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Hofstadter’s diagrams �the energy spectra plotted against the magnetic flux strength �� of tight-binding
lattice electrons under n�2�n�2 staggered magnetic fields are obtained for various n’s. From n=1–14, these
butterflylike continuous spectrum diagrams exhibit a systematic evolution approaching the fractal Hofstadter
butterfly spectrum. For larger n’s, these butterflies can be roughly divided into two kinds of regions, the
“Hofstadter-type regions” which bear the fractal structures, and the “non-Hofstadter-type regions” which are
composed of almost equally spaced subbands. The properties of electronic states in the non-Hofstadter-type
regions are revealed in detail.
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Over the past two decades, the orbital dynamics of two-
dimensional �2D� electrons coupled to a uniform perpendicu-
lar magnetic field has been of special interest in condensed
matter physics. Even when electrons may be considered as
noninteracting, remarkable features of the one-particle spec-
trum, illustrated by the well-known Hofstadter butterflylike
diagram,1–3 take place in the presence of a square lattice due
to the subtle commensurability between two area scales in
this system: one is imposed by the lattice periodicity and the
other is imposed by the uniform magnetic field.

For an experimental realization of the butterfly with typi-
cal lattice spacings of only a few angstroms, magnetic fields
of about 104 T are necessary, which is far beyond the tech-
nically accessible limit. There exist several ways to circum-
vent this problem by utilizing artificial systems, e.g., lateral
superlattices produced with high-quality shallow hetero-
structures,4 Wigner crystals formed by the crystallization of
an electron gas,5 microwave waveguides based on an anal-
ogy between electronic and photonic systems,6 supercon-
ducting wire networks,7 and optical lattices with confined
cold atoms.8

There are two lines to further theoretical investigations of
Hofstadter’s problem. One line is to consider different 2D
structures, such as triangular,9 honeycomb,10 and kagomé
lattices,11 lateral superlattices,12 superstructures with flat
bands,13 quasiperiodic tilings,14 fractal networks,15,16 and
rhombus tilings.17

Another line is to consider different magnetic fields, such
as fields that are spatially sine or cosine modulated,18–20

staggered-modulated,21,22 and strip modulated.22 The field
modulation generically breaks the symmetries and the fractal
property of the Hofstadter spectrum.20 There is an interesting
but inconsistent result in the relevant works. Gumbs and
co-workers18 argued that the field modulation leads to an
additional crisscross pattern like a spider-web structure on
the Hofstadter butterfly. However, the results by Oh20 indi-
cate that there is no additional spider-web structure in the
energy spectrum.

To the best of our knowledge, all the systems of previous
studies are time-reversal �and space-inversion� symmetry
broken both microscopically and macroscopically. We would
address the following problems: Can the Hofstadter butterfly

be produced in a macroscopic time-reversal invariant sys-
tem? If so, how does it differ from the conventional one?
What is special about the properties of the electronic states?

To answer the above problems, we study tight-binding
electron systems embedded in a square lattice under a series
of n�2�n�2 staggered magnetic fields with various n’s. In
contrast to all the above systems, our system is macroscopi-
cally space-inversion and time-reversal invariant since the
total magnetic flux through any square area with the size
n�2a�n�2a �a is the lattice constant� is zero. Recently,
adopting a superconductor-ferromagnet hybrid system con-
sisting of a superconducting wire network and an array of
mesoscopic ferromagnets, magnetic fields with similar con-
figurations have been realized experimentally.22,23 Therefore
our investigation is not only based on theoretical interest,
and our results should be experimentally realizable with such
artificial systems.

The following U�1� gauge-invariant tight-binding Hamil-
tonian describes the orbital dynamics of the electrons under
an n�2�n�2 staggered magnetic field:

H = − t �
�ij��

�ei�ijcj�
† ci� + H.c.� . �1�

Here �ij is in units of �0 /2� ��0=hc /e is the flux quantum�.
The nearest-neighbor hopping integral of electrons t is modi-
fied as tij = t exp�i�ij� because electron hopping from one site
to its nearest neighbors should suffer a phase shift due to the
Aharonov-Bohm effect. Selection of these phase shifts �ij is
shown in Fig. 1 for n=3 and it ensures that electrons circling
a plaquette once suffer a total phase shift ±� �the Hofstadter
diagram and other physical properties are gauge invariant�.

A magnetic unit cell should have integer flux quanta. In
our problem, the total magnetic flux through any square area
with the size n�2a�n�2a is zero, namely, the corresponding
magnetic unit cell has the size n�2a�n�2a. Therefore the
introduction of a n�2�n�2 staggered magnetic field splits
the original ��=0� tight-binding band into 2n2 subbands
�each one contributes 1 / �2n2� fraction to the total density of
states �DOS��. This is in contrast to the conventional case of
a uniform magnetic field where the magnetic unit cells and
the number of subbands depend on the values of the mag-
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netic flux �. After the Fourier transformation, the Hamil-
tonian of our problem can be written as a 2n2�2n2 matrix in
k space. Then the 2n2 branches of energy spectra are ob-
tained through the numerical diagonalization of the Hamil-
tonian matrix in k space.

Hofstadter diagrams for different n’s from 1 to 14 have
been calculated, as illustrated in Fig. 2. In contrast to the
conventional way of plotting Hofstadter diagrams in litera-
ture, we use gray scale contour plots. Therefore not only the
regions where there are energy spectra have been shown, but
also the magnitudes of the density of states are displayed
with various gray scales. There are many discernible lines in
the diagrams shown in Fig. 2. These lines exhibit the evolu-
tions of the logarithmic van Hove singularities �one singular-
ity per subband� and the finite discontinuities �or the subband
edges� in the DOS versus the magnetic flux �. All these lines
are periodic and continuous functions of � with the period
2�.

For n=1, 2 �Figs. 2�a� and 2�b��, the diagrams do not
show any resemblance to the conventional Hofstadter butter-
fly. For n=3, 4, and 5 �Figs. 2�c�–2�e��, the diagrams look
butterflylike. The lowest and the highest subbands accumu-
late separately near �=� �half-flux quantum per plaquette�,
and form the backbones of two butterflies. For n=7, 10, and
14 �Figs. 2�f�–2�h��, the diagrams can be divided into two
kinds of regions. One kind of region is the allowed band
region in the conventional Hofstadter butterfly, and bears
some fractal structures. We thus name them “Hofstadter-type
regions.” Another kind of region is the gap region in the
conventional Hofstadter butterfly, and is composed of almost
equally spaced subbands. We thus name them “non-
Hofstadter-type regions.” For n=14, the diagram looks quite
similar to the conventional Hofstadter butterfly.

To get a closer look at the non-Hofstadter-type regions,
the DOS for the spectra at �=0.5� are plotted in Fig. 3 for
n=7, 10, and 14. Given n, there are several tadpolelike Lan-
dau subbands in the DOS, which are similar in shape and
size and almost equally spaced. When n increases from 7 to
10 and then 14, these DOSs change as follows: the number
of subbands in the non-Hofstadter-type regions is increased;
the spectral weight in the non-Hofstadter-type regions �non
�=1−�Hof� are transferred to the Hofstadter-type regions. We
can estimate the spectra weight in the non-Hofstadter-type

regions roughly by counting the number of subbands therein:
�non

n=7= 3
49 ��non

n=10= 5
100 ��non

n=14= 7
196.

The appearance of the non-Hofstadter-type regions is
quite similar to the spider-web structure appearing in the
paper by Gumbs et al.18 Later prudent and detailed studies
by Oh20 showed that the spider-web structure was erroneous,
arising from mistakes in choosing the values of modulation
parameters and k vectors. Therefore, the non-Hofstadter-type
regions in our cases could be the convincing superimposed
structures in addition to the Hofstadter fractal ones.

FIG. 1. �Color online� Illustration of the square lattice under an
n�2�n�2 staggered magnetic field with n=3 and the selected
gauge. A plaquette filled with color has a flux �, and a blank one
has a flux −�. Each arrow represents a phase shift � in its direction.

FIG. 2. Gray-scale contour plots for Hofstadter’s diagrams �the
energy spectra against the magnetic flux strength �� of n�2�n�2
staggered magnetic fields. The various gray scales represent the
magnitudes of the DOS of the energy spectra: �a� n=1, �b� n=2, �c�
n=3, �d� n=4, �e� n=5, �f� n=7, �g� n=10, and �h� n=14.

FIG. 3. DOS for �=0.5�. n� �a� 7; �b� 10; �c� 14.
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For n larger than 14, we argue that the spectra will exhibit
fractal properties in more and more details, and the non-
Hofstadter-type regions will disappear in the large-n limit;
namely, in this limit, an n�2�n�2 staggered magnetic field
is equivalent to a uniform one in the energy-spectral aspect.
The arguments are quite reasonable: the n�2�n�2 staggered
magnetic field divides the 2D space into two kinds of
plaquettes, which have the size n�n; electrons moving in
the central regions of the plaquettes �which contribute to the
Hofstadter-type regions in the spectra� do not “feel” the pres-
ence of boundaries between these plaquettes �when only
nearest-neighbor hopping is considered�; when n is in-
creased, the ratio of electrons moving in the boundary re-
gions �which contribute to the non-Hofstadter-type regions in
the spectra� versus the total electrons will decrease substan-
tially.

Now we investigate the properties of the electronic states
in the non-Hofstadter-type regions. In the following, we con-
centrate on the case n=14, �=� /2 and study the electronic
states with a fixed wave vector �kx ,ky�= �0,0� and various
energies. The ith site component of a real-space wave func-

tion 	 is denoted as 
i. In Figs. 4�a�–4�l�, we plot the spatial
variation of 	
i	 for 12 sequential electronic states �from the
93rd state 	�93� with the energy E�93�=−2.32t to the 104th
state 	�104� with E�104�=−1.41t� at 14�14 sites �which is
verified as the spatial period of 	
i	�.

We can see that these 12 states are generically localized at
either square or rectangular edges. �In contrast, a state in the
Hofstadter-type regions, e.g., the 20th state in Fig. 4�m� with
E�20�=−2.81t, is extended over almost the whole region.� We
divide these 12 states into three groups and each group has
a 15�15 boundary state, a 13�13 one, a 13�15 one, and
a 15�13 one in sequence: 
	�93� ,	�94� ,	�95� ,	�96��,

	�97� ,	�98� ,	�99� ,	�100��, 
	�101� ,	�102� ,	�103� ,	�104��. We
note that in each group two square boundary states have very
close energies �e.g., E�97�=−2.02t and E�98�=−1.99t�, and two
rectangular boundary states have the same energies: �e.g.,
E�99�=E�100�=−1.76t�.

In order to inquire into the problem of what kind of quan-
tization is responsible for the equal energy spacing in the
non-Hofstadter-type regions, we plot in Fig. 5 the spatial
variation of the argument of 
i, i.e., arg 
i
=arctan�Im 
i /Re 
i�, along the left edge for each of the
above 12 boundary states. We can see that, for each kind of
boundary state in the three groups, arg 
i exhibits periodic
fluctuation. We focus on the first row of Fig. 5 which corre-
sponds to the first state of each group �the 15�15 boundary
state� with almost equal energy spacing �E�93�=−2.32t, E�97�

=−2.02t, and E�101�=−1.69t�. It is clear that the periods of
arg 
i for the three 15�15 boundary states are 4, 3, and 2
and hence exhibit quantized behavior. And for the other three
kinds of boundary states, arg 
i also show similar quantized
behavior.

In summary, we have obtained Hofstadter diagrams of a
macroscopical space-inversion and time-reversal invariant
system, i.e., a system of tight-binding lattice electrons under
n�2�n�2 staggered magnetic fields. From n=1 to 14, these
butterflylike continuous spectrum diagrams exhibit a system-
atic evolution approaching the fractal Hofstadter butterfly
spectrum. For larger n’s, these butterflies can be divided into

FIG. 4. Spatial variation of 	
i	 at 14�14 sites for n=14, �
=� /2, and �kx ,ky�= �0,0�. The cases �a�–�l� correspond to 12 se-
quential electronic states �from the 93rd state with the energy
E�93�=−2.32t to the 104th state with E�104�=−1.41t� in the non-
Hofstadter-type regions, while the case �m� corresponds to an elec-
tronic state �the 20th state with E�20�=−2.81t� in the Hofstadter-type
regions.

FIG. 5. �Color online� Spatial variation of arg 
i along the left
edge of each boundary state in Figs. 4�a�–4�l�.
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two kinds of regions: Hofstadter-type regions which bear the
fractal structures, and non-Hofstadter-type regions which ap-
pear in gap regions of the conventional Hofstadter butterfly
and are composed of almost equally spaced subbands. When
n is increased, the spectra weight of the non-Hofstadter-type
regions is reduced and transferred to the Hofstadter-type re-
gions gradually. The electronic states in the non-Hofstadter-

type regions are generically localized at either square or rect-
angular edges, and the arguments of wave-function
components at boundary sites exhibit quantized behavior
which is responsible for the equal energy spacing.

This work is supported by the Chinese National Natural
Science Foundation.

1 D. R. Hofstadter, Phys. Rev. B 14, 2239 �1976�.
2 G. H. Wannier, Phys. Status Solidi B 88, 757 �1978�.
3 G. H. Wannier, G. M. Obermair, and R. Ray, Phys. Status Solidi

B 93, 337 �1979�.
4 T. Schlösser et al., Europhys. Lett. 33, 683 �1996�; C. Albrecht et

al., Phys. Rev. Lett. 86, 147 �2001�; M. C. Geisler et al., ibid.
92, 256801 �2004�.

5 I. N. Harris et al., Europhys. Lett. 29, 333 �1995�.
6 U. Kuhl and H. J. Stöckmann, Phys. Rev. Lett. 80, 3232 �1998�.
7 B. Pannetier et al., J. Phys. �Paris�, Lett. 44, L853 �1983�; B.

Pannetier, J. Chaussy, R. Rammal, and J. C. Villegier, Phys.
Rev. Lett. 53, 1845 �1984�; B. Pannetier et al., Surf. Sci. 229,
331 �1990�; C. C. Abilio et al., Phys. Rev. Lett. 83, 5102 �1999�.

8 D. Jaksch and P. Zoller, New J. Phys. 5, 56 �2003�; E. J. Mueller,
Phys. Rev. A 70, 041603�R� �2004�; A. S. Sørensen, E. Demler,
and M. D. Lukin, Phys. Rev. Lett. 94, 086803 �2005�; K. Os-
terloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, ibid.
95, 010403 �2005�.

9 F. H. Claro and G. H. Wannier, Phys. Rev. B 19, 6068 �1979�.
10 R. Rammal, J. Phys. �Paris� 46, 1345 �1985�.
11 Y. Xiao, V. Pelletier, P. M. Chaikin, and D. A. Huse, Phys. Rev. B

67, 104505 �2003�.

12 M. A. Andrade Neto and P. A. Schulz, Phys. Rev. B 52, 14093
�1995�.

13 H. Aoki, M. Ando, and H. Matsumura, Phys. Rev. B 54, R17296
�1996�.

14 A. Behrooz et al., Phys. Rev. Lett. 57, 368 �1986�; K. Springer
and D. van Harlingen, Phys. Rev. B 36, 7273 �1987�; H.
Schwabe, G. Kasner, and H. Böttger, ibid. 56, 8026 �1997�.

15 B. Douçot et al., Phys. Rev. Lett. 57, 1235 �1986�; J. M. Gordon
et al., ibid. 56, 2280 �1986�.

16 Q. Niu and F. Nori, Phys. Rev. B 39, 2134 �1989�.
17 J. Vidal, R. Mosseri, and B. Douçot, Phys. Rev. Lett. 81, 5888

�1998�.
18 G. Gumbs, D. Miessein, and D. Huang, Phys. Rev. B 52, 14755

�1995�.
19 G. Y. Oh and M. H. Lee, Phys. Rev. B 53, 1225 �1996�.
20 G. Y. Oh, Phys. Rev. B 60, 1939 �1999�.
21 Q. W. Shi and K. Y. Szeto, Phys. Rev. B 56, 9251 �1997�.
22 Y. Iye, E. Kuramochi, M. Hara, A. Endo, and S. Katsumoto, Phys.

Rev. B 70, 144524 �2004�.
23 S. Ito, M. Ando, S. Katsumoto, and Y. Iye, J. Phys. Soc. Jpn. 68,

3158 �1999�; M. Ando, S. Ito, S. Katsumoto, and Y. Iye, ibid.
68, 3462 �1999�.

BRIEF REPORTS PHYSICAL REVIEW B 74, 193301 �2006�

193301-4


