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We identify an effect wherein the fundamental band gap of a photonic crystal lattice can be suppressed by
unexpected mode degeneracy, rendering it completely transparent across two or more bands. We discuss a very
simple solid-state analog of these effects based on a mass-spring lattice and show that suppression of the
primary photonic band gap is nontrivial and surprising, especially if it simultaneously vanishes for all direc-
tions. The lack of a primary band gap in any direction is the opposite of the complete band gap, which is highly
coveted in photonic crystal design. Ironically, the complete lack of a band gap also requires special circum-
stances and may have useful applications.
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Photonic crystals are the focal point of a great deal of
research in modern optics. These wavelength-scale, periodic,
dielectric structures offer tantalizing possibilities of control-
ling light much like crystals control electrons in solid-state
physics. The basis for this concept is the existence of a band
structure for electromagnetic waves in a periodic dielectric
medium, which leads to the possibility of a photonic band
gap—a range of frequencies for which there is no propagat-
ing mode—analogous to the electronic band gaps of solid-
state physics.1 Because the band structures of photonic crys-
tals depend critically on the lattice geometry, polarization,
and the strengths of the constituent dielectric materials,2

there is tremendous range of possibilities for tailoring and
designing photonic crystal structures for a myriad of differ-
ent applications.

One class of photonic crystals that has received a signifi-
cant amount of recent attention are two-dimensional
�2D� structures, which consist of a periodic plane and a third
extruded or nonperiodic dimension.3,4 These crystals have
important practical significance because they offer the possi-
bility of guiding and manipulating light in planar defect
circuits5 and photonic crystal fibers,6,7 and controlling polar-
ization through their anisotropic band structures.8,9 Typical
2D photonic crystal lattices include dielectric rods or pipes
�tubes� arranged periodically in air, and spaced air holes in a
dielectric block. These two-dimensional lattices are often de-
scribed in terms their air-filling fraction �AFF�, the ratio of
the air volume in the structure to its total volume. The pipe
lattice—a connected array of pipes or tubes—is of particular
practical interest. Because each pipe makes tangential con-
tact with its nearest neighbors, the lattice constant a is equal
to the outer diameter of the pipes and the air-filling fraction
is determined by the inner diameters of the pipes �as the
inner diameter increases, the AFF increases�. The interstitial
holes between the pipes are all disconnected from one an-
other just as the pipe holes.6,10 Diagrams of the square and
hexagonal lattices of pipes are shown in Fig. 1.

Large AFFs are generally considered important for creat-
ing wide, complete photonic band gaps necessary for many
photonic crystal applications;11 however, the performance
characteristics of most 2D lattices have not been fully stud-
ied over much of the air-filling fraction parameter space for
in-plane propagation. As a result, many important questions

concerning the design of photonic-crystal devices remain un-
answered, including the effects of noncontiguous regions of
the same material. For example, the roles of pipe holes and
interstitial holes �between the pipes� in the overall band
structure of the pipe lattice have not been thoroughly studied.

In this paper, we present a numerical study of simple
square and hexagonal �triangular� lattices of pipes over a
range of air-filling fractions from the minima to large values
approaching unity. We demonstrate quantitatively how the
fundamental band gaps of these structures depend on the
air-filling fraction for different dielectrics, and show that
their widths and reflectivities are maximized and minimized
at particular points in AFF space. We identify an effect
wherein the fundamental band gap of a 2D lattice can be
suppressed by unexpected mode degeneracy and discuss a
very simple solid-state analog of these effects based on a
mass-spring lattice. Suppression of the primary photonic
band gap is nontrivial and surprising, especially if it simul-
taneously vanishes for all directions. Band gap suppression,
or light delocalization, is stable against disorder, with a band
gap gradually opening as disorder is introduced into a finite
structure.

We begin our survey with a study of hexagonal and
square lattices of a finite number of layers. From an applica-
tions point of view, simulations of finite crystals are particu-
larly important because realistic crystals generally consist of
a finite number of cells in the direction of propagation. Fur-
thermore, studying finite crystals makes it possible to deter-
mine the exponential-attenuation length of the power trans-
mitted by the crystal in the band gap, an important parameter

FIG. 1. Schematic diagrams of the square �a� and hexagonal �b�
lattices of pipes.
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for designing real devices. Using two-dimensional, finite-
element, harmonic simulations, we have calculated the
power transmitted through lattices—finite in the direction of
propagation but infinite in the transverse dimensions—as a
function of frequency for different values of the dielectric
index of refraction. The sizes of the finite elements were
determined by an adaptive algorithm that formed a continu-
ous mesh with finer elements near boundaries and coarser
elements away from these regions. Periodic boundary condi-
tions were employed in the periodic plane only in the direc-
tion transverse to the propagation. The transmission was cal-
culated for radiation propagating in the �X �square lattice�
and �M �hexagonal lattice� directions, incident on the crys-
tals from air and transmitted into air. We calculated the nor-
malized transmission through the crystal at each frequency
using a repetitive loop to run the simulation at regular fre-
quency intervals. To quantify the band gap reflectivity, we
determined the transmission through crystals ranging from
10 to 20 layers of pipes �in unit step� for each AFF, and
computed the 1/e power exponential-attenuation length by
fitting an exponential decay curve to points of minimum
transmission in the fundamental band gap.

In Fig. 2, we display the results of these calculations for
both TE- and TM-polarized waves �TE, E-field perpendicu-
lar to periodic plane; TM, E-field parallel to periodic plane�
for the two lattice geometries and three different refractive-
index contrasts. The exponential attenuation length clearly
becomes very large—perhaps infinite—over a range of AFFs
near 0.4 and 0.14 for the square and hexagonal lattices,
respectively.

The primary band gap essentially vanishes at these special
air-filling fractions, regardless of the refractive index of the
pipes. Because of this unusual property, this effect must rely
on some interplay between different regions of the same in-
dex of refraction: the pipe holes and the interstitial holes.
Simple calculations show that the pipe holes and interstitial
holes consume almost identical fractions of the unit-cell area
at the air-filling fractions where the band gaps vanish. This
suggests that the primary band gap unexpectedly vanishes at

these AFFs because the interstitial holes and pipe holes act as
equivalent regions for some wave vector in the first two
bands. On the other hand, these two regions obviously have
different shapes, which explains why the band gaps vanish at
AFFs that are slightly lower than predicted by the simple
area calculation: since continuity requirements restrict the
fields from strongly probing the sharp points of the intersti-
tial holes, the fields must be concentrated more strongly in
smaller quasicircular regions. The discrepancy is greater for
the hexagonal lattice because the corners of its interstitial
holes are sharper compared with those of the square lattice,
and for TM modes since their electric fields lie in the peri-
odic plane.

A quantitative approach can be obtained using the so-
called fill-factor integrals. The fill factor of a mode over a
region R within the unit cell is the normalized integral of the
time-averaged electric energy over that region.2 For the pur-
poses of our discussion, we define fill factors for the dielec-
tric pipes, pipe holes, and interstitial holes as fD, fH, and f I,
respectively. Since it is energetically favorable to concentrate
displacement field in regions of higher dielectric strength,
two adjacent bands will be separated by an energy gap if
their values of fD are different at the edge of the Brillouin
zone;2 however, redistribution of fields between the intersti-
tial holes and the pipe holes does not in itself generate an
energy gap.

In Fig. 3 we show the changes in fD, fH, and f I, across the
X-point edges of the first two bands in the square lattice of
pipes as a function of the air-filling fraction. We computed
the fill factors by averaging the integrals over 10 unit cells
along the direction of propagation in a lattice of 20 layers.
The change in dielectric fill factor has polarization-
dependent local extrema at the special AFFs where the band
gaps disappear and at higher air-filling fractions where the
power attenuation lengths have local minima. Notice that at
low air-filling fractions, f I increases and fH decreases from
the first band to the second, whereas, the opposite is true for

FIG. 2. �Color online� Calculated power exponential attenuation
lengths for square �left-hand panels� and hexagonal �right-hand pan-
els� lattices of pipes with n=1.61 �open circles�, 2.5 �solid squares�,
and 3.46 �open triangles� for TE and TM polarizations.

FIG. 3. �Color online� Fill-factor differences between the first
two bands of a square lattice of pipes with n=1.61 for TE and TM
polarizations. D, H, and I label the dielectric regions, pipe holes,
and interstitial holes, respectively.
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the high AFFs. In the low AFF regime, the magnitude of the
change in f I is larger than that of fH, but at high air-filling
fractions, fH dominates.

These features indicate that at low AFF, the fundamental
band gaps are primarily due to a displacement-field shift
from the dielectric regions and pipe holes in the first band to
the interstitial holes in the second band, whereas, at high
AFF they are mostly due to a field shift from the dielectric
regions and interstitial holes in the first band to the pipe
holes in the second band. Because of continuity restrictions,
the fundamental mode cannot be completely confined to the
dielectric regions, but must also occupy either the pipe holes
or the interstitial holes. The magnitudes of the fill-factor
changes illustrates that it is energetically favorable for the
fundamental mode to choose the pipe holes at low AFF and
the interstitial holes at high AFF. The transition between
these two regimes are the special air-filling fractions where
the band gaps vanish.

In order to study the complete band structures of the
square and hexagonal pipe lattices, we also performed band
calculations spanning the perimeters of their irreducible Bril-
louin zones. These band structures were calculated by deter-
mining the eigenmodes and corresponding eigenfrequencies
of a single unit cell of the particular lattice with periodic
boundary conditions. A repetitive loop was used to repeti-
tively run the simulation for wave vectors spanning the Bril-
louin zone at regular intervals. In Fig. 4, we show the band
maps for the square and hexagonal lattices of pipes at the
air-filling fractions where the band gaps were seen to vanish.
Notice that for both lattice types, there is essentially no band
gap between the first two TE modes for any direction of
propagation at the special air-filling fractions. Interestingly,
for the hexagonal lattice, the K point is actually a triple point
for TE waves, an intersection between the first three bands.
On the other hand, the TM gap does not completely disap-
pear for all directions in either pipe lattice. It vanishes for the
�X direction, but does not completely disappear for other
directions of propagation likely because continuity restric-

tions force a change in the dielectric fill factor between the
first two modes. In order to illustrate these unexpected mode
degeneracies with an example, we have plotted in Fig. 5 the
time-averaged electric energy distributions for TE waves in
bands 1 and 2 at the X point in a square lattice of pipes with
the special air-filling fraction �refractive index n=2.5�. From
these plots, it is clear that the pipe holes and the interstitial
holes act as equivalent regions for TE waves at the X point in
this crystal.

Finally, we have also performed calculations to character-
ize the complete band gaps of the pipe lattices for other
air-filling fractions. Evidently, the primary band gap does not
simultaneously cover all directions for TE waves in either
the square or hexagonal lattices for any index contrast and
AFF. On the other hand, there are complete, primary TM
band gaps in both lattice types with sufficient dielectric
strengths �n�1.5 for the hexagonal lattice; n�2.5 for the
square lattice�. In Fig. 6, we plot the complete TM band gap
widths as functions of the AFF for three different dielectrics.
The complete band gap widths are maximized at index-
dependent values of the air-filling fraction, which increase
with the dielectric strength; however, these extrema do not
coincide precisely with the minimum attenuation lengths dis-
played in Fig. 2.

The existence of AFFs that maximize the widths and re-
flectivities of the band gaps can also be understood in terms

FIG. 4. �Color online� TE �solid curves� and TM �dashed
curves� band diagrams �TE labeled by number� of square �a� and
hexagonal �b� lattices of pipes. �TE, TM� AFFs: �a� �0.415, 0.388�;
�b� �0.14, 0.12�.

FIG. 5. �Color online� The time-averaged electric energy density
distributions �arbitrary units� for TE waves in band 1 �left-hand
plot� and band 2 �right-hand plot� at the X point in a square lattice
of pipes with AFF of 0.415 and n=2.5. The black circles delineate
the outside and inside perimeters of the pipe walls.

FIG. 6. �Color online� Complete TM band gap widths in square
�dashed curve� and hexagonal lattices �solid curves� of pipes.
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of the fill factor. The size of the band gap increases if there is
a greater discrepancy between the dielectric fill factors at the
edge of the Brillouin zone. This discrepancy can only in-
crease up to a certain point—as the AFF is increased beyond
this point, more of the field must spill out of the thin dielec-
tric regions into the air regions even in the dielectric band.
This leads to a smaller difference between the dielectric fill
factors of the first two bands. Thus, contrary to what is often
implied in the literature, the widths and reflectivities of these
band gaps do not continually increase at high air-filling frac-
tions, but reach maximum values that depend on the index
contrast.

An analogy with solid state physics clarifies the connec-
tion between band gap suppression and fill-factor degen-
eracy. It is well known that the frequency gap between the
optical and acoustical phonon dispersion branches of a linear
diatomic crystal at the Brillouin zone edge is given by ��
=�2k /m2−�2k /m1, where m1 and m2 are the masses of two
atomic species �m1�m2� and k characterizes the strength of
the coupling between them.12 Clearly, if we let m1→m2, then
the gap between the branches vanishes. In the photonic crys-
tal case, the quantity analogous to the atomic mass is the
dielectric fill factor fD since �fD at the edge of the Brillouin
zone determines the size of the frequency gap. In the simple
diatomic case, the band gap vanishes if the two masses are
equal; in the photonic crystal case the primary band gap can
be suppressed by the crystal geometry even if the refractive
index contrast is large because the fill factor depends on both
of these properties. This phenomenon is very general and can
result in the unexpected suppression of a band gap even
when the modal distributions between two adjacent bands
are quite different, as long as the dielectric fill factors at that
point happen to be the same.

Interestingly, gap-suppressed crystals are affected by dis-
order differently from normal photonic crystals. We have
performed 2D numerical simulations of finite pipe lattices
with disorder by adding a random component to the inner
radius of the pipes, but holding the lattice constant fixed. As
the amplitude of the disorder was increased from zero, we
observed markedly different transmission properties depend-

ing on the average air-filling fraction. We found that the ef-
fect of band gap suppression persists in finite, disordered
structures, with the band gap gradually opening as the disor-
der increases. Furthermore, for some range of air-filling frac-
tions around the gap-suppressed value, this unusual behavior
occurs: introduction of disorder gradually increases the opac-
ity of the structure. This behavior contrasts with what is
known to occur when disorder is introduced into a normal
finite photonic band gap crystal. On the other hand, outside
of this AFF range, the normal trend is observed. Thus, intro-
duction of disorder either increases or decreases the size of
the photonic band gap depending on the air-filling fraction.

In conclusion, we have characterized the square and hex-
agonal lattices of pipes over a large range of air-filling frac-
tions. Our simulations have demonstrated the existence of
unexpected special points and band gap trends, which may
be extremely useful in optimizing the design of photonic
crystal devices. As we have shown, fill-factor degeneracies
can result in the complete destruction of the primary band
gap. In some sense, this is the opposite of the coveted com-
plete band gap spanning all in-plane directions;13 ironically,
the complete lack of a primary band gap in a periodic struc-
ture with significant index contrast can be achieved but is
also apparently somewhat difficult. Band gap suppression
also exists in three-dimensional photonic lattices, with the fill
factors reinterpreted as volume integrals. One of the interest-
ing things about photonic crystals is not just the existence of
the band gap, but that an ordered array of scatterers can be
transparent due to constructive interference. Thus, photonic
band gap suppression is surprising because it means that an
array of scatterers is completely transparent to all frequencies
across two distinct bands. These effects may have application
in the design of broad-band photonic crystal waveplates,
which require structures that are both birefringent and
transparent.9 Finally, these concepts may be also useful for
the construction of bistable devices based on nonlinear pho-
tonic crystals.
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