec. III, since they directly
determine the transport properties through the Kubo formu-
las. Section IV is devoted to the transport theory for the PAM
and states explicitly equations for the different transport co-
efficients investigated. We report results for the transport
quantities in Sec. V. The temperature dependences of the
resistivity ��T�, the thermoelectric power S�T�, the thermal
conductivity 	�T�, and the temperature and frequency depen-
dence of the optical conductivity 
�� ,T� are shown for dif-
ferent values of U and band filling for metallic heavy-
fermion systems as well as Kondo insulators. In Sec. VI we
define precisely our different low-energy scales and discuss
how they are linked. We conclude with a summary and out-
look in Sec. VII.

II. THEORY

A. Model

As mentioned above, the Hamiltonian of the simplest ver-
sion of the periodic Anderson model is given by

Ĥ = �
k�


�k�
ck�

† ck�
 + �

i


� f
n̂i

f +

U

2 �
i


n̂i

f n̂i−


f

+ V�
i


�f i

† ci
 + ci


† f i
� . �1�

Here, ck�
 �ck�

† � destroys �creates� a conduction electron with

spin 
, momentum k�, and energy �k�
. The energy � f
 denotes
the spin-dependent single-particle f-level energy at lattice
site i, n̂i


f = f i

† f i
 is the f-electron occupation operator �per

site and spin�, f i
 �f i

† � destroys �creates� an f electron with

spin 
 at site i, and U denotes the on-site Coulomb repulsion
between two f electrons on the same site i. The uncorrelated
conduction electrons hybridize locally with the f electrons
via the matrix element V. While Eq. �1� includes possible
Zeeman splitting of the energies in an external magnetic field
H, we set H=0 throughout the remainder of the paper and
treat all properties as spin degenerate.

Even though only a single effective f level is considered,
this model is quite general. It describes any heavy-fermion
system with odd ground-state filling of the f shell, for which
in a strong crystal field environment the degenerate Hund’s
rules ground state may be reduced to an effective spin-
degenerate Kramers’s doublet. In addition, charge fluctua-

tions to even f fillings leave the f shell in crystal field sin-
glets. The Hamiltonian contains four energy scales. The
interplay between � f and U controls the average f filling as
well as the local moment formation for large U and negative
� f. The Anderson width �0=V2�0�0� determines the charge
fluctuation scale of the f electrons with �0�0� being the den-
sity of states of the noninteracting conduction band of width
D at its band center.

The total filling per site, ntot=�
��n̂i

c �+ �n̂i


f ��, is kept
constant by a temperature-dependent chemical potential
��T�. We absorb the energy shifts into the band center �c of
the conduction band, �k� =�c+ �̃k�, as well as the f level � f. For
ntot=2 and U=0, the uncorrelated system is an insulator at
T=0, since the lower of the two hybridized bands is com-
pletely filled. According to Luttinger’s theorem a finite U of
arbitrary strength does not change the Fermi volume which
includes the full first Brillouin zone. As long as the ground
state does not change symmetry due to a phase transition, the
system remains an insulator at arbitrarily large Coulomb re-
pulsion. Therefore, the nonmetallic ground state of Kondo
insulators is not correlation induced, but it is already present
for the noninteracting system and a consequence of Lutting-
er’s theorem. For nonintegral values of ntot, the paramagnetic
phase of the system must be metallic.

In general, we can distinguish three different adiabatically
connected regimes for U��0 and � f �0. In the mixed-
valence regime �� f� /�0�1, the system is dominated by
charge fluctuations yielding a nonintegral value of the f fill-
ing, nf �1. In the stable-moment regime �� f���0, the f elec-
trons remain strongly localized and form a stable local mo-
ment, which tends to order antiferromagnetically due to the
RKKY interaction mediated by the conduction electrons.
These two regimes are connected by the Kondo regime for
moderate ratios �� f� /�0. The competition between screening
of the local moment due to the Kondo effect and the RKKY
interaction makes this crossover regime the most interesting
one since it can lead to long-range magnetic order of the
residual magnetic moments. Spin-density-wave, metallic,
and superconducting ground states are observed in heavy-
fermion materials1 which are believed to be described by the
Kondo regime.

B. Dynamical mean-field theory

Setting aside exact solutions in one dimension47 using the
Bethe ansatz for the Kondo lattice model, to our knowledge
no exact analytical solution has been found for the model �1�
with finite U. Therefore, one has to rely on suitable approxi-
mations for the PAM. An obvious first approximation
is the assumption of a purely local, site-diagonal �i.e.,
k�-independent� self-energy, which for the PAM is even better
justified than for other lattice models of correlated electron
systems, as the first corrections are at least of order V6.
Within a local self-energy approximation the complicated
lattice problem can be mapped on an effective impurity prob-
lem; i.e., the PAM can be mapped on an effective SIAM.29

Such a mapping was first used already about 20 years ago in
connection with applications of the NCA �Refs. 38–40 and
48� to the PAM.7,49–52 A self-consistency condition accounts
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for the feedback due to the propagation of electrons through
the lattice. Metzner and Vollhardt32 and Müller-Hartmann53

noticed that the local approximation becomes exact in the
limit of infinite spatial dimensions �d→��. The effective site
can be viewed as correlated atomic problem within a time-
dependent external field54 or an effective SIAM.30,31,49 This
defines the self-consistency condition of the DMFT which
has been subject of two reviews.20,21 Within weak-coupling
U-perturbation theory it could be shown55 that a local,
k�-independent self-energy is a good approximation for real-
istic dimension d=3 as corrections due to intersite contribu-
tions to the self-energy are negligibly small. However, phase
transitions remain mean field like in DMFT �Refs. 9, 21, and
56� since k�-dependent fluctuations are not included in a local
approximation.

The following exact relations for the conduction electron
Green function G
�k� ,z� and the f-electron Green function
F
�k� ,z� can be obtained for the PAM �1�:

G
�k�,z� = 	z − �k�
 −
�V�2

z − � f
 − �

f �k�,z�


−1

, �2a�

F
�k�,z� = 	z − � f
 − �

f �k�,z� −

�V�2

z − �k�


−1

, �2b�

where z is any complex energy off the real axis. Within a
local approximation such as the DMFT, the k�-dependent
f-electron self-energy �


f �k� ,z� is replaced by a k�-independent
�


f �z�. From Eq. �2a�, one defines a self-energy of the con-
duction electrons via

�

c �z� =

�V�2

z − � f
 − �

f �z�

, �3�

which can include a simple k� dependence through the hybrid-
ization matrix elements �V�2, here taken as constant. For such
a local self-energy �


c �z�, the site-diagonal conduction-
electron Green function G
 can be written as a Hilbert trans-
formation

G
�z� =
1

N
�

k�
G
�k�,z� = D�z − �


c �z�� , �4�

defined for arbitrary complex argument z as

D�z� = 
−�

�

d�
�0���
z − �

, �5�

where �0��� is the density of states of the noninteracting
conduction electrons.

The DMFT self-consistency condition states that the site-
diagonal matrix element of the f-electron Green function of
the PAM must be equal to Floc,
�z� of an effective site prob-
lem:

F
�z� =
1

N
�

k�
F
�k�,z� = Floc,
�z� , �6�

Floc,
�z� =
1

z − � f
 − �
�z� − �

f �z�

, �7�

with the same local f-electron self-energy �

f �z� for the lat-

tice and the effective site. This defines the self-consistency
condition for the functions �


f �z� and �
�z�.
Given the Green functions F
�z� and G
�z�, their spectral

functions determine the local occupation numbers

nf =
1


�




−�

�

d� f�� − ��Im F
�� − i0+� , �8a�

nc =
1


�




−�

�

d� f�� − ��Im G
�� − i0+� , �8b�

where f��� denotes the Fermi function. Then, the total filling
per site is given by ntot=nf +nc. As a matter of convenience,
we will perform an integral transformation such that � is
absorbed into � f and the band center �c; all energies will be
measured with respect to �. For a given lattice filling ntot, we
have to adjust � in addition to fulfill Eq. �6�.

Before we will discuss the solution of the effective site,
let us briefly comment on the implications of the analytical
form of the conduction-electron self-energy �3�. For a Fermi
liquid, the imaginary part of � f vanishes quadratically close
to the chemical potential for T→0—i.e., Im �


f ��− i0+�
��2. At particle-hole symmetry—i.e., ntot=2 for a symmet-
ric �0���—�


c �z� diverges like 1/z, leading to an insulator.
Away from particle-hole symmetry, the denominator remains
finite and the imaginary part also must have Fermi-liquid
properties Im �


c ��− i0+�� Im �

f ��− i0+���2. The real part

is very large, and therefore, the spectral function of G
�z� as
well as F
�z� samples the high-energy band edges of �0���,
yielding a hybridization gap. This analytic properties must be
fulfilled by any approximate solution of the DMFT self-
consistency condition �6�.

The low-temperature physics is determined by the tem-
perature scale Tlow which is only defined up to a constant
factor. We will use the renormalization of the Anderson
width by the quasiparticle spectral weight

T0 = �0	1 − � �Re� f���
��

�
�,T→0


−1

�9�

as our choice of such a low-temperature scale T0�Tlow for
our numerical analysis.44 It is related to the mass enhance-
ment m* /m=�0 /T0. We discuss other definitions of such a
scale as well as the possibility of several low-temperature
scales later in Sec. VI.

C. Numerical renormalization group

The Green function Floc,
, Eq. �7�, of the effective impu-
rity problem can be viewed as the f-Green function of an
effective SIAM,20,21,30,31,50
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Ĥeff = �



�� f
 − ��f

† f
 + Un̂↑n̂↓ + �



 d��� − ��d
�

† d
�

+ �


 d�V��eff����d
�

† f
 + f

†d
�� , �10�

with an energy-dependent hybridization function ����
=V2�eff���=Im ���− i0+� describing the coupling of the f
electron to a fictitious bath of “conduction electrons” created
by d
�

† with density of states �DOS� �eff���. The hybridization
strength V is chosen to be constant, defined via

V2 = d����� , �11�

and equal to V in the original model �1�.
We accurately solve the Hamiltonian �10� using Wilson’s

NRG.33,57 The key ingredient in the NRG is a logarithmic
discretization of the continuous bath, controlled by the
parameter33 ��1. The Hamiltonian is mapped onto a semi-
infinite chain, where the Nth link represents an exponentially
decreasing energy scale DN��−N/2. Using this hierarchy of
scales the sequence of finite-size Hamiltonians HN for the
N-site chain is solved iteratively, truncating the high-energy
states at each step to maintain a manageable number of
states. The reduced basis set of HN thus obtained is expected
to faithfully describe the spectrum of the full Hamiltonian on
the scale of DN, corresponding33 to a temperature TN�DN
from which all thermodynamic expectation values are calcu-
lated. The energy-dependent hybridization function ��z� de-
termines the coefficients of the semi-infinite chain.58

The NRG is used to calculate the spectral function of the
Green function at finite temperatures. We used a slight modi-
fication of the algorithm59 for finite-temperature Green func-
tions by Bulla et al.60 with the broadening function61

��� − E� � e−b2/4e−�log��/E�/b�2
/��b�E�� ,

where we choose b=0.6. As usual, the raw NRG Green func-
tions determine the self-energy �


f �z� by the exact ratio

�

f �z� = U

M

NRG�z�

Floc
NRG�z�

, �12�

derived via equation of motion technique,61 where M

NRG�z�

= ��f
f−

† f−
 � f


†���z�.

D. Modified perturbation theory

The MPT is an approximation for calculating the self-
energy of the SIAM starting from the following ansatz:

�

f �z� = Un−


f +
�


�2��z�
1 − �
�


�2��z�
. �13�

It is based on second-order perturbation theory62 �SOPT�
relative to Hartree-Fock solution with U as expansion param-
eter. Here, �


�2� is the second-order contribution to the self-
energy �choosing �
=0 reproduces the SOPT�,

�

�2��z� = U2   �


HF��1��−

HF��2��−


HF��3�
z − �1 + �2 − �3

��f��1��1 − f��2��f��3�

+ �1 − f��1��f��2��1 − f��3���d�1d�2d�3,

�14�

with the Hartree-Fock f-electron spectral functions of the
effective SIAM:

�

HF��� = −

1


Im

1

� + i0+ + �̃ − � f
 − Un−

f − �
�� + i0+�

.

�15�

The parameter �
 is constructed such that the exactly solv-
able atomic limit V=0 and the first four spectral moments are
correctly reproduced.34,35 The Hartree-Fock f occupation
must equal the full f occupation n−


f determining the effec-
tive Hartree-Fock chemical potential �̃.

III. RESULTS FOR THE SINGLE-PARTICLE DYNAMICS

All transport calculations rely on the results for the single-
particle Green functions of the PAM. We use a Gaussian
model density of states for the unperturbed conduction-elec-
tron system—i.e., �0���=exp�−�� / t*�2 /2� / �t*�2�—which
is appropriate for a d-dimensional hypercubic lattice in the
limit d→�.32 In the following, we measure energies in units
of �0=V2�0�0�—i.e., the hybridization is fixed at V2

=2t*�0 /�2—and choose �2t*=10�0. As impurity solvers,
we use the NRG as well as the MPT. The chemical potential
� has to be determined self-consistently for a given total
number of electrons, ntot, per site; in the following figures,
energies �frequencies� are measured relative to the chemical
potential �—i.e., we have �=0 and the band center �c is
shifted accordingly.

A. f-electron spectral function and self-energy at finite
temperature T

Using the NRG the calculation of the spectral functions
for finite T is numerically very challenging. In contrast to the
spectral functions36,61 at T=0, where only the ground-state
excitations are relevant, all excitations contribute according
to their statistical weight, but the NRG only provides spectral
information up to an energy scale �N��−N/2. While the
number of NRG iterations, N, is in principal arbitrary and
arbitrary small excitations could be resolved, Wilson has al-
ready pointed out33 that the lowest energy-scale �N should be
identified with the temperature T for which thermodynamical
expectation values are calculated. It is obvious from the
Lehmann representation of the spectral function that eigen-
states of the Hamiltonian with eigenenergies EM �T contrib-
ute equally to the spectral functions. Therefore, we stop the
NRG iteration when �N�T and must interpolate for frequen-
cies �����N. The technical details of our finite-temperature
algorithm are described in the Appendix of Ref. 59; other
possible approaches are found in Refs. 60 and 63–65.
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An exemplary series of f-spectral functions � f��� calcu-
lated with the DMFT-NRG for different temperatures T and
fixed U=5�0 is shown in Fig. 1 for the metallic regime with
a filling ntot=1.6 and � f −�c=−2.5�0. A hybridization
pseudogap develops close to the chemical potential �=0 for
T decreasing below a characteristic temperature Tlow. The
moderate value of U leads to a spectrum where the high-
energy charge excitations are not well separated from the
resonance close to the chemical potential.

The typical structure of the f-spectral function � f��� cal-
culated with the DMFT-NRG for a larger value of U /�0
=10, � f −�c=−3�0, at a temperature T=0.0003�0 well below
Tlow is depicted in Fig. 2 �a detailed discussion of possible
estimates for Tlow is found in Sec. VI�. A pronounced peak
structure with a pseudogap dominates the low-energy part of
the spectrum in the vicinity of the chemical potential similar
to the one shown in Fig. 1. In addition, we observe two
shallow high-energy peaks, one at � f below �, one at � f
+U which corresponds to double occupancy of the f levels.
It is always correctly positioned by the NRG, independent of
the value of U, but with a linewidth too large due to the NRG
broadening procedure �see Refs. 59 and 61 for details�.

In the inset of Fig. 2 the development of the hybridization
gap of the f-spectral function � f��� with increasing U�0 is

shown and compared with the exact result for U=0. For U
=0, we obtain from an uncorrelated hybridized band a hy-
bridization gap above �=0 of a width �V. It arises from the
divergence of the real part of �


c �z→� f� given in Eq. �3�: the
high-energy part of the free density of states �0 defines the
shape of the gap via the exact relation between G
 and F
,

F
�z� =
�


c �z�
V2 �1 + �


c �z�D�z − �

c �z��� . �16�

For a DOS �0��� of Gaussian shape the hybridization gap is,
strictly speaking, only a pseudogap even at U=0. A real gap
only arises for densities of states with well-defined sharp
band edges such as a semielliptical or a true finite-d DOS.
However, with increasing U the gap will always evolve into
a pseudogap anyway due to the finite lifetime of the quasi-
particles, reflected in the growing imaginary part of �


f ���.
This effect is clearly seen in the inset to Fig. 2. The width of
the pseudogap and of the whole Kondo resonance peak struc-
ture is decreasing with increasing U stemming from the re-
duction of the quasiparticle weight at the chemical potential.

A comparison of the f-spectral functions for finite T ob-
tained in DMFT-NRG and DMFT-MPT for � f −�c=−U /2
and ntot=1.6 �metallic case� and four different values of U is
displayed in Fig. 3. Again, only a pseudogap is found at
finite U which is narrowing with increasing U. As expected,
the DMFT-MPT curves agree very well with the DMFT-
NRG graphs for small U. This is not surprising, because the
MPT is based on U-perturbation theory and must, therefore,
become correct for sufficiently small U. Already for U /�0
=5, however, one observes deviations between the MPT and
NRG approaches. For U /�0=10 �U /�2t*=1� the width of
the resonance peak at the Fermi energy is obviously too large
in MPT; i.e., quantitatively there is a strong overestimation
of the low-energy scale within DMFT-MPT. For large U the
MPT cannot reproduce the correct Kondo temperature scale,
as the physics in this regime is driven by the spin-flip scat-
tering J proportional to 1/U and is, therefore, nonperturba-
tive in U.

Figure 4 shows the frequency dependence of the �imagi-
nary part of the� f-electron self-energy obtained in DMFT-
NRG and DMFT-MPT, corresponding to Fig. 3. Here, the

FIG. 1. f-DOS � f��� calculated with DMFT-NRG for U /�0=5,
� f −�c=−2.5�0, chemical potential �=0, and a filling ntot=1.6 at
several finite temperatures T /�0. NRG parameters: number of re-
tained NRG states, Ns=1500, �=1.6, and � /�0=10−3.

FIG. 2. f-DOS � f��� calculated with DMFT-NRG for U /�0

=10, � f −�c=−3�0, chemical potential �=0, filling ntot=1.6, and
finite temperature T=0.0003�0. A three-peak structure with peaks at
� f, �, and � f +U is visible. In the inset the transition from a hybrid-
ization gap for U=0 �exact result� to a pseudogap for U /�0

� �3,6 ,50� is shown. NRG parameters: as in Fig. 1.

FIG. 3. Comparison between the f-DOS � f��� calculated with
DMFT-NRG and DMFT-MPT for U /�0� �10,5 ,3 ,1� and � f −�c

=−U /2 at finite temperatures T /�0 as indicated. Here, the chemical
potential is �=0 with filling ntot=1.6. NRG parameters: as in Fig. 1.
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imaginary part of the self-energy is finite even at �=0, and
away from the chemical potential one observes a quadratic
��−��2 behavior as expected for Fermi liquids. The finite
value at �=�=0 is not only due to the finite T, but it has
also a contribution from a finite imaginary part � �i.e., an
additional Lorentzian broadening�, which we had to intro-
duce for numerical reasons. As we observed numerical insta-
bilities in the self-consistency equations �6� and �7� as well
as inaccuracies in the local self-energy �12� in NRG, we
solved the set of equations �6� and �7� in the complex plain at
a finite shift � /�0=10−3 away from the real axis to obtain
stable numerical solutions. Physically this artificial broaden-
ing � can be interpreted to simulate the effects of impurity
scattering, yielding a finite lifetime corresponding to a finite
imaginary part of an additional “disorder” self-energy. But
one also sees from Fig. 4 that—in spite of the same small
imaginary part �—the MPT result for Im � f�0� is systemati-
cally smaller than the NRG result, even for small U. This is
an indication that the finite value in the NRG is not only
caused by the temperature offset and � but also by the addi-
tional Gaussian broadening59,61 described in Sec. II C and
additional numerical errors stemming from the relation �12�
to determine the self-energy in NRG at finite temperature.

B. Temperature dependence of band-electron self-energy
�c

„�…

Since the conduction-electron self-energy �c�� ,T�
strongly influences the transport properties of the PAM, we
study its imaginary part at �=0—i.e., the conduction-
electron scattering rate. According to Eq. �3�, it is given by

Im �

c �0� =

�V�2 Im �

f �0�

�� f
 + Re �

f �0��2 + �Im �


f �0��2 . �17�

Analytically, we can distinguish two cases.
�i� If �� f
+Re �


f �0��� �Im �

f �0��, the conduction-

electron scattering rate is reciprocal proportional to the
f-electron scattering rate—i.e., Im �


c �0��V2 / Im �

f �0�.

This is the case for the Kondo insulator regime, where � f

+Re �


f �0�→0.

�ii� Only when �� f
+Re �

f �0��� �Im �


f �0�� is the de-
nominator of Eq. �17� dominated by the real part �� f


+Re �

f �0��2 and the c-scattering rate becomes proportional

to �Im �

f �0��.

We show the temperature dependence of the c-electron
scattering rate and its dependence on � for a fixed value of
U /�0=10 in Fig. 5. While the f-electron scattering rate re-
mains very small for low T �cf. left inset of Fig. 5�, the
c-electron scattering rate has a much larger finite T→0
value. This originates from the small but finite imaginary
part of the conduction-electron self-energy �17� as a conse-
quence of the small �artificial� imaginary part �, here � /�0
� �10−2 ,5�10−3 ,10−3 ,10−6� and the numerical error in the
ratio of two Hilbert transformed spectral functions in Eq.
�12�. The small finite �Im �


f �0�� is enhanced if the ratio r
ªV2 / �� f
+Re �


f �0��2 is larger than 1, as is usually the case
since the hybridization gap is very close to the chemical
potential, and −� f
−Re �


f �0� is an estimate for its location.
As one can see from the right inset of Fig. 5, we indeed have
a ratio r�14�1. Therefore, we can estimate the c-electron
scattering rate by

Im �

c �0� � 14 Im �


f �0�

for the chosen parameters U /�0=10 and ntot=1.6, which ex-
plains why the artificial finite imaginary part is even more
important and pronounced for Im �


c �0� than it is for
Im �


f �0�.

C. Renormalized band structure

In the previous section, Sec. III A, we presented the local,
or k�-summed, spectral function. In the Fermi-liquid phase of
the model, new quasiparticles are formed as a mixture of f
and c degrees of freedom. The resulting renormalized band
structure can be visualized by plotting the energy �=�k� and

FIG. 4. �Color online� Comparison between the self-energy
� f��� in DMFT-NRG and DMFT-MPT for U /�0� �3,5 ,10�. The
inset shows a close-up of the vicinity of �=0. All parameters
are as in Fig. 3, in particular finite temperatures T /�0

� �0.03,0.019,0.0029�.

FIG. 5. Influence of the shift � on Im �c�� ,T� for U /�0=10,
� f −�c=−U /2, and ntot=1.6. The ratio r=V2 / �� f +Re� f�0��2 �right
inset� is almost constant for low T; here, r�14�1. This leads to
the enhancement of Im �c�� ,T� for low T compared to Im� f�� ,T�
as shown in the left inset. NRG parameters: as in Fig. 1.
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frequency-dependent density of states ��� ,��=� f�� ,��
+�c�� ,��, where

� f��,�� = Im F
��,� − i0+�/ , �18a�

�c��,�� = Im G
��,� − i0+�/ , �18b�

as a two-dimensional �2D� color �online� contour plot dis-
played in Fig. 6. For ntot=1.6, the chemical potential �=0
lies at the top of the lower hybridized band. For V=0, we
would have a sharp line at �=�−�c with purely c character,
while two lines with fractional weight of 1 /2 at �=� f
=�c−U /2 and �=� f +U=�c+U /2 with f character could be
found. At finite V, the f electrons become part of the Fermi
volume. Indeed, the almost dispersionless and therefore
heavy quasiparticles close to the chemical potential have
mainly f character. The second band is located above the
chemical potential. We note—not shown here—that this
renormalized band picture remains valid even well above the
low-temperature scale. The dark colored peaks of ��� ,�� are
broadened by the increasing imaginary part of the self-
energy but can still be traced by the zeros of the real part of
the reciprocal Green functions G
�� ,�� and F
�� ,��. This
observation turns out the be very important to understand the
midinfrared peak in the optical conductivity.22,66

IV. TRANSPORT THEORY

To describe the electronic transport within the PAM we
start from the standard relations for the generalized transport
coefficients, according to which the electrical current density

J� and the heat current density q� depend linearly on the elec-

tric field E� and the temperature gradient �T:

J� = L11E� + L12�−
1

T
� T� , �19a�

q� = L21E� + L22�−
1

T
� T� . �19b�

All coefficients are calculated within the linear response ap-
proach, starting from similar Kubo formulas.67,68 For sym-
metry reasons, L12=L21 holds.

For example, the real part of the frequency dependent
�optical� conductivity tensor68–70 
���=L11��� is related to
the current-current correlation function and written as


����� = −
1

�NV0
Im��j��j�

†���� + i0+� , �20�

where V0=a3 is the volume of the unit cell and N counts the
number of lattice sites. It has been shown71 that the current
operator of the PAM has two contributions: a conduction-
electron part and a part proportional to �Vk�. The f electrons
do not appear in the current, since they do not disperse. For
a k�-independent hybridization, only the conduction electrons
carry the electrical and heat currents:

j� = e�
k�


v�k�ck�

† ck�
, �21�

where v�k� = 1
��k��k� is the group velocity. Hence, the current-

susceptibility tensor ��j� � j�†���z� is connected to the particle-
hole Green function

��j��j�†���z� = e2 �


�k�k��

v�k�v�k��
T

��ck�

† ck�
�c

k�� 
�

†
ck�

� 
����z� . �22�

In a cubic crystal, the conductivity is isotropic: 
�����
=
���1. From now on, we will consider only the xx compo-
nent of the conductivity 
����
xx���.

In general, the full two-particle Green function

��ck�

† ck�
 �c

k�� 
�

†
ck�

� 
����z� involves vertex corrections which re-

flect residual particle-particle interactions.68 However, in the
limit d→� it was shown that current operator vertex correc-
tions vanish.72,73 Thus, it is consistent with the DMFT as-
sumption of a k�-independent self-energy that these vertex
corrections vanish for any lattice model of correlated elec-
tron systems. For the special case of a local approximation
for the PAM this was already shown in Refs. 41, 42, and 74,
as for symmetry reasons

�
k�

v�k��Vk��2Gk��z + ��Gk��z� = 0.

Therefore, we obtain

��jx�jx
†���� + i0+� =

e2

�2�
k�


� ��k�

�kx
�2

−�

�

d��f�����c��k�,���

��G
�k�,�� + � + i0+�

+ G
�k�,�� − � − i0+�� . �23�

Within the DMFT, the lattice one-particle Green function
depends only on the �complex� energy z and bare band dis-
persion �k�: G
�k� ,z�=G
��k� ,z�. Then,

1

N
�

k�
� ��k�

�kx
�2

A��k�� = 
−�

�

d��̃0���A��� , �24�

with

FIG. 6. �Color online� Contour plot of the total energy-
dependent density of states, ��� ,��=� f�� ,��+�c�� ,�� for U /�0

=8, � f −�c=−U /2, ntot=1.6, �=0, and T /�0=3�10−4. NRG pa-
rameters: as in Fig. 1.
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�̃0��� =
1

N
�

k�
� ��k�

�kx
�2

��� − �k�� . �25�

�̃0��� has been evaluated approximately in large
dimensions75 as

�̃0��� =
�at*�2

d
�0��� + O�1/d2� �26�

on a hypercubic lattice. Then, Eq. �23� can be reduced to a
sum of Hilbert transforms, defined in Eq. �5�.

By taking the limit �→0 in Eq. �23�, the static conduc-
tivity 
=L11 is obtained, and we get for the generalized
transport coefficients

L11 =
e2

�a


−�

�

�− f���������d� , �27a�

L12 =
e

�a


−�

�

�− f������� − ������d� , �27b�

L22 =
1

�a


−�

�

�− f������� − ��2����d� . �27c�

Here ���� represents a generalized relaxation time defined
as

���� =
2

d
�t*�2

−�

�

�0����c
2��,��d� �28�

and f���� is the derivative of the Fermi function. Only in the
Fermi-liquid regime does one have �����1/ Im �c��+ i0+�
and the linearized Boltzmann transport theory is recovered.

The thermal conductivity 	 and the thermoelectric power
S are then given by68,70

S =
1

T

L12

L11
=

kB

�e�
�e�L12

kBTL11
, �29�

	 =
1

T
�L22 −

L12
2

L11
� . �30�

The thermoelectric power S is defined as the proportion-
ality constant between an applied temperature gradient and
the measured voltage drop in the absence of a current flow.
The Peltier coefficient given by the ratio of heat and electri-
cal current is related to the thermoelectric power by �=TS.
Note that �e �L12/kBTL11 is dimensionless and kB / �e �
�86 �V/K. Therefore, the thermoelectric power is given in
absolute units; only the scale of temperature axis must be
fixed by experiment.

If we assume one electron per unit cell of the volume a3,
a=10−10 m, the resistivity �=
−1 has the natural unit


0
−1 = �a/e2 � 41 �� cm. �31�

Similarly, if we assume �0=100 meV, the thermal con-
ductivity is given in units of

kB�0

�a
� 0.21 W/�K cm� . �32�

Finally, the dimensionless figure of merit is defined as

ZT =
T
S2

	
, �33�

which measures the efficiency of a thermoelectric material.

V. RESULTS FOR THE TRANSPORT PROPERTIES

A. Resistivity

The �static or direct current� resistivity ��T� is obtained
from the reciprocal of 
�T�, Eq. �27a�. To achieve better
convergence of the DMFT equation at low temperatures
again a finite offset ��0 from the real axis was introduced.
As discussed in Sec. III A, the NRG provides accurate spec-
tral functions only for frequencies ��T. In the linear-
response transport-integrals �27�, however, only the low-
frequency spectral information in the Fermi window �� �
�2T contributes. This intrinsic property of the NRG makes
it very difficult to obtain reliable spectral information for low
frequencies at the finite temperatures needed for calculating
transport properties.

In Fig. 7, the resistivity is displayed for fixed filling ntot
=1.6, U /�0=10, and �2t*=10�0 and various values of the
shift � as in Fig. 5. Physically, a finite � can be interpreted as
simulating the effects of lattice defects and/or of a small but
finite concentration c of nonmagnetic impurities, giving rise
to a finite “impurity self-energy” imaginary part �inverse
scattering time� ��c, which leads to a finite residual resis-
tivity for T→0. Figure 7 shows that the residual resistivity
��T=0� is, in fact, increasing with increasing �. As discussed
already in Sec. III B, the finite imaginary part of the
conduction-electron self-energy �17� is much enhanced com-
pared to the imaginary part of the f-electron self-energy,
which explains the strong dependence on � seen in Fig. 7.
However, even in the limit �→0 a finite ��T=0� is obtained
for T→0 in DMFT-NRG. Not only the finite � but also the
additional Gaussian broadening and the limited accuracy of
the NRG in the regime ��T causes the finite self-energy

FIG. 7. Influence of the shift � on the static resistivity in DMFT-
NRG for U /�0=10, � f −�c=−U /2, and ntot=1.6. All parameters are
as in the corresponding Fig. 5.
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imaginary part and the finite ��0�. We reproduce the typical
metallic HFS behavior17–19 within our DMFT-NRG treat-
ment: a resistivity increasing with increasing T for low T, a
maximum of the order 100 �� cm at a characteristic tem-
perature Tmax �about 10–200 K�, and a ��T� �logarithmi-
cally� decreasing with increasing T for T�Tmax.

For the same parameters as in Fig. 7 the dependence of
��T� on the NRG parameter Ns �number of states kept� is
shown in Fig. 8. One observes that for Ns�1500, ��T� no
longer depends on Ns. Therefore, all further DMFT-NRG cal-
culations have been performed for this Ns=1500.

For fixed � /�0=10−3, a total filling ntot=1.6, a difference
between the band center �c and � f of � f −�c=−U /2, and sev-
eral small values of U the DMFT-NRG and DMFT-MPT
results for ��T� are compared in Fig. 9. One observes that in
the high-temperature regime both results agree and that the
overall agreement becomes the better the smaller U is, as
expected already from our discussion in Sec. III A, Fig. 3.
But for the same small � the residual resistivity ��0� in
DMFT-MPT is much smaller than in DMFT-NRG. In
DMFT-MPT the finite ��0� is solely determined by the finite
� whereas in DMFT-NRG the additional broadening and nu-
merical inaccuracies at very small � contribute.

For the same parameter set, but higher values of the cor-
relation U, DMFT-NRG resistivity results are plotted in Fig.

10. The temperature Tmax, at which the resistivity has its
maximum, is shifted to lower values for increasing U; as
discussed in Sec. VI one obtains an exponential dependency
of Tmax on U. For sufficiently strong U the peak height at
Tmax is nearly U independent. This is seen once more from
Fig. 10�b�, which shows the scaling properties plotting the
resistivity ��T�−��T0 /100� versus T /T0 �for the low-
temperature scale T0 see Eq. �9� and Sec. VI�. While for
U /�0�7, where high- and low-temperature scales are not
very well separated, the maximum of the resistivity and the
peak height show a U dependence, we reach a universality
regime for large U. Note that T0 is of the order of the posi-
tion Tmax of the maximum of the resistivity while the T2

behavior of the resistivity is only observed below the coher-
ent scale Tcor which is two orders of magnitude smaller.

The dependence of the resistivity ��T� on the total occu-
pation ntot is shown in Fig. 11 for fixed U /�0=10 and � f
−�c=−U /2. We see that the �artificial� residual resistivity
��0� increases whereas the maximum temperature Tmax de-
creases when approaching the Kondo insulator regime at
ntot=2 �symmetric PAM�. In this case ��T� saturates for T
�10−2, which is typical for Kondo insulators.3 Experimen-
tally, this is due to impurities; in our calculations, it is a
consequence of the finite-energy imaginary part �. For fixed
ntot=2 and different values of � f −�c, ��T� is shown in Fig.
12; obviously, the Kondo insulator behavior is not only ob-
tained in the symmetric case but always for ntot=2 in accor-

FIG. 8. Resistivity ��T� obtained in DMFT-NRG for different
number of kept states Ns and fixed values of � /�0=10−3 and �
=1.6. Other parameters as in Fig. 7.

FIG. 9. �Color online� Comparison between the resistivity ��T�
in DMFT-NRG �solid lines� and DMFT-MPT �dashed lines� for
different U, � f −�c=−U /2, and fixed total filling ntot=1.6 �metallic
case�. NRG parameters: as in Fig. 1.

FIG. 10. �Color online� Resistivity ��T� as function of T for
different U, � f −�c=−U /2, and fixed total filling ntot=1.6. The cal-
culations were done in DMFT-NRG, thus continuing the NRG se-
ries of Fig. 9 to higher U. NRG parameters: as in Fig. 1. In �b� the
same data are plotted as ��T�−��T0 /100�+5 �� cm versus T /T0

with T0 as in Eq. �9�.
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dance with the Luttinger theorem. The �artificial� finite ��0�
depends hardly on � f −�c but only on the finite �.

B. Optical conductivity

The optical conductivity 
��� obtained in the metallic
case for ntot=1.6 is shown in Fig. 13 for different tempera-
tures T. For very low T one observes a Drude peak at low
frequencies and, in addition, a “midinfrared” peak at finite
frequency ���t*T0. With increasing T the Drude peak
quickly decreases �in accordance with the strong increase of
the static resistivity�, whereas the midinfrared peak remains
nearly unchanged, and the remainders of the Drude peak and
the midinfrared peak merge into a broad structure in the
high-temperature regime.

Figure 14 shows 
��� for a Kondo insulator, where for
very low T the Drude peak is absent and only the midinfrared
peak is present due to interband transitions. With increasing
T, however, the gap disappears, and the metallic heavy-
fermion behavior at high temperatures is recovered.

This behavior can easily be understood in terms of the
renormalized bands discussed in Sec. III and shown in Fig. 6.
With the assumption of a constant density of states, �0���,

��� can be approximated by


���

0

=
i�0���

2�


−�

� d���f���� − f��� + ���
� + �c��� − i�� − �c��� + � + i��

.

�34�

The optical conductivity 
��� has a maximum when the real
part of the denominator on the right-hand side of Eq. �34�
vanishes.76 This is obviously the case for �→0 for metallic
HFSs in the Fermi-liquid regime, which yields the Drude
peak. An additional maximum is found in the vicinity of the
minimal intraband transition energy close to the chemical
potential, which yields the midinfrared peak. An estimate for
its position is the smallest interband transition energy for q�
=0 given by �opt��t*T0 which fits perfectly with the ob-
served midinfrared peak of a large variety of different heavy-
fermion compounds.22 Its temperature dependence is weak
since the spectral weight moved from lower to higher exci-
tation energies is small. On the other hand, the midinfrared
peak width depicted in Fig. 13 and reported in Ref. 76 comes
out much narrower than the experimentally observed
peaks.66 This is expected because in real materials, all
Hund’s-rule multiplets contribute to the scattering of the con-
duction electrons in the midinfrared region. Our simplified
model, however, only contains the lowest Hund’s-rule dou-
blet. The total optical response is furnished by a superposi-
tion of all scattering resonances which leads to an effectively
broad resonance as observed experimentally.

FIG. 13. Optical conductivity for four different temperatures T
�0.01,0.1,1 ,10Tmax, ntot=1.6, and a fixed U /�0=10, � f −�c

=−U /2. NRG parameters: as in Fig. 1.

FIG. 11. Resistivity ��T� for different total fillings ntot, U /�0

=10, � f −�c=−U /2, and � /�0=10−3. NRG parameters: as in Fig. 1.

FIG. 12. Resistivity ��T� for different � f −�c, � /�0=10−3,
U /�0=10, and ntot=2 �Kondo insulators�. NRG parameters: as in
Fig. 1.

FIG. 14. Optical conductivity for three different temperatures T,
ntot=2 �i.e., Kondo insulators�, and a fixed U /�0=10, � f −�c

=−U /2. NRG parameters: as in Fig. 1.
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C. Thermoelectricity

The thermoelectric power S�T� measures the ratio be-
tween electrical and heat current divided by the temperature,
and its sign is related to the integrated particle-hole asymme-
try relative to the chemical potential. In Fig. 15, S�T� is plot-
ted for � f −�c=−U /2 and fixed total filling for a variety of
different values of U �for the low-temperature scale T0 see
Eq. �9� and Sec. VI�. We obtain very large absolute values
for S�T�, of the magnitude 50 �V/K up to 150 �V/K; note
that the thermoelectric power is obtained in absolute units, as
already mentioned in Sec. IV. Similar to the resistivity, the
thermoelectric power exhibits a low-temperature peak which
is correlated with the maximum of the resistivity which is an
analytical consequence of Eq. �29�. In addition, we observe a
second extremum moving to higher temperatures with in-
creasing U which results from the charge fluctuations on the
energy scale � f −�.

It is very interesting to note that for U /�0�8 the thermo-
electric power changes sign in an intermediate-temperature
regime. Several extrema and similar sign changes were
found experimentally for several HFS materials, in particular
below 80 K for CeCu2.2Si2.77,78 As we have discussed in Sec.
III, the details of the spectrum close to the hybridization gap
depend on the free single-particle DOS �0���. In addition,
our model does not include other Hund’s-rule multiplets.
Therefore, we only can make a qualitative comparison with
experiments. Remarkably, however, we find a sign change of
the thermoelectric power for large U and a large absolute
value of S�T� comparable to the experimental results.

The thermoelectric power S�T� for different fillings ntot,
U /�0=10, and � f −�c=−U /2 is depicted in Fig. 16. For ntot
=2 the thermoelectric power vanishes for all temperatures
because of particle-hole symmetry. Otherwise S�T� exhibits a
peak with increasing height when approaching the Kondo
insulator regime ntot→2. For the Kondo insulator situation
ntot=2 and various � f −�c the thermoelectric power S�T� is
shown in Fig. 17. Only in the symmetric case, � f =−U /2
=−5�0 does S�T� vanish due to particle-hole symmetry;
away from the symmetric case, the peaks reach extremely
large absolute values of S up to 200 �V/K. This shows that
Kondo insulators could be candidates for thermoelectric ap-
plications.

However, the figure of merit, Z=S2
 /	, or the dimension-
less value ZT and not only the Seebeck coefficient S�T� is of
relevance for efficient thermoelectric cooling, where 	 is the
thermal conductivity. Since approaching the Kondo insulator
reduces the conductivity 
 as well as shifting the peak to
very low temperatures, the nominator of ZT will be rather
small. Figure 18 shows the electronic part of the thermal
conductivity 	�T�. As expected 	�T� is rapidly increasing
with increasing T and the overall behavior is similar as that
observed experimentally.15

The resulting temperature dependence of the figure of
merit is shown in Fig. 19. According to our calculations a
figure of merit larger than 1 can be obtained in HFSs in

FIG. 15. �Color online� Thermoelectric power for various values
of U and fixed total occupation ntot=1.6 and � f −�c=−U /2. Panel
�b� shows the same date but on a rescaled axis T /T0 with T0 as in
Eq. �9�. All parameters: as in Fig. 10.

FIG. 16. Thermoelectric power for a fixed U /�0=10 and vari-
ous occupations ntot=1.4, 1.6, 1.9, 1.95, 2 and � f −�c=−U /2. All
parameters: as in Fig. 11.

FIG. 17. Thermoelectric power for U /�0=10, ntot=2 �Kondo
insulator regime�, and different values for � f �or � f −�c�. All param-
eters: as in Fig. 12.
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certain low-temperature regimes, showing that, in fact, they
are candidates for thermoelectric applications.

VI. LOW-TEMPERATURE SCALES

There has been a long debate whether low-temperature
properties are governed by one or more low-energy scales in
the paramagnetic phase of the PAM.36,45,76,79,80 In the SIAM,
the screening of the local moments occurs on the scale of the
Kondo temperature TK where the system crosses over from
the local-moment to the strong-coupling fixed point when
lowering the temperature. But Nozières has argued that for
the lattice with a macroscopic concentration of f moments
there is an “exhaustion” of the conduction electrons79,80

available for screening of those f moments. However, it is
questionable whether the concept of individually screened
independent single impurities still holds in a lattice, because
one conduction electron could rather contribute to the
screening of several local moments. In this context, it has
been suggested that two different low-temperature scales ex-
ist in the paramagnetic phase of the PAM: namely, the single-
impurity Kondo scale TK and a strongly reduced lattice scale
Tlow�TK at which the screening of the local moments hap-
pens. It was argued that at TK only nscr=�c�0�TK conduction
electrons are available to screen nf local f electrons, where
�c�0� is the conduction-electron DOS at the chemical poten-
tial. However, in Nozières’s work79 only phenomenological
estimates and no precise mathematical definitions for differ-
ent temperature scales are given.

It is tempting to identify the possibly existing additional
scale Tlow with the “coherence temperature”—i.e., the scale
on which the heavy quasiparticles are formed and/or on
which the T2 behavior in the resistivity is observable. Experi-
mentally, however, no evidence was found for such a large
separation of energy scales in heavy-fermion compounds.1,2

On the contrary, substitution of Ce by La in Ce1−xLaxCu6
exhibits nearly perfect scaling of the Ce contribution to the
specific heat19 from the diluted impurity situation �x�1� to
the lattice case �x=0�, indicating that there is only one rel-
evant energy scale. Recent theoretical investigations by
Vidhyadhiraja and Logan gave evidence for such a single
low-temperature scale,43–45 using Fermi-liquid assumptions
for the f-electron self-energy. Their arguments are consistent
with the notion that a new thermodynamically relevant en-
ergy scale can only occur as crossover scale from competing
low-temperature fixed points. Our NRG calculations for the
effective site, moreover, gave no evidence for new fixed
points of the SIAM other than those already discussed in
Ref. 57. In fact, we always find a strong-coupling fixed point
independent of the filling connecting Kondo insulators adia-
batically to metallic heavy-fermion systems.

In the literature, different notions of what is implied by
the term “low-temperature scale” have led to a controversy
which could have been resolved by stating clearly the precise
mathematical definitions of such distinct scales. The low-
temperature scale Tlow allows one to map any temperature-
dependent property P�T� over a limited low-temperature
range44 onto a corresponding dimensionless universal func-
tion p�x=T /Tlow� where all details of the initial microscopic
Hamiltonian enter this single scale Tlow. From a renormaliza-
tion group perspective, it describes the crossover from one
fixed point to the T=0 fixed point. If such a quantity P has
distinct analytical behavior in different temperature intervals,
it is tempting to assign additional low-temperature scales to
identify such different regimes. If, however, a universal func-
tion p�x� can be found such that P�T� collapses onto this
curve for all low-temperature regimes, these distinct scales
contain no additional physical information. The confusion in
the literature arises by ignoring that these admittedly differ-
ent low-temperature scales might ultimately be connected
and reflect the same physical phenomena. If, however, dif-
ferent scaling regimes can be identified using two or more
low-temperature scales, it should correspond to additional
fixed points of the Hamiltonian.

A. Definition of different low-temperature scales

From our data, we have defined four different possible
low-temperature scales characterizing different physical phe-
nomena in order to identify more than one low-temperature
scale. These scales are �i� the low-temperature scale44 T0
=�0m /m*, Eq. �9�, defined by the quasiparticle spectral
weight, measuring the reciprocal mass enhancement m /m*

for T→0,

m/m* = 	1 − � �Re� f���
��

�
�,T→0


−1

;

�ii� the A coefficient of the resistivity ��T�=�0+AT2 valid in
the coherent Fermi-liquid regime, T�= �
0A�−1/2, where 
0

−1

FIG. 18. Electronic part of thermal conductivity for U /�0=10
and � f −�c=−U /2. All parameters: as in Figs. 11 and 16.

FIG. 19. Figure of merit for U /�0=10 and � f −�c=−U /2. All
parameters: as in Figs. 11 and 16.
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is the natural unit of the resistivity given in Eq. �31�; �iii� the
position of the maximum of the resistivity curve Tmax for
metallic heavy-fermion systems; and �iv� the screening tem-
perature T* of the impurity moment33 �Sz

2�imp�T*�=0.05.
Other possible scales such as the width of the hybridiza-

tion gap are not very well defined since the position and
depth of the gap as well as the shape of the spectral function
are strongly dependent on the Fermi volume. In the follow-
ing, we will show that all scales are connected by a fixed
ratio when varying the interaction strength U for fixed occu-
pancy ntot or Fermi volume.

The mass enhancement factor m* /m as well as the A co-
efficient of the resistivity contains information on the low-
lying excitations of the lattice Fermi-liquid fixed point as
pointed out by Logan and collaborators.44 Both should be
proportional to a low-temperature scale Tlow. We contrast this
with two estimates of a possible second low-temperature
scale. It was argued that this scale governs the crossover
from a regime of incoherent scattering of the conduction
electrons to a coherent Fermi-liquid ground state of the
lattice.36 This truly new scale would mark the deviation of a
periodic Anderson model from the properties of the SIAM.
We take the position of the maximum of the resistivity Tmax
as one clear indicator of such a scale as well as the screening
of the impurity effective moments which defines the tem-
perature T*. However, we like to point out that our defini-
tions of the low-temperature scales do not imply an energy
hierarchy T0�Tmax.

B. Discussion of the scales

Using Wilson’s definition33 of an effective local moment,
�Sz

2�imp�T� is given by the difference of �Sz
2� of the effective

SIAM and the medium electron gas without impurity. Since
the medium changes with temperature, �Sz

2�imp�T� is calcu-
lated for each converged medium for the given temperature
and T* is obtained by the condition �Sz

2�imp�T*�=0.05.
The results for all four different scales are depicted in Fig.

20 using a fixed filling ntot=1.6. While the fit to the T2 be-

havior contains a significant error bar due to the logarithmic
temperature scale of the NRG and the limited temperature
range of the Fermi-liquid regime, all other energy scales can
be obtained with high accuracy due to their definition. The
dimensionless coupling constant

g = �0J =
2�0U

�� f� �� f + U�
�35�

has been estimated by a Schrieffer-Wolff transformation.81

All four scales show the same exponential dependency on U
with T0�exp�−1/�g� with ��0.8 for large U where the
charge and low-temperature scales are well separated. This
indicates that, up to a filling-dependent proportionality con-
stant, there exists only one low-temperature scale. Our find-
ings are in perfect agreement with the previously reported36

T=0 estimates of the low-temperature scale but in contrast to
the Gutzwiller results82 predicting an enhancement of the
T0 /TK=exp�1/2g�. However, the latter ratio is strongly fill-
ing dependent as pointed out previously.36

As a consequence of this scaling analysis, �Sz
2�imp�T� is

collapsed onto one master curve for a fixed filling ntot and
different values of U using the scaling variable x=T /T0 as
displayed in Fig. 21. This master curve for �Sz

2�imp�T� shows
slight deviation from its corresponding shape for the SIAM
with constant density of states;57 however, it holds up to very
high temperatures. Clearly visible is the U dependence of the
maximum of �Sz

2�imp�T�. Only in the local moment fixed
point is the value of �Sz

2�imp=0.25 reached.57 At high tem-
peratures, deviations from scaling are related to the crossover
from the free orbital to the local-moment fixed point57 and
are independent of lattice renormalization effects.

In addition, we can define a “temperature”-dependent
Kondo scale TK�T� of the DMFT effective site by taking the
DMFT medium density of states �eff��� for a fixed tempera-
ture and solving the condition �Sz

2�imp�TK�=0.05 for such a
fixed medium. Since we would find a constant TK�T� for a
SIAM, deviations from such a constant function indicate lat-
tice renormalization effects. This also could give strong hints
towards the existence of a second low-energy scale. TK�T
→�� corresponds to a “free-impurity” Kondo temperature.

FIG. 20. The four different low-temperature scales plotted ver-
sus the reciprocal dimensionless coupling constant 1 /g �cf. Eq.
�35��. The inset shows the same data as a function of U. The stars
mark the maximum of the resistivity Tmax/�0, the crosses the
screening of the spin moment of the effective site. The squares
indicate T�=1/�
0A, while the mass enhancement factor is plotted
by the circles. Parameters: � f −�c=−U /2, ntot=1.6, number of re-
tained NRG states, Ns=1500, �=1.6, and � /�0=10−3.

FIG. 21. �Color online� The temperature dependence of the ef-
fective moment �Sz

2�imp�T� versus T /T0 for various values of U and
a fixed filling of ntot=1.6. Parameters: as in Fig. 20.
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In the Fermi-liquid regime, TK�T� approaches a constant
TK�0� measuring the lattice low-temperature scale: TK�0�
�T0. In Fig. 22, the resulting renormalized dimensionless
Kondo temperature TK�T� /T0 is plotted versus T /TK for dif-
ferent values of U. Even though two distinguishable plateaus
are visible, indicating two different low-temperature scales
for large values of U, they are connected by a fixed ratio
independent of U.

The existence of such universal scaling curves for �Sz
2�imp

and TK�T� connecting these different temperature regimes
provides strong evidence that �i� the low-temperature phase
of the paramagnetic PAM is characterized by only one ther-
modynamic low-temperature scale and �ii� all additionally
defined low-energy scales assigned to features of some
physical properties are proportional to this single low-
temperature scale. Our findings are in agreement with the
previous DMFT-NRG study36 as well as the series of DMFT-
LMA investigations of scaling and transport properties.43–45

We did not find any indication for a novel fixed point of the
effective site introduced by the nonconstant density of states.
In the absence of a phase transition, the effective site is char-
acterized by the same fixed points as the SIAM,57 and there-
fore, only one universal low-temperature scale is expected.

VII. CONCLUSION AND OUTLOOK

We presented a comprehensive study of the transport
properties of the periodic Anderson model. We calculated the
resistivity and the thermoelectric power for metallic heavy-
fermion systems as well as Kondo insulators using finite-
temperature DMFT-NRG and DMFT-MPT approaches.
While the DMFT-MPT approach gives extremely reliable re-
sults in the weak correlation limit ��0�U�1, it fails to re-
produce the correct low-energy scale for large values of U.
In contrast, the DMFT-NRG approach resolves accurately
low-energy scales for arbitrary parameters but provides lim-
ited spectral resolution in finite-temperature spectral func-
tions. The latter has made it very challenging to obtain reli-
able transport properties since only excitations of the order T
enter the transport integrals. Nevertheless, we were able to

use the DMFT-NRG approach for the investigation of trans-
port properties as well as the four different low-energy
scales. All these energy scales are related by a fixed but
filling-dependent ratio, indicating the existence of only one
relevant low-temperature scale.

We conclude that all characteristic low-temperature trans-
port properties of heavy-fermion systems can be explained
within our numerical DMFT-NRG treatment of the PAM. In
the metallic situation one obtains a low residual resistivity
��0�, a ��T� rapidly increasing with increasing temperature T
following a T2 behavior for very low T�T0, a maximum of
the order 100 �� cm at a temperature Tmax �about
10–200 K�, and a ��T� logarithmically decreasing with in-
creasing T for T�Tmax, thus showing typical experimental
behavior.17–19 At the same time the thermoelectric power can
exhibit several extrema, for some parameters a change of
sign, and large absolute values of the magnitude of
50–150 �V/K, as seen in experiments.77,78 The optical con-
ductivity shows a Drude peak and an additional midinfrared
peak for low T, whereas these structures merge to a broad
structure at high T. For Kondo insulators a crossover from
the Kondo behavior at T�Tmax to an activation behavior is
obtained for ��T� with a saturation due to the �artificial� finite
imaginary part � �simulating impurity scattering�, and the
optical conductivity has no Drude peak for very low T. The
absolute value of the thermoelectric power S�T� can be even
larger in or close to the Kondo insulator situation reaching
giant values of more than 200 �V/K. The figure of merit can
be larger than 1, showing that these systems are candidates
for thermoelectric applications.

Thus far all our calculations did not include orbital degen-
eracy which is subject to crystal electric field splittings.
These additional degrees of freedom are essential for the
understanding of the transport properties of heavy-fermion
systems in the intermediate temperature regime78 as well as
the broad midinfrared peak observed in the optical
conductivity.66 As recently pointed out,27,83,84 these addi-
tional f configurations can indeed introduce additional low-
energy scales due to competition or crossover between addi-
tional fixed points. Apparently, the thermoelectric power is
very sensitive to such additional configurations since it is
determined by particle-hole asymmetry around the chemical
potential.

Therefore, in the future this work can and should be ex-
tended into different directions. On the one hand, the inclu-
sion of realistic f-shell degeneracy and of crystal fields is
highly desirable to come to a more realistic description of the
transport properties of heavy-fermion systems valid also for
high T, where the higher crystal field levels can be excitated.
On the other hand, the influence of disorder and alloying, in
particular of the substitution of the �magnetic� lanthanide or
actinide ions by nonmagnetic ions, should be investigated
and understood theoretically, as there exist many experimen-
tal investigations systematically studying these substitution
effects.

Note added in proof. After completion of this work, po-
tentially more accurate ways of calculating the NRG spectral
functions were proposed64,65 which might increase the accu-
racy of future DMFT-NRG calculations.

FIG. 22. �Color online� The temperature-dependent Kondo tem-
perature TK�T� of the effective site for various U plots versus the
scaling variable x=T /T0 for fixed filling. Parameters: as in Fig. 21.
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