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We study the capacitively coupled, quantum transmission line with charge discreteness, discussed in an
earlier paper �Flores, Phys. Rev. B 64, 235309 �2001��. Due to the difficulties of dealing with a highly
nonlinear system, only a low-lying propagating wave solution was obtained then, the so-called
cirquiton. In this work, we obtain a wave-front solution, valid for the long-wavelengh approximation. The
propagation velocity v of the wave front depends on the �pseudo� flux parameter f; the physical requirement
that v should be real implies the existence of allowed and forbidden regions �gaps� in the space of the
parameter f . A study of the stability of the solutions is presented. We remark that it is possible to make a
connection between our system and the �quantum� Toda lattice.
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I. INTRODUCTION

The broad field of nanostructures, and particularly so-
called double-barrier resonant tunneling,1 is at the heart of
many new technological devices.2–6 Naturally, at this scale
and for low temperatures, quantum mechanics plays a fun-
damental role.5 Recently, much effort has been devoted to
studying nanostructures, using as a model that of quantum
circuits with charge discreteness.7–13 For example, works
have been published on subjects such as persistent
currents,7,8 coupled quantum circuits,9,10 the electronic
resonator,11 quantum point contacts,12 and others.3 In this
Brief Report, we are interested in spatially extended quantum
circuits �transmission lines� with charge discreteness. So this
is an interesting theoretical subject with broad potential ap-
plications, since nanodevices could be put together forming
chains, and then be viewed as electric transmission lines. For
instance, electric transport properties in DNA have been
measured recently.14–16 Some degree of disagreement related
to conducting properties exists; nevertheless, it is clear that
the DNA molecule could be viewed and modeled as a quan-
tum transmission line. Moreover, molecular electronic
circuits17 are actively studied theoretically and experimen-
tally; in such systems, chains of individual molecules form a
line of circuits. Therefore, this area of quantum circuits is a
broad field involving future applications from the perspective
of nanodevices, electric transmission in macromolecules,
left-handed materials, Toda lattice, and others.

In this work we consider a wave-front solution for an
extended quantum circuit, the quantum version of the classi-
cal LC transmission line. We proposed the quantum Hamil-
tonian for this system in 2001.9 The propagation velocity of
the wave-front solution, v, is found to possess a rich struc-
ture of allowed and forbidden regions, a structure that relates
directly to charge discreteness. This finding gives us hope
that it will allow us to apply these methods to the description
of more complex extended systems, such as dual transmis-
sion lines, transmission lines with complex bases, etc.

In Sec. II we introduce the Hamiltonian for coupled cir-
cuits, and the equations of motion for the spatially continu-

ous systems. In Sec. III, the wave-front solution is obtained
and the band-gap structure is characterized; in Sec. IV the
stability question is considered. In Sec. V the connection
with the Toda lattice is presented. Finally, we state our con-
clusions �Sec. VI�.

II. QUANTUM TRANSMISSION LINES WITH DISCRETE
CHARGE

It is known that for a chain of quantum-capacitively-
coupled quantum circuits with charge discreteness �qe�, the
Hamiltonian may be written as9

Ĥ = �
l=−�

� �2�2

Lqe
2 sin2� qe

2�
�̂l� +

1

2C
�Q̂l − Q̂l−1�2	 , �1�

where the index l describes the cell �circuit� at position l,
containing an inductance L and capacitance C. The conjugate

operators, charge Q̂ and pseudoflux �̂, satisfy the usual com-

mutation rule �Q̂l , �̂l��= i��l,l�. Any spatially extended solu-
tion of Eq. �1� will be called a cirquitonlike solution, corre-
sponding to the quantization of the classical electric
transmission line with discrete charge �i.e., elementary
charge qe�. Note that, in the formal limit qe→0, the above
Hamiltonian gives the well-known dynamics related to the
one-band quantum transmission line, similar to the phonon
case. The system described by Eq. �1� is very cumbersome
since the equations of motion for the operators are highly
nonlinear due to charge discreteness. However, this system is
invariant under the transformation Ql→ �Ql+��, that is, the

total pseudoflux operator �̂T=��̂l commutes with the
Hamiltonian; in turn, the use of this symmetry helps us in
simplifying the study of this system.

The equation of motion �Heisenberg� related to the
Hamiltonian �1� are

�

�t
�̂l =

1

C
�Q̂l+1 + Q̂l−1 − 2Q̂l� , �2�
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�

�t
Q̂l =

�

Lqe
sin

qe

�
�̂l. �3�

To handle the above nonlinear equations, we will assume
a continuous approximation18 �infrared limit�; that is to say,
we will use the standard technique suggested in Remoiss-
enet’s book19 �p. 26�. Let a be the size of the unitary cell in
the chain �i. e., the size of an LC cell� and define the spatial

variable y=al. Consider the Taylor expansion19 Q̂l±1− Q̂l


 ±a�Q̂ /�y+a2�2Q̂ /2�y2±¯, and the substitutions

�̂l→ �̂�y� and Q̂l→ Q̂�y�. Now, making the formal changes

�0=� /qea, defining the pseudoflux density �̂= �̂ /a, taking
the limit a→0 �with qea equal to a constant� the above pair
of equations could be rewritten as

�

�t
�̂ =

1

C
�2

�y2Q̂ , �4�

�

�t
Q̂ =

�0

L
sin� �̂

�0
� . �5�

Here the new parameters L and C are, respectively, the in-
ductance and capacitance per unit of length. We note that,
with the above definitions, the commutator between the
charge and density pseudoflux operators becomes Dirac’s �
function, as is usual in a field theory. In the next section, a
wave-front-like solution of the above system will be ob-
tained. To end this section, we notice that some candidates
for physical applications of our studies could be chains of
double-barrier resonant-tunneling1 among other
nanosystems.6

III. WAVE-FRONT SOLUTIONS

As stated previously, we are interested in wave-front-like
solutions of the system of Eqs. �4� and �5�. We proceed in the
standard way,19 by assuming traveling wave solutions for our
operators, i.e., we define a new variable z=y−vt, and assume

Q̂�y,t� = Q̂�z� , �6�

�̂�y,t� = �̂�z� , �7�

where v stands for the unknown propagation velocity. There-
fore, from the Heisenberg equations of motion �4� and �5�,
the wave-front equations in the new variable z become

− v
d

dz
�̂ =

1

C
d2

dz2Q̂ , �8�

− v
d

dz
Q̂ =

�0

L
sin

�̂

�0
. �9�

From the above pair of equations we obtain a closed equa-
tion for the pseudoflux density operator resulting in the “ei-
genvalue” problem:

�0

LC
sin

�̂

�0
= v2�̂ , �10�

where the integration constant has been chosen as zero for
simplicity �however, see Eq. �15��. Equation �10� corre-
sponds to an eigenvalue problem for the nonlinear superop-
erator O��̂�=sin��̂� and there are at least two kinds of solu-

tions: a projection operator �̂= P̂, satisfying P̂2= P̂, and

�̂= �̂ satisfying �̂2=1. For simplicity, we will consider only
the first case �a projector�. Consider the pseudoflux operator
only in one LC cell of the chain, and its spectral decompo-
sition in the Schrödinger picture �̂cell=�������d�. Now,
pick up only one term from there �call it �0, say�, consider
now the well-defined operator

�̂ = f P̂0 where P̂0 = ��0��0� , �11�

where f is an arbitrary density pseudoflux parameter, and
replace it in Eq. �10�.

Now, since P̂0 is a projector, then from Eq. �10� the equa-
tion for the pseudoflux density f becomes related to the ve-
locity by

v2 =
1

LC
sin�f/�0�

�f/�0�
. �12�

Since both signs �±f� are possible, then we can construct the
wave-front solution �step 2f� of the equations of motion �4�
and �5�:

�̂sol�z� =�+ f P̂0, z 	 0,

− f P̂0, z 
 0,
� �13�

corresponding to a solution with zero total flux �Sec. I�. Con-
cerning the matching condition at z=0, the solution �13� sat-
isfies the matching implied by Eqs. �8� and �9�.

The condition v2�0 on the wave-front velocity gives the
band-gap conditions on the system. In fact, from �12� the
restriction

sin�f/�0�
�f/�0�

� 0 �14�

means that there exists a sequence of bands and gaps. As is
well known, the existence of this kind of sequence is closely
related to transport, thermodynamical, and optical properties.
For instance, in Refs. 14–16 the existence of gaps is directly
related to the constant value of electrical current �plateau�
for the increasing external voltage. Figure 1 shows a plot of
the wave-front velocity �12� for different values of the
pseudoflux density f , in which one observes an alternating
sequence of bands and gaps, corresponding to propagating
and forbidden modes. Note that the main allowed band
�−��0
 f 
��0� is twice as wide as the other allowed
bands.

Recall that the integration constant was set equal to zero

to obtain �10�. Now consider the nonzero case, i.e., let Ĉ be
the integration constant; then the wave-front velocity be-
comes formally
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v2��̂ − Ĉ� =
�0

LC
�sin

�̂

�0
− sin

Ĉ

�0
� . �15�

To end this section let us briefly mention the dual trans-
mission line. It is well known that the direct classical LC
transmission line �related to Eq. �1�� has associated with it a
so-called dual transmission line. In the direct line the inter-
action between cells is through capacitances, while in the
dual line it is through mutual inductances. The dual line is
closely related to the so-called left-handed materials, which
render its quantization physically relevant; moreover, the
role of charge discreteness must also be considered. This
two-step process �quantization and charge discreteness�
could be performed in analogy with the direct line �Sec. I�,
but in this case long-range interactions between cells appear
in the Hamiltonian. The expression for the Hamiltonian is
cumbersome.20 Nevertheless, the equation of motion for the
charge and pseudoflux variables may be obtained after some
algebra. We will not continue the description of the dual line,
but only mention here that the expressions are quite involved
and, so far, no explicit solution has been found.

IV. STABILITY

In this section we present briefly our results concerning
the stability of the solution �11�. We use the standard method
of linear analysis. Consider now the perturbed solutions

�̂ = �̂sol + ̂ ,

Q̂ = Q̂sol + �̂ , �16�

where the operators ̂ and �̂ are the perturbation. We assume
that these operators possess small eigenvalues. Moreover,
consider the well-known perturbation expansion21

sin��̂ + ̂� = sin��̂� + Re�ei�̂�
0

1

d� e−i�̂�̂ei�̂�� . �17�

Since �̂sol= ± f P̂0, and P̂0 is a projector, then from the above
equation �and Eqs. �4� and �5�� we obtain the linear evolution
equation for the pseudoflux perturbation ̂, namely,

LC �2

�t2 ̂ = Re
�2

�y2�ei�f/�0�P̂0�
0

1

d�e−i�f/�0�P̂0�̂e+i�f/�0�P̂0�� .

�18�

We have three cases, the first when the perturbation exists

in the same subspace spanned by P̂0 �case �a�� and the others
�cases �b� and �c��, in orthogonal subspaces.

�a� In the first case we consider ̂=00�y , t���0��0�, and
we obtain the linear wave equation

LC �2

�t200 = �cos f/�0�
�2

�y200.

This type of perturbation is unstable in the range where the
pseudoflux satisfies cos�f /�0�
0.

�b� In the second case, we assume a perturbation of the
form ̂=����y , t�������, where ���0 and ����0. In this
case the wave equation becomes

LC �2

�t2��� =
�2

�y2���,

and the perturbation is always stable.
�c� In the last case, the perturbation has the form

̂=�0�y , t�����0�, with ���0, and the wave equation for
the perturbation becomes

LC �2

�t2�0 =
sin�f/�0�

�f/�0�
�2

�y2�0.

This perturbation is stable when sin�f /�0� / �f /�0�
0;
namely, the bands are marginally stable with respect to this
kind of perturbation.

V. TODA LATTICE AND CIRQUITONS

The cirquiton Hamiltonian �1� gives the equations of mo-
tion for charge and pseudoflux in the cell l along the discrete
transmission line, namely, Eqs. �2� and �3�, while, as ex-
plained before, Eqs. �4� and �5� in Sec. I are the spatially
continuous version of the above pair of equations. The first-

order system for the variables Q̂l and �̂l may be written as a
second-order system for the pseudoflux operator, namely,

LC
�2

�t2 �̂l =
�

qe
�sin

qe

�
�̂l+1 + sin

qe

�
�̂l−1 − 2 sin

qe

�
�̂l� ,

�19�

which, in the formal limit qe→0, gives the usual single-band
system with frequency spectrum ��k�= �2/�LC� �sin�k /2��,
as expected. Consider now the equation

FIG. 1. Plot of the velocity of the wave front, as a function of
the flux parameter f . As specified by Eq. �12� there is a structure of
bands and gaps. The main allowed velocity band is twice as wide as
the other allowed bands. This structure is a direct consequence of
charge discreteness, an effect that disappears in the limit qe→0.
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LC
�2

�t2 �̂l =
�

iqe
�e�iqe/���̂l+1 + e�iqe/���̂l−1 − 2e�iqe/���̂l�; �20�

then any Hermitian solution of this last equation is also a
solution of the cirquiton equation �19� �observe that the re-
verse is not necessarily true�. To show this, it suffices to
conjugate Eq. �20� and subtract the result from the first ver-
sion.

On the other hand, there is a broad field of research re-
lated to the Toda lattice, with results and spplications in a
variety of branches in physics and engineering,19 including
nonlinear physics, statistical mechanics, classical electric cir-
cuits, etc. The classical evolution equation for the Toda lat-
tice has the generic form

M
�2

�t2�l = − A�e−B�l+1 + e−B�l−1 − 2e−B�l� �21�

where M, A, and B are real constants. A simple observation
of the above equation shows one important result: the formal
replacement qe→ iqe transforms �20� into the �quantum�
Toda lattice equation. This provides a direct connection be-

tween Toda lattice and cirquiton theory, which will be con-
sidered elsewhere.

VI. CONCLUSIONS

For the quantum electric transmission line with charge
discreteness described by the Hamiltonian Eq. �1�, and equa-
tions of motion �4� and �5�, a one-parameter �f� wave-front
solution was found �Eqs. �12� and �13��. The condition Eq.
�12� on the velocity generates a band-gap structure depen-
dent on the pseudoflux density parameter f �see Fig. 1�,
namely, there exist regions �values of f� for which a solitary
wave front propagates with constant speed. The existence of
the band-gap structure described, very closely related to
transport properties, is the main result of this work.
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