
Strong coupling theory of the spinless charges on triangular lattices: Possible formation
of a gapless charge-ordered liquid

Chisa Hotta and Nobuo Furukawa
Aoyama-Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan

�Received 9 July 2006; published 22 November 2006�

We propose an existence of charge-ordered liquid state in the spinless fermion system on a triangular lattice
under strong intersite Coulomb interactions, V. The classical ground state in the strong coupling limit is
disordered due to geometrical frustration. The introduction of a quantum hopping term lifts the degeneracy and
drives the system to a partially ordered phase, which we call a “pinball liquid.” A possibly long-range-ordered
Wigner-crystal solid coexists with a liquid component which is moving around them like a pinball. This liquid
is dominant over a wide range of filling and even away from the regular triangle. Relevance to the organic
�-ET2X is discussed.
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Geometrical frustration induces exotic states in the
strongly correlated systems. They are explored experimen-
tally in many materials from transition metals such as
NiGa2S4,1 NaxCoO2,2 and YFe2O4 �Ref. 3� to organic solids,
�-ET2Cu2�CN�3.4 Theoretical studies on frustrated spin sys-
tems are conventionally focused on a search for “spin
liquids”5 without any long-range order. However, after the
destruction of magnetic order, another nonmagnetic type of
order often appears instead. A typical example is a dimer
formation6 and recently, a new gapless nematic order7,8 is
found on a frustrated square lattice as well as a supersolid on
a triangular lattice.9

Charge degrees of freedom with frustration has also been
discussed in the past,10 and one of the latest topics is a melt-
ing of charge order �CO� into the metallic state on the trian-
gular lattice11 in analogy with the spin liquid. Although this
seems to support an “orderless-charge-liquid” picture, there
remains a possibility of another type of ordering. In this pa-
per, we propose a new type of partially ordered charge liquid
in such a triangular lattice system, which turns out to have
very similar character with the supersolid in a hard-core bo-
son system.9 We find a spontaneous phase separation of
charge degrees of freedom into a “statically ordered solid”
and “liquid” components, which is possibly a gapless spatial
ordering. The results are to be compared with an inhomoge-
neous metallic state found in �-ET2CsZn�SCN�4.12

One of the typical cases where CO resides is the quarter-
filled electronic systems under strong electronic
interactions.13 It is conventionally described by the extended
Hubbard model �EHM� including the on-site and intersite
Coulomb interactions, U and V, respectively,14 besides the
transfer integrals, t. Since the spin degrees of freedom plays
only a secondary role when t�V�U, i.e., J� t2 /U� t, treat-
ing the spinless fermions at half filling, �=0.5, is enough to
understand the CO phenomena realized in the temperature
range of J�T�TCO, where TCO denotes the onset tempera-
ture of CO. We introduce a Hamiltonian of such a t-V model
as

Ht-V = �
�i,j�

�− tijci
†cj + H.c. + Vijninj� . �1�

Here, cj denotes the annihilation operator of fermions and
nj�=cj

†cj� is its number operator. The index �ij� are the

nearest-neighbor �NN� pair sites. We deal with the triangular
lattice with anisotropy in one of three directions. The geom-
etry is reflected in t , t� and V ,V� as shown in Fig. 1.

The classical limit, t= t�=0, of this model has a macro-
scopically degenerate and disordered ground state at V=V�,
which is classified into two groups.15 One group has the
staggered alignment of charges in one direction but with still
disordered interstacking patterns, as shown in Fig. 1. The
other states are basically made up of three sublattices as
shown in Fig. 2�a�. As long as the two sublattices �A and B�
are filled and empty �denoted as 1 and 0�, the third sublattice
�C� can have an arbitrary configuration. The binding energy
of its hexagon unit in Fig. 2�b� is always −3V.16 There are
many irregular contingent freedoms included in this group
such as the one in Fig. 2�c�. Since the binding energy is
unchanged over the filling, 1 /3���2/3, the system is gap-
less at �=0.5.16 This is in sharp contrast to the striped states
with the excitation gap of 2V.

The situation changes under the anisotropy of V�V�. At
V�V�, the vertical striped CO in Fig. 1�a� becomes a unique
ground state. As for V�V�, we have the staggered alignment
along the anisotropic direction still with interstacking disor-
der under a semimacroscopic �2Nx-fold� degeneracy. The
classical binding energy EC of the anisotropic triangle at the
fixed value of V+V��Vsum is given in Fig. 3�a�. The energy

FIG. 1. Schematic description of the typical CO on an aniso-
tropic triangular lattice. The staggered alignment of charges in one
particular direction �CO chain� with either �0101�- or �1010�-type of
configuration is present. Representative regular stacking of CO
chains are �a� vertical and �b� diagonal-striped states. One example
of the random alignment is given in �c�.
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line follows EC	VN /2 and −VN /2 at V�V� and V�V�,
respectively, and becomes exactly equal to the three-
sublattice one at V=V�.

In the highly frustrated disordered region an introduction
of small tij is expected to lift the degeneracy. Let us start
from the regular triangle at V=V�
 t= t�. The first term of
Eq. �1� is considered as perturbations. In the striped states,
the first-order correction is absent and the energy changes to
��V−4t2 /V�N /2. Since this effect is small, the stripes are
quite robust.

In contrast, the three sublattice states are modified at the
first-order level. For demonstration, we first deal with the
simplest �=1/3 case. The charges align equally spaced like a
Wigner crystal, e.g., in the A sublattice. Next we add a single
charge to one of the B or C sites, and then it can hop by t to
its neighboring B or C sites as in Fig. 4�a� without the loss of
binding energy. Resultantly, the charge can move around
avoiding the A site just like a pinball, so we call this “a
pinball liquid.” The same situation holds at �=2/3 where we

regard the “pins” as a hole-rich site after the particle-hole
transformation. In the dilute limit, the extra charges thus
form a honeycomb band.17 Such simple understanding is,
however, nontrivial when the charge density becomes close
to half filling, ��0.5, where about one-fourth of the B and C
sites are filled. The “balls” can at least move from one site to
another following the rule shown in Fig. 4�c�. Still, there are
several unsettled issues. The first problem is that a significant
number of states �including the contingents in Fig. 2�c�	 will
prevail, which might mix by t and destroy the pins. Also, the
instability of the Fermi liquid might replace the pinball liquid
with another ordering. Another thing is that the free pinball
picture no longer holds since there are interactions between
balls themselves. Finally, the validity of the above discussion
is not clear when the anisotropy is introduced.

To clarify these points we proceed with the numerical
calculations in Eq. �1� at �=0.5. We execute the exact diago-
nalization at T=0 on the N=4�6=24 cluster. Then both the
striped type of twofold states and the three-sublattice states
are compatible. Size dependence is confirmed to be small.18

Figure 5 shows the structural factor of the charge-charge
correlation at V=V�=10 and t= t�=1 under the periodic
boundary condition. It is defined as Ck= 1

N�lm��nl−1/2��nm

−1/2��ei�l−m�k. The three-sublattice type of peak structures at
k� = �� , ±2� /3� , �0, ±4� /3� are observed, which grow with
increasing V, while those of the twofold stripes are
suppressed.

The pinball liquid is sustained even under the anisotropy

FIG. 2. �a� Three-sublattice structure: when two sublattices �A
and B� are filled �1� and empty �0�, respectively, the third one �C�
could individually choose either 0 or 1. �b� Hexagonal unit of �a�:
The center site �C� is free, surrounded by the staggard edges. �c�
Representative contingents: When the three nearest C sites hap-
pened to have the same configuration, the center site �A or B in the
big circle� can switch its number without the energy loss.

FIG. 3. �Color online� �a� Classical energy EC at fixed V+V�
=Vsum. The vertical and disordered stripes and three-sublattice
states have VN /2 ,V�N /2, and �2V+V��N /6, respectively. �b�
Ground-state energy EQ of Eq. �1� at N=24 with Vsum=20 and t
= t�=1, classified into �I� disordered �horizontal� stripe, �II� pinball
liquid, and �III� vertical stripe, where EQ behaves almost linear to
respective EC’s. �c� Energy correction, E1/N�II� and E2/N�I , III�.
Solid lines are the results of fitting. A t-linear term in a broken line
is present only at �I�.

FIG. 4. �a� Representative bases of the three-sublattice states at
��1/3 that mix in the first order of t. �b� Schematic illustration of
a pinball model. �c� Representative bases away from �=1/3, which
are allowed to mix by t. The ball can move from the ith to the jth
site when the extra two neighboring sites of the ith site with big
circles together have the same number of balls with those of the jth
site.

FIG. 5. �Color online� �a� Charge structural factor Ck at V=V�
=10, t= t�=1. �b� V�=V�� dependence of the peak at k�

= �0, ±4� /3�, �� ,2� /3� representing �II�. Those of the stripes at �I�
�� ,��, � �

2 ,��, and �III� �� ,0� have only small amplitudes compa-
rable to those in other k� points.
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of V�V� or t� t�. The binding energy per “ball” is modified
from −3V to −2V−V�. If only the first-order correction of
energy by t, E1, is finite the three-sublattice state should
overcome the others as in Fig. 3�a� and form a new phase at
V�V�. Figure 3�b� shows the ground-state energy of Eq. �1�
together with EC at fixed V+V�=20. The diagram is sepa-
rated into three regions; the energy line behaves parallel to
different classical states: �I� disordered stripe, �II� three sub-
lattice, and �III� vertical stripe. The pinball liquid realized in
�II� extends at V�V� over a width of order t. The estimated
energy gain per site, �EQ−EC� /N, is given in Fig. 3�c�. We
find larger gain, E1	 t, in �II� than the second-order gain
�E2	 t2� of the �I� and �III� regions. In this way, the existence
of a finite pinball-liquid phase is guaranteed at V�V�.

To see the details, we calculate the three-body correlation
function, P3�j���n1�1−n2�nj�, which reveals the population
of the jth site when the first and the second site are present
and absent, respectively. The ones along the y direction for
several choices of V=V� are shown in Fig. 6�a�. A clear
threefold structure of A-B-C type with different density,
P3�A�+ P3�B��2P3�C�, suggests the presence of particle-
hole symmetry. Here, P3�A� denotes the correlation when the
jth site belongs to the A sublattice. This characteristic three-
body correlation originates from the geometrical frustration
and essentially differs from the two-body ones in the conven-
tional CO states. The amplitude of the “pins” are squeezed to
�0.8, but grows with V to form a firm structure at least over
considerable distance. Whether or not this correlation has a
long-range order is out of our scheme. Just for reference we
remind one of a supersolid long-range order of the hard-core
boson.9 This boson system has very similar P3�j� with that of
fermions as shown in Fig. 6�b�. Hence the long-range order
of the pinball liquid is speculated as well.

It is natural to anticipate the gapless situation at t�0 from
its classical limit. Since the direct estimation of a gap in
small clusters is unreliable, we instead focus on the coher-
ence length of each characteristic state. We twist the bound-
ary condition as ei, where =0 and � correspond to the
periodic and antiperiodic boundary conditions, respectively.
The ground-state energy E�� should have considerable 
dependence only when the coherence lasts longer than the
system length. Figure 7�a� shows the variation of E��

−E�0� as a function of  when twisting the boundary in the
y direction with V+V� fixed. In the regions �I� and �III�, E��
remains almost constant, reflecting the insulating character.
In contrast, the ones in �II� show large  dependence, indi-
cating that pinball wave function has a delocalized character
at least over dozens of sites. Figure 7�b� shows the amplitude
of the energy variation, E���−E�0�, when twisting  in the x
and y directions. One actually finds a significant difference
that separates �II� from the other two states.

In summary, we proposed the existence of a pinball-liquid
state on a triangular lattice in the spinless fermion systems
with NN Coulomb interactions over a wide range of filling,
1 /3���2/3. It is an ordered liquid formed out of disorder
characterized by a three-body correlation. Thus, although the
state is metallic, it is driven by the local correlation of elec-
trons at V
 t and is not related to the details of the Fermi
surface, namely, the geometrical structure of t. This non-
trivial fact gives the reason why the statistically different
systems can share the analogous situation.9 It is also insen-
sitive to the anisotropy of V. Further, it is expected to be
sustained when the degrees of freedom other than charges
such as spins and orbitals are introduced, e.g., EHM at quar-
ter filling.

Recently there have been other theoretical studies on the
anisotropic triangular lattice that argue the existence of the
threefold states.19,20 Unfortunately, their treatment was based
on the mean-field wave functions, which somewhat takes
account of the instability of the Fermi liquid towards the
two-body correlations. Therefore, they could not capture the
essential highly correlated features of the pinball liquid. The
present theory gives the explicit and clear-cut answers to the
nature of this system alluded to preliminarily in such previ-
ous studies.11,19,20

Related experimental studies are explored in �-ET2X. This
family is well described by the 1/4-filled EHM on a trian-
gular lattice21 with V /V��0.85–0.9.22 The conventional in-
sulating striped CO was considered as relevant for a long
time, but recently a coexistence of the short-range diffuse
spot of twofold and threefold periodicity is observed,23

which now requires theoretical support. From our strong
coupling viewpoint, both twofold striped and pinball-liquid
states are compatible �though not coexisting� without having

FIG. 6. �Color online� Three-body charge-correlation function
P3�j� along the second chain �i=7–12� at t= t�=1 for several
choices of V=V�. Here, i denotes the location of the site indicated
in the inset. Those of the �a� spinless fermion and �b� hard-core
boson systems are shown.

FIG. 7. �Color online� �a� Variation of the ground-state energy
E��−E�0� as a function of =0−�, under the twisted boundary
condition in the y direction for several choices of V with V+V�
=20 fixed. �b� The amplitude of variation E���−E�0� as a function
of V along Vsum=20, when the boundary is twisted in the x and y
directions.
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special assumptions such as long-range interactions or the
particular shape of the Fermi surface. If the systems were in
the critical region of these two competing characteristic
states, some additional effects such as impurity, temperature
�entropy effect�, or electron-phonon interaction might induce
a coexistence or domain structure that cope with these
anomalous experimental findings.12 Theoretical development
in the search for further unusual aspects particular to the
fermion system remains a future problem.

In conclusion, we found a charge-ordered liquid under
geometrical frustration, which is possibly relevant at a tem-
perature range of J�T�V. In the strong-coupling limit, the
frustration among electronic interactions V drives the system
to disorder, which consists of macroscopically degenerate
classical states. Then, the introduction of small but finite
t ��V� lifts the degeneracy and transforms the system to a

strongly correlated quantum liquid with a three-sublattice
correlation A-B-C whose electronic density is nA+nB�2nC.
About half of the charges become a Wigner-crystal-solid
while the rest remain a liquid. An originally unique charge
degrees of freedom spontaneously separates into the solid
and liquid-like part and coexists in the same system. Such
correlation-induced order out of disorder distinctively differs
from the usual charge ordering or charge-density waves
formed from the instability of the Fermi liquid. This state
remains valid regardless of electronic filling, the shape of the
Fermi surface, and anisotropy of V. Based on the simple
fundamental model, it will surely become a testbed for the
study of an extremely correlated metal.
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