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An anomalous behavior of the emission properties of alkali halides doped with heavy impurities, stimulated
new efforts for its interpretation, invoking delicate and sophisticated mechanisms whose interest transcends the
considered specific case. Of crucial importance is the evolution of the lattice reaction time. This gives strong
support to a Jahn-Teller model which is able to interpret the slow �complex� decay of the emissions in the A
band. The mechanism adopted is borrowed from the dissipative-tunneling approach, previously developed for
loaded superconducting Josephson junctions, and suitably modified. Moreover, an attempt is made for a
modification of the model by considering a mechanism based on soliton confinement.
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The interpretation of the optical properties of impurity
centers in alkali-halide crystals, a classical problem in solid-
state physics, could be considered as basically resolved in
the early 1980s,1 even if new contributions to the subject
continued to appear in the subsequent literature. More re-
cently, however, the problem of the emission of phosphors of
the type KX :Tl+ �X=Cl,Br, I� has become topical again, fol-
lowing the discovery of an anomalous and complex behavior
of their emission decay times.2 The anomaly consists of a
gradual change in the decay time, from the faster component
�at ns� to the slower �at ms� by assuming all the intermediate
values. This finding stimulated new efforts of investigation,
which led to much more sophisticated interpretation models,
involving concepts and mechanisms whose field of applica-
bility is of broad interest. A mechanism based on soliton
confinement �obtainable with a suitable selection of the in-
teratomic potential�, was adopted in Ref. 3 in order to inter-
pret the anomalous slow relaxation, under the assumption
that the slow emission and the lattice reaction are on the
same time scale. This, however, implies an unrealistic elon-
gation of the characteristic time: in fact, a factor of the order
of 109 is required for passing from the scale of picoseconds
�crystal time� to that of milliseconds �emission time�. The
numerical simulations reported, although based on a reason-
able selection of the damping parameter, exhibit a time scale
that does not exceed nanoseconds. Independently, a different
mechanism was proposed4 based on a tunneling process, the
duration of which �assumed to be given by the inverse of the
decay rate, which also characterizes the emission time�
strongly depends on the features of the barrier and presents a
magnification of the decay time. Even a small variation in
the equilibrium coordinate of the optically excited state,
causes an appreciable change of the barrier, and very large
variations of the delay time �in principle, from picoseconds
to seconds� are admissible. Although the assumption of the
existence of a delay in reaching the equilibrium configura-
tion �due to the lattice reaction� appears plausible, its time
scale remained completely indeterminate,4 but presumably
located around that of nanoseconds.5

In this work we first analyze the tunneling mechanism
with inclusion of dissipation. Subsequently, the analysis is
devoted to the evaluation of the lattice reaction time accord-
ing to two different mechanisms, namely, the tunneling and
the soliton confinement. On this basis an attempt is made for
a unification of the two models.

Dissipative tunneling. A marked improvement of the
model of Ref. 4 is here proposed, based on dissipative effects
which accompany the tunneling processes, a topic which has
been considered in several studies, especially in relation to
tunneling in Josephson junctions.6,7 For this reason, the in-
terest in this approach transcends the problem of phosphor
emission. A crucial quantity in these problems is the duration
of the tunneling process, a quantity that has been interpreted
in a variety of manners and that will be here briefly recon-
sidered in a preliminary way: this aspect deserves, however,
to be analyzed in a more rigorous way for its broad rel-
evance. The analogy between the potential shape for the
junctions, and that of the excited state of luminescence cen-
ters, allows the application of the same analysis to the physi-
cal systems under study. In particular, the approach of Refs.
8 and 9, where tunneling in junctions coupled to electrical
lines is considered, can be adapted to the present case. In
fact, as will be described in the following, the absorption of
light is followed by a local Jahn-Teller distortion of the lat-
tice surrounding the heavy ion, along one of the X-Tl-X
bonds, in the local x direction, say. This selects a preferential
linear chain of the type -K-X-Tl-X-K-, along which the vi-
brational excitation initially propagates. Although in the
course of the evolution vibrational energy will also diffuse in
transverse directions, it seems reasonable to model for some
time the process by a linear chain. This assumption is essen-
tially the same as the one made in Ref. 3. This ionic chain of
the lattice, stressed by the Jahn-Teller deformation in the
excited state of the cluster �TlX6�5−, consists of a bilateral
sequence of springs and masses, and can be considered as the
analogue of a chain of inductances and capacitances �“Cauer
form” network�, which constitutes an artificial electrical
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line.10 This analogy is based on the fact that the wave equa-
tions for both electrical and mechanical situations have the
same structure, i.e., that of the D’Alembert equation

�2�

�x2 −
1

v2

�2�

�t2 = 0, �1�

where � is the wave amplitude and v the propagation veloc-
ity. Such an analogy allows us to perform an estimate of the
lattice reaction time, provided that a reliable estimate of the
involved quantities �or at least of their orders of magnitude�
is obtained. In this way, a robust support of plausibility is
given to a model which represents an alternative �or a
complementary� interpretation of a complex phenomenology
to the one based on the mechanism of soliton confinement.

Let us now briefly summarize the essential features of the
model,4 which is based on the coexistence of two kinds of
minima on the 3T1u excited-state potential surface, in the
space of the normal coordinates of the quasimolecule
�TlX6�5−; from these minima, two emission bands �AT and
AX� originate by transitions to the ground state 1A1g. For
heavy impurities �like Tl+�, the coexistence of minima is en-
sured by the strong spin-orbit interaction. The minima from
which the AT emission originates, have tetragonal symmetry
and are the ones mainly populated after absorption and vi-
brational relaxation. The AX emission originates from
minima of different symmetry, which become populated by
nonradiative transitions from the AT ones. At sufficiently low
temperature,11 the AX minima can only be populated by tun-
neling through the potential-energy barrier that separates
them from the AT ones, and it is just such tunneling mecha-
nism which induces more or less pronounced delay in these
transitions. This delay, in turn, is reflected in the emission:
not only AX, but also AT itself, due to contributions of back-
tunneling �that is from AX back to AT�, and to the role played
by the underlying 3A1u trap level, as tentatively explained in
Ref. 4�a� �see below however�.

The potential barrier that separates AT and AX minima has
a shape that critically depends on the dimensionless param-
eters A and g: A=12�1−��� /b2 is a function of the curvature
� of the potential �assumed harmonic near the minimum�, of
the electron-lattice coupling constant b2, and of the spin-orbit
coupling constant �; g=G /� is the ratio of the exchange
integral G to �. The potential shape, of the cubic type
�x2−�x3 in the barrier region, is depicted in the inset of
Fig. 1, where x is a dimensionless variable given by
�−b /2�3��Q3, with Q3 being the tetragonal interaction-mode
coordinate.1 Taking g=0.4 as a typical value, from the ana-
lytical expression of the potential in Ref. 4�a� we determine
the normalized height of the potential barrier Vb /� as a func-
tion of A, as well as the values of the abscissae of the AT
minimum �x0�, and of the bounce coordinate �xB�, as reported
in Fig. 1.

We note that the height of the potential barrier Vb and the
difference of abscissae �xB=x0−xB strongly depend on A:
they decrease with increasing A and vanish for A=3.6. As
anticipated above, the analogy between this potential shape
and that of the Josephson junctions, allows a direct evalua-
tion of the action integral for the bounce trajectory; in the

case of the above-mentioned cubic potential, the action is
exactly given by Sb /�=7.2Vb /�	, where 	=2
� is the an-
gular frequency of small oscillations inside the initial poten-
tial well.6 Within this framework, the tunneling transition
probability �decay rate�, at low temperature, can be ex-
pressed as12

� = 	�30Sb


�
�1/2

e−Sb/� �2�

and the corresponding time delay is given by 
d=�−1. The
assumption that this quantity is representative of the duration
of the tunneling process, depends on the parameter values
that characterize the physical system under consideration.
According to the results of Ref. 4�b�, the relaxation trajecto-
ries, as given by the mean coordinate �x�t��, follow on aver-
age an exponential irreversible decay �sometime named in-
coherent tunneling�, whose time constant can be identified
with �−1. Superimposed to the average coordinate, see Fig. 3
in Ref. 4�b�, there is a damped fast oscillation �coherent tun-
neling� whose period T0=h / �2�s+�� �where �s is the energy
shift due to tunneling and � the mismatching of the levels�,
can become comparable to that of oscillations inside the ini-
tial well, namely 2
 /	. In the present case, with ���s, it is
natural to assume the time delay due to tunneling as given by
�−1 in Ref. 13. The numerical results for 
d quoted in Fig. 1
are obtained from Eq. �2� by assuming typical values for the

FIG. 1. Potential barrier Vb, normalized to the spin-orbit cou-
pling constant �, and curve of the abscissae value x0 and xB, evalu-
ated as a function of the parameter A and for g=0.4. On the curve
of x0, some values of the bounce action integral Sb /� are reported,
while on the curve of Vb /� the corresponding delay-time values,
evaluated as the inverse of � as given by Eq. �2�, are indicated. The
shape of the potential in the barrier region, V�x�, is depicted in the

inset, where the dashed line represents the potential Ṽ�x�=V�x�
+W�x� as modified by dissipative effects. The latter cause tunneling
paths situated in the shaded area connecting x0 with xB.
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involved quantities, namely ��0.5 eV and �	�12 meV.4�a�

We note that, in the neighborhood of A�3−3.2, a small
variation of �xB causes a strong variation of the order of
magnitude of the decay time in the expected range of values
�from ns to ms�.

Now we want to consider the effect of the diatomic chain
of ions stimulated by the Jahn-Teller effect. Considering, for
simplicity, a homogeneous one-dimensional chain of masses
M, elastic constant k and lattice constant a, the phase veloc-
ity has a limiting value given by v0=a�k /M�1/2=a�0, with
k=M�0

2.14 For an artificial electrical line consisting of a large
number of cells with inductance L and capacitance C at each
site, the characteristic impedance is Z0= �L /C�1/2 and the
wave velocity is v� �LC�−1/2. The Euclidean-Lagrangian
components in this case are of the type 1

2CVi
2= 1

2C�i
2 and

1
2LIi

2= 1
2L ���i�2, where Vi and Ii are the voltage and the cur-

rent relative to the ith cell, and ��i=LIi is the magnetic
flux.9 The corresponding mechanical components are of the
type 1

2 Mẋi
2 and 1

2k��xi�2.14

This suggests us to establish the following correspon-
dence between electrical and mechanical systems, �→x,
C→M, and L→k−1, see Ref. 15. In such a way, the quantity
corresponding to Z0 is Z0�= �kM�−1/2=1/M�0. In the electri-
cal case, the damping coefficient is ��Z0

−1, so the corre-
sponding mechanical quantity will be given by ���M�0.
Still in the electrical case, the increase of the bounce action is
given by �Sb=��B

2 f , �B being the bounce amplitude and f a
numerical function of the order of unity, which depends on
the frequency 	 and on the line delay 
0. Therefore, in the
mechanical case we obtain an expression for the action varia-
tion given, for f 	1, by �Sb=M�0��xB�2, with �xB
=a�Q0 /Q0, where �Q0 /Q0 is of the order of 10%, and Q0 is
the position of the minimum in the normal coordinate
space.4�b� A result is the latter, which is also supported by
numerical integration of classical equations of motion de-
scribing the lattice dynamics.3,14 Taking for M the mass of Cl
�which is the lightest ion in the considered cases�, M
�35 amu�58�10−24 g, �0=2
� with ��3�1012 s−1 and
a�3�10−8 cm, we have that �Sb /�	10, which is just the
order of magnitude required for producing the delay-time
variation suitable for fitting the experimental results, with a
change of several orders of magnitude. The shaded area in
Fig. 1 shows that when the bounce action changes from
14.19� to 29.31�, the decay-time varies from
6.98 ns to 18 ms. It seems, therefore, that the “load” due to
propagation of the mechanical deformation along the ionic
chain turns out to be of the right order of magnitude for
interpreting the luminescence behavior.

Lattice reaction time. The problem we are faced with now,
is the evaluation of the time dependence of the lattice reac-
tion, which is determined, in the previous model, by the
a-dimensional function f introduced above. To this purpose,
we follow the �elegant� approach of Ref. 8, as subsequently
developed in Ref. 9, obtaining the following expression for
the action variation due to the line:

�Sb = 

−�

+�

d�F��,
0�������2, �3�

where F�� ,
0�=�2L�i� ,
0�, L�i� ,
0� being the Laplace
transform of the Lagrangian of the line, and

���� = �B
2�2
�
	

�
�

	
�csech�
�

	
� �4�

is the Fourier transform of the bounce trajectory ��
�
=�B sech2�	
 /2�.

The results obtained by numerical analysis, according to
the simplified procedure of Ref. 9, are comparable with those
obtained by the functional integration adopted in Ref. 8. This
is based on the solution of the Fourier transform of the wave
equation �1�, according to the Green’s function method,
which supplies the analytical result F�� ,
0�=�� tanh��
0�.
Therefore, Eq. �3� becomes

�Sb = �

−�

+�

������2� tanh��
0�d� . �5�

By substituting �4� into �5� we obtain the following expres-
sion for the numerical function f =�Sb /��B

2 ,

f�	,
0� =
16


	4 

0

� �3 tanh��
0�

sinh2�
�

	
� d� . �6�

In the limit of �
0�1, f →0.93 while, in the opposite limit
of �
0�1, f →0.534	
0.16 In the general case, Eq. �6� has
been integrated numerically and the results are shown in Fig.
2 as a function of 
0, and for some values of 	, both quan-
tities being given in arbitrary units. In our physical systems,
where �0 is of the order of 1012 s−1, the chain delay, as given

FIG. 2. Curves of the function f�	 ,
0�=�Sb /��B
2 , calculated

by Eq. �6� as a function of the chain delay 
0 for some values of the
frequency 	, which allow for an evaluation of the lattice reaction
time.
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by 
0=Na /v0=N�0
−1, can reach values of the order of hun-

dreds of ps and even more, since the number N of cells can
be assumed as arbitrarily large. Depending on the value of
	, see Fig. 2, the reaction of the lattice will be more or less
gradual before reaching the saturation at f =0.93. In such a
way the tunneling decay time, see Fig. 1, will be gradually
varied from the smallest to the largest values. Therefore, the
selection of a suitable compromise between 	 and 
0 can
provide the required time constants which characterize the
different cases.3,4

The “hydrostatic-effect” mechanism, introduced in the
Ref. 4�b� was found to be capable of varying the product
gA�d9, where d is the unperturbed nearest-neighbor separa-
tion in the quasimolecule �Tl+X6�5−, and therefore was suit-
able to enhance the tunneling decay-time variation; this
mechanism can be considered as concomitant with the dissi-
pative mechanism considered here, reinforcing its effect. The
latter has been interpreted here as being due to a progressive
wave traveling along the ionic chain of the lattice. However,
any confinement mechanism of lattice excitation can also
contribute to the decay-time variation in the slow lumines-
cence up to a time scale that, in the model of Ref. 3, should
be of the order of milliseconds. This is indeed a controversial
point since, according to some works reported in literature17

this time scale should not exceed that one of nanoseconds.
However, a different conclusion about the stability of con-
fined solitons �or breathers� has been recently given in Ref.
18 which holds the possibility of extremely long time values.

A basic feature of such a model2,3 lies in the assumption
that the energy separation between transition-allowed excited
state �decay time of nanoseconds� and underlying trap level
�decay time of milliseconds�, that is � in the inset of Fig. 3,
increases with the Jahn-Teller parameter, or configuration co-
ordinate x0, for explaining the augment of the decay time up
to ms. This tendency, however, is indeed just the opposite
with the respect to the one derived according to the Jahn-
Teller theory.4,19 On the contrary, assuming that the AT emis-
sion originates from T* tetragonal minima, whose depth is ET
in Fig. 3, we have that the energy separation between them
and the underlying trap level, that is �E+� in Fig. 3, actually
increases with x0, and the entity of this separation, for small
values of parameter g, is found to be of the order of tens of
meV.20 In this way, a level scheme is obtained which, at least
qualitatively, is just the one required in the model of Refs. 2
and 3.

As for the time duration of the lattice reaction acting di-
rectly on the ET minimum, we shall assume �in the hypoth-
esis of a soliton confinement situation� that the Jahn-Teller
active luminescence cluster is loaded by a finite bilateral sec-
tion of ionic chain �something similar to what was done in
Ref. 18�, which becomes seat of standing waves and can be
considered as the analog of a resonant circuit. The analysis
of this system can be performed according to the telegra-
pher’s equation, that is Eq. �1� with inclusion of the term
−�2� /v2��� /�t, where � is a positive constant which ac-
counts for dissipative effect.21 By considering the Jahn-Teller
excitation as a step-function pushing, at t=0, on the ionic
chain assimilated to a damped oscillator, we have that the
lattice reaction can be expressed for t�0, as22

x�t� = �xB�1 − e−�t
cos�wt� + ��/w�sin�wt��� �7�

where w= �w2−�2�1/2 is an “effective velocity,” having di-
mension of �time�−1, and �as before� �xB=a�Q0 /Q0. The
action variation will be of the order of Mw��xB�2�w /a�,
therefore �w /a� times the estimate made before, �S�10�.
The duration of the process, or better the time required to
reach the equilibrium displacement, turns out to be of the
order of �−1 and for � sufficiently small can reach even very
long values.

It seems therefore, that a suitable combination of the two
above-mentioned models could offer a complete interpreta-
tional scheme for explaining the complex phenomenology of
the slow emission in doped alkali-halide phosphors. Specifi-
cally, the model based on tunneling between different kinds
of minima turns out to be particularly suited for the cases of
two emission bands �high-energy AT and low-energy AX� as
typically shown by the Tl+ impurity. The mechanism
adopted, however, can easily explain the anomaly of the slow
component of the AX emission, while the anomaly observed
in the AT emission remains in this framework more problem-
atic. In addition, the cases in which we have only one emis-

FIG. 3. Energy separation �E+�, between T* �ET� minimum
and underlying trap level, normalized to the spin-orbit coupling
constant �, calculated as function of the coordinate x0 of the T*

minimum and for some values of the parameter g �after Ref. 20�.
The dashed line delimits the parameter space �on the right-hand
side� for which the minimum T* is stabilized. The inset shows a
sketch of the double minimum excited-state potential function along
the reaction path from ET to EX minimum.
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sion band �presumably of AT type�, as for most cases of the
Pb2+ impurity, appear rather difficult to explain since the AX
emission seems to be nonexistent. However, an overlapping
of the two emissions, AT and AX, cannot be excluded because
of the strong reduction of the g parameter down to values
�say g�0.1� that actually could make the two emissions
rather undistinguished, the energy difference between their
peaks being given by �E�2g�.

On the contrary, the mechanism based on soliton confine-
ment, revisited in the light of a correct energy-separation
behavior as in Fig. 3, appears as more suited for interpreting
the anomaly of the AT emission. However, the elongation of
the lattice reaction time �up to ms in Refs. 2 and 3� remains
difficult to be a-critically accepted and requires further con-
sideration. A crucial point in the analysis in Ref. 18 is the
neglecting of quantum-tunneling delocalization, so that an
initially localized pulse can be trapped “indefinitely” as a
quantum excitation.

In the approach to the problem outlined here, Eq. �7�, the
evaluation of the time duration ultimately rests on a reason-

able estimate of the constant �; estimate that, even for small
values as ��10−4–10−3, supplies decay times of the order of
thousands of vibrational periods,17 that is again in the range
of nanoseconds. However, the load due to the ionic chain
contrasts the reaching of the equilibrium coordinate �analo-
gously to the role played by the “hydrostatic effect” men-
tioned above�, thus producing an appreciable variation �a de-
crease� of the parameter A �see Fig. 3� which, in turn, causes
the required increasing energy-level separation. In such way,
a delay amplification, similar to the one considered before
for the tunneling mechanism �mainly acting on the AX emis-
sion�, can be considered as operating even for the AT emis-
sion itself; so that its emission times, as depending on the
level characteristics, can result to be distinctly different from
the lattice reaction time, thus avoiding the heavy assumption
of Refs. 2 and 3.

The authors wish to thank L. S. Schulman and
E. Mihóková for useful and stimulating discussions.

1 See, for example, the review paper by A. Ranfagni, D. Mugnai,
M. Bacci, G. Viliani, and M. P. Fontana, Adv. Phys. 32, 823
�1983�.

2 See B. Gaveau, E. Mihóková, M. Nikl, K. Polák, and L. S. Schul-
man, Phys. Rev. B 58, 6938 �1998�, for the case of KBr:Pb2+.

3 �a� L. S. Schulman, E. Mihókovà, A. Scardicchio, P. Facchi, M.
Nikl, K. Polák, and B. Gaveau, Phys. Rev. Lett. 88, 224101
�2002�; �b� E. Mihóková, L. S. Schulman, K. Polák, and W.
Williams, Phys. Rev. E 70, 016610 �2004�.

4 �a� A. Ranfagni, D. Mugnai, P. Fabeni, and G. P. Pazzi, Phys.
Rev. B 66, 184107 �2002�; �b� A. Ranfagni, P. Fabeni, G. P.
Pazzi, D. Mugnai, A. Agresti, G. Viliani, and R. Ruggeri, ibid.
72, 012101 �2005�.

5 Nanosecond time scale, which corresponds to the fast component
of the emission, followed by the components at �s and ms.

6 See, for example, the pioneering work by A. O. Caldeira and A. J.
Leggett, Phys. Rev. Lett. 46, 211 �1981�; Ann. Phys. 149, 374
�1983�.

7 See also W. G. Unruh and W. H. Zurek, Phys. Rev. D 40, 1071
�1989� for another type of model.

8 S. Chakravarty and A. Schmid, Phys. Rev. B 33, 2000 �1986�.
9 A. Agresti, M. Barilli, A. Ranfagni, R. Ruggeri, and C. Susini,

Phys. Rev. E 65, 066616 �2002�; A. Agresti, A. Ranfagni, R.
Ruggeri, and P. Sandri, ibid. 67, 027602 �2003�.

10 E. A. Guillemin, Synthesis of Passive Networks �Wiley, New
York, 1957�, Chap. 3.

11 By increasing temperature, the tunneling transition probability
constantly grows due to the increase of the transmission coeffi-
cient through the barrier, and ultimately will be dominated by
the thermal overcoming of the barrier. For the systems of our
interest, this occurs at temperature values around 40–80 K 
Ref.
4�a��.

12 In the present case of an asymmetric double-well potential, the
use of Eq. �2� �which exactly holds for a cubic potential� might

appear questionable. However, in the presence of a large asym-
metry parameter �, the cubic form is certainly acceptable in the
neighborhood of the barrier, while irreversible behavior will be
produced by coupling to the thermal bath 
see J. P. Sethna, Phys.
Rev. B 25, 5050 �1982��.

13 See also, A. Ranfagni, I. Cacciari, M. A. Vitali, G. Viliani, P.
Moretti, and R. Ruggeri, Phys. Rev. A 74, 014102 �2006�.

14 C. Kittel, Introduction to Solid State Physics �Wiley, New York,
1957�, Chap. 5. For �0=1, and space in unity of lattice constant,
we have v0=1, as shown in the upper panel of Fig. 1 in Ref. 3�a�
with time unity 1/�0.

15 A correspondence which is similar to that usually made for the
resistively shunted junction model, of current biased Josephson
junctions, where the electrical equation of motion is related to a
mechanical analog.

16 I. S. Gradshteyn and I. M. Ryzhik, Table of Integral, Series, and
Products �Academic, New York, 1980�, p. 352.

17 See, for example, V. Hizhnyakov and D. Nevedrov, Phys. Rev. B
56, R2908 �1997�.

18 L. S. Schulman, D. Tolkunov, and E. Mihóková, Phys. Rev. Lett.
96, 065501 �2006�; Chem. Phys. 322, 55 �2006�.

19 This behavior, as due to the quenching of the spin-orbit constant
produced by the Jahn-Teller effect, is also known as Ham’s theo-
rem. See, for example, F. S. Ham, Phys. Rev. 138, A1727
�1965�.

20 P. Fabeni, D. Mugnai, G. P. Pazzi, A. Ranfagni, C. Susini, M.
Vannini, I. Cacciari, M. A. Vitali, and L. S. Schulman, Opt.
Mater. �to be published�.

21 C. DeWitt-Morette and S. K. Foong, Phys. Rev. Lett. 62, 2201
�1989�.

22 D. Mugnai, A. Ranfagni, R. Ruggeri, and A. Agresti, Phys. Rev.
E 50, 790 �1994�.

RELAXATION DYNAMICS, DISSIPATIVE TUNNELING,… PHYSICAL REVIEW B 74, 195107 �2006�

195107-5


