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The field dependence of the vortex core size ��B� is incorporated in the London model, in order to describe
reversible magnetization M�B ,T� for a number of materials with large Ginzburg-Landau parameter �. The
dependence ��B� is directly related to deviations in M�ln B� from linear behavior prescribed by the standard
London model. A simple method to extract ��B� from the magnetization data is proposed. For most materials
examined, ��B� so obtained decreases with increasing field and is in qualitative agreement both with behavior
extracted from �SR and small-angle neutron-scattering data and with that predicted theoretically.
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I. INTRODUCTION

Despite its simplicity, the London approach is a powerful
tool in describing magnetic properties of the mixed state. In
fact, short of the full-blown microscopic theory, it is the only
method available for low temperatures. The approach is
based on the London equation,

h − �2�2h = �0�
n

��r − rn� , �1�

where h�r� is the magnetic field, � is the penetration depth �a
temperature-dependent constant in uniform samples�, �0 is
the flux quantum, and rn are vortex positions. For simplicity,
the equation is written for isotropic materials. This approach
fails at distances of the order of the coherence length �; still,
in materials with �=� /��1, there is a broad domain of in-
termediate fields �0 /�2	H	�0 /�2 where the complexity of
the vortex core contributions to the total energy can be dis-
regarded and the London approach suffices for the descrip-
tion of macroscopic magnetic properties.

As far as the equilibrium properties of the flux-line lattice
are concerned, the pivotal point is the expression for the free
energy

F̃ = F −
B2

8

=

�0B

32
2�2 ln
e�Hc2

B
. �2�

The right-hand side here is the interaction energy of vortices
forming a periodic lattice; B is the magnetic induction. This
expression is obtained by transforming the sum of pairwise
interactions of vortices to a sum over the reciprocal lattice,
see, e.g., Ref. 1. The sum �or the integral over the reciprocal
plane k� is logarithmically divergent so that a cutoff at k
�1/��1/�c is needed ��c is the size of the vortex core�.
This yields ln��0 /2
�2B� at the right-hand side of Eq. �2�.

The parameter � of the order unity is commonly introduced
to account for uncertainty of the cutoff �along with the un-
certainty in the lower limit of the integral of the order of
inverse intervortex spacing ��B /�0�; e=2.718. . . appears in
Eq. �2� for the convenience of not having it in the expression
for the magnetization. Again, the energy in the form of Eq.
�2� holds in intermediate fields Hc1	H	Hc2, the domain
existing only in materials with large Ginzburg-Landau pa-
rameter � �Hc1 and Hc2 are the lower and upper critical
fields�. Hence, although the length � �or the core size �c�
does not appear in the London equation �1�, it enters the
energy expression �2� through the cutoff and therefore af-
fects, presumably weakly, macroscopic quantities such as the
magnetization and other properties of the mixed state.

Significant effort has recently been put in studies of the
vortex core size �c; see the review by Sonier and references
therein.2 Notably, whatever definition of �c is adopted, the
low temperature �c �extracted from the �SR data, see Refs. 2
and 3� decreases with increasing applied magnetic field in a
number of materials such as NbSe2, V3Si, LuNi2B2C,
YBa2Cu3O7−�, and CeRu2; their physical characteristics have
little to do with one other, except that all of them have a large
GL parameter �=� /� and exhibit large regions of reversible
magnetic behavior. One can add to this list a heavy fermion
compound CeCoIn5, for which the interpretation of small-
angle neutron-scattering data �SANS� requires a similar be-
havior of the coherence length.4 The dependencies �c�B� for
all tested materials are qualitatively similar: when the field
increases toward Hc2, �c�B� decreases roughly as 1/�B. In
other words, in large fields �c is roughly proportional to the
intervortex spacing.

A few qualitative reasons for the core shrinking with in-
creasing field have been discussed in literature; see the
review.2 Perhaps the simplest defines the core boundary as a
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position where the divergent London current c�0 /8
2�2r of
an isolated vortex reaches the depairing value, i.e., as r��.
In the mixed state, neighboring vortices suppress the circu-
lating current by contributing currents of the opposite direc-
tion. Hence, the depairing value is reached at a shorter dis-
tance from the vortex center, and consequently, �c should
decrease with increasing field.

The vortex core size �c is of the order of the coherence
length � and, in fact, it is often identified with ��T�. Strictly
speaking, the latter is defined only at the upper critical field:
Hc2�T�=�0 /2
�2. Nevertheless, the length � is used to de-
scribe the mixed state at fields not necessarily close to Hc2.
The question of possible field dependence of � has been con-
sidered by one of us for the isotropic case.5 It was shown that
in the dirty limit one can use �= ��0 /2
Hc2�1/2 at any field
within the mixed phase; the same is true near the critical
temperature Tc for any scattering strength. However, in gen-
eral, when the field is reduced below Hc2, the value of ��B�
increases, an effect that is profound in clean materials at low
temperatures. Calculations of Ref. 6 are in accord with the
�SR results cited above. In the following, we denote as �c2
the value of ��B� at B=Hc2 to stress that in general ��B�
��c2 for B
Hc2.

Another common theoretical definition of �c is based on
the slope of the order parameter ��r� at the vortex axis r
=0, normalized either to its value ���� far from the single
vortex or to the value of ��a /2� half way to the nearest
neighbor in the mixed state: 1 /�c=���0� /��a /2�. Recent
microscopic calculations of this quantity by Miranović et al.
showed a variety of field-dependent behaviors of �c at low
temperatures depending on the scattering strength.7 In par-
ticular, this work suggests that �c�B� may have a minimum
which, however, has not been seen in �SR experiments.
There are many different ways to define �c customized for
different experimental or theoretical needs �see, e.g., the dis-
cussion in Ref. 6�. For the purpose of this paper, these dif-
ferences are irrelevant and we use the terms �c�T ,B� and
��T ,B� as the same.

In the following we provide experimental data for the
field dependence of the reversible magnetization for a single
crystal YNi2B2C in a broad temperature region to demon-
strate the known fact: the data cannot be described by the
standard London model. We then derive a closed-form ex-
pression for the cutoff ��B� needed to represent correctly the
data M�B� with the help of the London model. We show that
��B� so chosen is qualitatively consistent with the field de-
pendence of � recorded by �SR and discussed theoretically.
Finally, we demonstrate that the new model generates a con-
sistent description of the magnetization data for a number of
unrelated materials with large �. The goal of this paper is to
demonstrate that ��B� can be in principle extracted from the
magnetization data, a less demanding experimental proce-
dure as compared to �SR or SANS. Within our approach, the
London penetration depth is field independent, whereas the
field dependence of � alone suffices to explain the data.

II. EXPERIMENTAL ASPECTS

A. Sample preparation

For experimental studies, single-crystal samples of the
highest available quality were selected, in order to eliminate

extrinsic impurity effects as fully as possible, and also to
minimize magnetic irreversibility. To ascertain in a con-
trolled manner the effects of electronic scattering, specific
doping studies were conducted, as described below.

Single crystals of YNi2B2C, LuNi2B2C, and
Lu�Ni1−xCox�2B2C were grown out of Ni2B or �Ni1−xCox�2B
flux in a manner similar to the growth of other borocarbide
crystals. As discussed in Ref. 8, Co doping serves as a con-
venient tool to move from a clean to a dirty limit. Powder
x-ray-diffraction spectra taken on Y1221, Lu1221, and
Lu�Ni-Co�1221 indicate that there were no detectable second
phases present. Residual resistance ratios �RRRs� of pure
Lu1221 and Y1221 were close to or higher than RRR=25.

NbSe2 crystals were grown via iodine vapor transport
technique �Ref. 9� and had Tc�7.1 K and the residual resis-
tivity ratio RRR�40. MgB2 single crystals of submillimeter
sizes were grown by a high-pressure technique as described
in Ref. 10. Single-crystal x-ray-diffraction measurements on
MgB2 crystals grown in similar conditions reveal no second
phases present.

A single crystal of V3Si was grown using a Bridgeman
method, in which a floating zone was created by rf induction
heating.19 The samples for investigation were cut by a wire
saw and oriented using Laue method. Samples had a typical
dimension of 2�2�4 mm. The crystal is a “clean” super-
conductor, as evidenced by weak electron scattering with
RRR�30 and the fact that the mixed-state magnetization
exhibits very little irreversibility �weak pinning of vortices�
under the conditions of the study. Furthermore, small-angle
neutron-diffraction studies on a “sister” crystal cut from the
same V3Si boule revealed the presence of sharp, very well-
defined flux-line lattice reflections.11

B. Magnetic measurements

The magnetization measurements were performed by us-
ing several Quantum Design MPMS systems. In a typical
experiment, a full M�H� loop was recorded and only its re-
versible part, above the irreversibility field, Hirr, was used for
the analysis. Hirr was determined as a field where ascending
and descending branches coincided or were sufficiently close
�a weak hysteresis�.

The procedure is demonstrated in Fig. 1. The main frame
shows raw data with a clear range of reversible behavior
above Hirr indicated by an arrow. The left inset shows the
expanded portion of the raw data in the vicinity of Hc2. A
small paramagnetic background �from the sample, the
sample holder and perhaps residual flux on the crystal sur-
face� is clearly seen as a linear-in-H contribution. After this
contribution is subtracted, we obtain the superconducting
diamagnetic signal shown in the right inset. The Hc2 is indi-
cated by an arrow. Superconducting transition temperature
was measured in a small �H=10 Oe� applied field. In large
fields of our interest, demagnetization effects are weak; in
the following we do not distinguish between the applied field
H and the induction B. As explained below, we do not need
the sample volume in our analysis so that we can use on
equal footing field dependencies of the magnetic moment �in
emu� or of the magnetization �in G�; we use the notation M
for both quantities.
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III. MODIFIED LONDON MODEL

The standard London energy �2� gives an equilibrium
magnetization that is linear in ln B in intermediate fields,

M = −
�F̃

�B
= −

�0

32
2�2 ln
�Hc2

B
. �3�

Hence, the standard London model requires a plot of M ver-
sus ln B to be a straight line.

A. YNi2B2C

Figure 2 shows reversible magnetization for a single-
crystal YNi2B2C in fields parallel to the c axis at 2, 5, 9, and
12 K. Clearly, the deviations from the London prediction in-
crease with decreasing T; at low temperatures M�ln B� is far
from being linear.

We note that in many materials with ��1, it is difficult to
distinguish between a narrow Abrikosov domain near Hc2

with M � �Hc2−B� and a broad London domain where the
magnetization depends on the field in a slow, nearly logarith-
mic manner. For this reason the Abrikosov part of M�B� is
sometimes discarded altogether; this amounts to setting �
=1 in Eq. �3�.12 Of course, this cannot be done for materials
with ��1. We will follow this simplification in our analysis
and indicate the cases when this cannot be done.

To formally account for deviations of the data from the
behavior prescribed by the standard London formula, we add
to expression �3� two additional terms: const/B �to correct
for the low-field behavior� and const B �to account for the
high-field curvature�. These are, perhaps, the simplest pos-
sible modifications one can think about.13 A restriction upon
the constants is provided by a requirement that M�Hc2�=0.
Hence

M = − M0�ln
�Hc2

B
+ �

Hc2

B
− �ln � + ��

B

Hc2
� , �4�

where M0=�0 /32
2�2. Certainly, the form �4� is not the
only possibility for representing the available data. Other
forms were suggested in the literature14–17 based on different
theories and assumptions.18 We stress that the expression �4�
is just an empirical formula to represent the data. We choose
it because of its simplicity, and because—as is demonstrated
below—it is sufficiently flexible to represent the magnetiza-
tion data in a host of materials with very different physical
properties.

The solid lines in Fig. 2 are the data fits to Eq. �4�. The
value of the upper critical field for each T is read directly
from the raw data as explained in Fig. 1. We are left with
three fit parameters M0, �, and �. Two of these are shown in
the table of Fig. 2. The inset in Fig. 3 shows that the T
dependence of M0�1/�2 is qualitatively consistent with the
behavior of the superfluid density ��−2. The quality of the
fits is good; hence, the empirical form �4� can be used to
represent the data reasonably accurately.

Examining possible modifications of the London model to
account for the deviations of M�ln B� of Fig. 2 from linear
behavior, one should bear in mind the difference between the
roles of two fundamental lengths, � and �, within the London

FIG. 1. �Color online� An example of M�H� for YNi2B2C at T
=9 K. The main plot shows both up- and down-field scans and the
irreversibility field. The left inset illustrates how the normal-state
paramagnetic contribution is subtracted with the result shown in the
right inset.

FIG. 2. �Color online� The magnetization M�ln B� for YNi2B2C
at T=2, 5, 9, and 12 K. The upper critical fields Hc2 are the posi-
tions of kinks in M�ln B� not shown in the figure. The solid curves
are obtained by fitting the data to Eq. �4� with the fitting parameters
M0 �shown in the inset of Fig. 3�, �, and �.

FIG. 3. �Color online� ��B� extracted from the data of Fig. 2 for
YNi2B2C with the help of Eq. �8�. The inset shows M0�T� extracted
from the fits of Fig. 2.

EFFECT OF FIELD-DEPENDENT CORE SIZE ON… PHYSICAL REVIEW B 74, 184521 �2006�

184521-3



theory. The length � enters Eq. �1�, which is the basis of the
whole approach. On the other hand, the length � is absent in
the London equation and enters the energy expression as an
uncertain cutoff used to mend the inherent shortcoming of
the London model. Therefore, considering possible modifi-
cations of this model, one still has some freedom—however
limited—in working with �, unlike the case of �.

Comparing the data of Fig. 2 with predictions of the stan-
dard London model one wonders why the model, which de-
scribes correctly the field of vortices away from their cores,
fails badly at low temperatures. From the point of view of a
consistent London description, the only suspicious point in
deriving the free energy �2� and the corresponding magneti-
zation �3� is the cutoff employed, which generates the term
ln�Hc2 /B�.

B. London model modified to accommodate �„B…

Hence, we write the free energy in the form

F̃ =
�0B

32
2�2 ln
e�H̃�B�

B
, H̃ =

�0

2
�2�B�
, �5�

where ��B� is the field-dependent cutoff �the core size�.
Clearly, ��Hc2� is the standard coherence length associated
with Hc2, so that H̃�Hc2�=Hc2. Then, evaluating M =−�F̃ /
�B, we obtain

M = −
�0

32
2�2	ln
�H̃

B
+

B

H̃

dH̃

dB
 . �6�

The idea of the following manipulation is to find a field H̃
that generates the form �4�, or in other words, that represents
the experimental data. After equating Eqs. �6� and �4�, one

can solve a linear differential equation for H̃�B� with the

boundary condition H̃�Hc2�=Hc2. The result in terms of h̃

= H̃ /Hc2 and b=B /Hc2 reads

ln h̃ =
�

b
ln b +

�ln � + ���1 − b2�
2b

. �7�

This corresponds to the normalized cutoff distance �the core
radius�

�*�B� =
��B�
�c2

= b−�/2b exp
�ln � + ���b2 − 1�

4b
. �8�

It is readily shown that the slope of �*�b� at Hc2 is deter-
mined by the parameter �,

�d�*

db
�

b=1
=

1

2
ln � . �9�

Hence, when the field decreases from Hc2, ��B� decreases for
��1 and increases for �
1.

Using Eq. �8�, we can calculate the normalized cutoff
�*�b� responsible for deviations of M�B ,T� from the standard
London behavior for YNi2B2C shown in Fig. 2 since we
have � and � representing these data sets �note that M0 does
not enter Eq. �8�
. The curves �*�b� for T=2, 5, 9, and 12 K
calculated with Eq. �8� are shown in Fig. 3.

FIG. 4. �Color online� �a� M�B� for LuNi2B2C for T=7, 10, and
12 K. �b� ��B� corresponding to the graphs of the upper panel. FIG. 5. �Color online� �a� M�B� for Lu�Ni1−xCox�2B2C with x

=0, 3, and 6%. �b� ��B� corresponding to the graphs of the upper
panel.
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It is worth observing that ��B� so obtained is qualitatively
similar to the B dependence of the core size seen in �SR
experiments.2 Moreover, it is argued in Ref. 6 that the field
dependence of � should weaken with increasing temperature
in accord with Fig. 3.

Another point to make is that only a moderate variation of
� is needed to account for strong deviations from the linear
M�ln B�. For example, at 2 K, � changes only by a factor of
2 over most of the mixed-state field domain. Since the cutoff
enters the energy �5� under the log sign, it might be surpris-
ing that such a difference suffices to cause a drastic deviation
of the 2 K curve in Fig. 2 from a straight line. The puzzle is
resolved if one observes that the field dependence of � trans-
lates to nonlogarithmic corrections to the standard London
magnetization, see Eq. �6�.

The same analysis has been applied to the magnetization
data for a crystal of LuNi2B2C �whose crystal structure and
superconductive properties are similar to YNi2B2C�, yielding
similar results as shown in Fig. 4.

C. Lu„Ni1−xCox…2B2C

As mentioned, Ref. 6 argues that the field dependence of
the core size is weakened by increasing temperature and
scattering. In order to study the scattering dependence of
��B�, we turn to a series of crystals Lu�Ni1−xCox�2B2C in
which the mean-free path is progressively reduced by in-
creasing the Co content.8

In the upper panel of Fig. 5, M�B� is shown for x=0, 3,
and 6% �for which Hc2 has been independently measured� at

the same temperature of 2 K. The fit parameters � and � are
also shown and the calculated field-dependent core sizes are
given in the lower panel.

We note that for 6% Co, the ratio of the zero-T coherence
length to the mean-free path has been estimated in Ref. 8 as
exceeding ten, which places this sample close to the dirty
limit. The core size for this crystal is seen to vary only by
about 10%, which is in accord with the theoretical finding
that field dependence of � disappears in the dirty limit.5,6

D. NbSe2

The superconducting anisotropy of this material is stron-
ger than in borocarbides discussed above. As is seen in Fig.
6, deviations of M�ln B� from the standard London linearity
are profound along with the corresponding field dependence
of �.

E. MgB2

The upper panel of Fig. 7 shows M�ln B� in fields parallel
to the c axis of a single-crystal MgB2. One readily sees a
qualitative difference from the preceding examples: the cur-
vature of M�ln B� for T=4.6 K being negative in low fields
becomes positive in large fields. Still, we can fit well the data
for all T’s to the form of Eq. �4� with parameters � and �
given in the table.

The most interesting feature is that the obtained values of
� exceed unity. According to Eq. �9� this means that starting
from Hc2, � decreases with decreasing field. This is shown in

FIG. 6. �Color online� �a� M�B� for NbSe2. �b� ��B� correspond-
ing to the graphs of the upper panel.

FIG. 7. �Color online� �a� MgB2, T=4.6, 15, and 25 K. �b� Cor-
responding ��B�.
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the lower panel of Fig. 7. We attribute this unusual behavior
to the two-gap nature of this material: the small gap on the 

sheet of the Fermi surface opens up in decreasing fields thus
causing a decrease of �.

If indeed the unusual behavior of ��B� for MgB2 is due to
suppression of the small gap in fields of few kG for H �c, and
if the suppression field is isotropic, then by going to other
field orientation away from the c axis with a higher Hc2, we
can push the effect of the small gap out of the high-field
domain of our interest. To check this hypothesis we acquired
the data for the applied field at 45° to the c axis where Hc2�0�
is accessible with our equipment. Figure 8 shows the result
similar to that for Y and Lu-based borocarbides. This sug-
gests that, e.g., for T=10 K, in the field domain examined
�from Hc2=4.15 T down to about 0.4 T or b�0.1� the small
gap is not yet fully formed.

Of course, this interpretation is much too simple because
for other than H �c orientation the strong anisotropy of �
should be taken into account, the subject of our future work.
It should also be noted that the macroscopic phenomenology
of magnetic properties of MgB2 is still debated. Despite the
two-band nature of this material, within the London ap-
proach, we employ one penetration depth � and one cutoff
length � when describing the vortex lattice in reciprocal
space. Judging by literature, this point of view is not univer-
sally shared by the entire MgB2 community.

F. V3Si

For this study, the magnetic field was applied along the
crystalline �110
 axis. Given the slope dHc2 /dT=19.4 T/K

and Tc=16.6 K, it is likely that the low-temperature upper
critical field of this material exceeds 20 T; no direct mea-
surements of Hc2 were conducted in this field range. One
might treat Hc2 as an extra fitting parameter to be extracted
from the data on M�B�. However, the numerical procedure of
extracting both Hc2 and � from the magnetization data is
unstable because their product enters the formulas we use.
For this reason, we consider here only M�B� for T�13 K for
which Hc2 was measured.

It is worth noting that Eq. �4� is good enough even for a
quite unusual shape of M�ln B� in this material: the curvature
of M�ln B� changes sign in all data we have examined. With
the help of Eq. �4� we readily find that the inflection point is
at bi=�� / ��+ln ��. With the parameters from the table in
Fig. 9 we obtain bi�0.16, for all temperatures.20 Therefore,
the curves M�ln B� are concave for b
bi�0.16, i.e., at
fields hardly in the domain of applicability of our high-field
model. On the other side of the inflection point where the
curves M�ln B� are convex, we may be dealing with the Abri-
kosov domain where M is linear in Hc2−B; it is easy to see
then that M�ln B� should be convex.21 Application of the
London approach in this domain cannot be justified. There-
fore, there is no point in trying to extract ��B� from the data
on V3Si. �Formally, since all �’s in the table of Fig. 9 exceed
unity, this extraction would have given ��B� decreasing with
decreasing field, which would have contradicted the �SR
data of Ref. 22.�

Finally, it is worth noting that further measurements on
another crystal from the same high-quality boule, but with
the magnetic field applied along the threefold symmetric
�111
 crystalline axis, yielded similar results with an inflec-
tion point at intermediate fields.

IV. DISCUSSION

The main point of this work is to argue that the field
dependence of the core size is a generic low-temperature
property of all sufficiently clean superconductors. Incorpo-
rating this dependence in the London approach broadens
considerably its applicability for describing macroscopic re-
versible magnetic properties. Still, the empirical approach
adopted here lacks microscopic justification. If proven cor-

FIG. 8. �Color online� �a� Magnetization of the MgB2 crystal in
applied field at 45° to the c axis. �b� Corresponding coherence
length. Note the difference in the behavior of �*�b� from the case of
the field along c of Fig. 7.

FIG. 9. �Color online� Magnetization of the V3Si single crystal
at T=13, 14, 15, and 16 K.
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rect, the modified London scheme calls for revisiting many
results obtained within the standard London model in which
the field-independent core size or the cutoff are involved.
Field dependencies of the flux-flow resistivity, of the specific
heat in the mixed state, or the core pinning are some ex-
amples.

One can foresee a number of difficulties in trying to de-
velop such a justification. The cutoff size we extract from
M�B� data is not necessarily the same as the core size defined
as being proportional to the slope of the order parameter at
the vortex axis: approaching the core from the outside to
determine the cutoff we may have a different result than
when examining the core structure starting from the core
center. Having this in mind, it is not surprising that the mi-
croscopic calculations of �c� ��d� /dr�r→0�−1 in Ref. 7 do not
agree in detail with our empirical results �to our knowledge,
this is the only calculation of this sort that has been tried to
date�. Figure 10 shows the output of this calculation normal-
ized in the manner of this paper for a model isotropic mate-
rial at T=0.1Tc and for a few values of the scattering param-
eter �0 /� ��0=�vF /
��0� is the zero-T BCS coherence
length and � is the mean-free path for the nonmagnetic scat-
tering�. We note that while most of the curves generated are
qualitatively similar to what we extract from the magnetiza-
tion data, this calculation does not confirm our assertion
about weakening of the field dependence of the core size
with increasing scattering.

A different approach to evaluation of the core size is cho-
sen in Ref. 6: it is argued on physical grounds that since �
→0 at the vortex center and the field is practically uniform
within the core for ��1, one can use Helfand-Werthamer’s
linearization technique23 for calculation of Hc2 and also for
the core size in the high-field mixed state. Within this ap-
proach, the order parameter near the vortex center satisfies a
linear equation −�2�2�=�, where �=�+2
iA /�0 and � is
found solving the basic BCS self-consistency equation. This
produces ��T ,� ;B� in qualitative agreement with what we
extract from the magnetization data in this work �for all cases
other than V3Si and MgB2 in the field along the c axis�; in
particular, the analytical field dependence of � obtained in

this way disappears when T→Tc or � /�0→0.
In our view, the question still remains: Which of these two

theoretical approaches, Ref. 7 or Ref. 6, describes better vari-
ous data on ��B�? An important role in resolving the question
belongs to experimental studies of how the field dependence
of the core size affects other physical properties of the mixed
state.

A. Flux-flow resistivity

As an example of such a cross examination we took data
on the flux-flow resistivity � f from measurements of the mi-
crowave surface impedance of YNi2B2C.24 The data show
large deviations of the measured � f from the Bardeen-
Stephen linear field dependence, � f =�nB /Hc2. This formula
is obtained assuming a field-independent core size �=�c2
=��0 /2
Hc2. Clearly, if � does depend on the field, one has

� f

�n
= B

2
�2�B�
�0

=
B

Hc2

�2�B�
�c2

2 = b�*2�b� . �10�

Hence, for each data set � f�B�, we can extract

��B�
�c2

=�� f�B�
�nb

. �11�

In other words, we can delegate deviations from � f �B to the
field dependence of � and see whether or not the obtained
��B� agrees with that extracted from magnetization data.

Utilizing the flux-flow resistivity data of Fig. 3 of Ref. 24
and applying Eq. �11�, we obtain the result shown in the
panel �a� of Fig. 11. Comparing it with our Fig. 3 for the
same material, we obtain reasonable agreement, notwith-
standing the usage of different samples in these two experi-
ments.

As another example, two selections of data for
Y�Ni1−xPtx�2B2C from Fig. 3 of Ref. 25 were used to calcu-
late ��B� /�c2, as shown in Fig. 11�b�. We see that in addition
to the expected decrease with field, ��B� is suppressed by
increasing scattering �i.e., increasing impurity content of Pt�
again in accord with the examples discussed above.

Panel �c� of Fig. 11 shows the result of the same exercise
with a d-wave material �an overdoped crystal of Bi-2201�.26

This example supports the idea that the field dependence of
the London cutoff is a generic feature of type-II supercon-
ductors with no direct relation to the order-parameter sym-
metry.

The last panel of Fig. 11 presents the cutoff ��b� /�c2 for
two field orientations of MgB2 extracted from the flux-flow
resistivity data of Ref. 27, again using Eq. �11�. For the field
along ab, both M�B� and � f�B� data yield qualitatively simi-
lar results. This, however, is not the case for the field along c
as evident by comparing Figs. 7 and 11�d�. Thus it appears
that for the two-gap MgB2 with its greater complexity, the
simple scheme of incorporating a field-dependent cutoff to
the London model does not work for all field orientations.

B. On nonlocality

Deviations in M�ln B� from the standard London linear
behavior have been thought to come from the effects of the

FIG. 10. �Color online� The field dependence of � calculated
microscopically for T /Tc=0.1 and for a few scattering parameters
�0 /� where �0 is zero-T BCS coherence length and � is the mean-
free path for scattering on nonmagnetic impurities.
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nonlocal relation between current and the vector potential
inherent for superconductors.17 The nonlocal corrections to
London theory turned out to be an effective tool in describ-
ing evolution and transitions in vortex lattice structures.30

However, it is difficult at this stage to sort out what part of
the deviations of M from linear-in-ln B behavior arises solely
from the core-size field dependence and what part should be
relegated to the nonlocality. In particular, the difficulty
comes from analogous weakening of the two effects with
increasing temperature and scattering strength. Looking back
to the overall satisfactory data analysis of M�ln B� for
Lu�Ni1−xCox�2B2C of Ref. 29 based on nonlocal effects, we
note that the analysis produced an excessively rapid reduc-
tion of the “nonlocality range” with temperature for samples
with elevated impurity content. We have to conclude that
more high-precision experimental results are needed before a
conclusive judgment is made on the relative importance of
contributions to M�B� due to the nonlocality and to the field
dependence of the core size.

C. Why �„B… should be used with caution within
London theory

As mentioned above, the basic London equation �1� along
with the energy expression �2� for intermediate fields �or Eq.
�5� with an unspecified cutoff
 imply that the London pen-
etration depth � is a temperature-dependent constant in a
homogeneous material. Assuming a field dependent � would
have changed the London equation �1� per se: the quantity
�2�h� cannot be taken out of differentiation operators. As a
result, the Fourier components of the solution h�k� for a
single vortex would have been different from �0 / �1+�2k2�
and the energy �2� would have been different as well. There-
fore, unlike the case of the cutoff �, relaxing the requirement
of a constant � causes basic changes in the London approach
and therefore should not be taken lightly. It is also worth
recalling that a constant � is derived from the microscopic
Bardeen–Cooper–Schrieffer theory �as k→0 limit of the ker-

nel in the nonlocal connection between the persistent current
and the vector potential�. To our knowledge, there is no mi-
croscopic justification for a field dependent � �in nonmag-
netic superconductors�. In other words, the London theory is
rigid with respect to a constancy of �, unlike the case of �.

Yet, quite often, analyzing data with the help of the Lon-
don model �i.e., starting with a constant �� it is concluded
that � should be field dependent. Numerous examples are
found in the literature on �SR �see, e.g., Ref. 2� and in many
recent publications on MgB2.28,31–33 An “operational” justifi-
cation implied for this apparent contradiction usually goes
like this: of course, the field distribution for a single vortex is
described by Eq. �1� with a constant �. However, in the
mixed state the average order parameter is suppressed by
overlapping vortex fields, and therefore, the “macroscopic”
� �� to � calculated for H→0� should enter the free energy
Eq. �2�. This macroscopic parameter may depend on the av-
erage magnetic field B.

The inconsistency of such an argument is exposed if one
considers the clean limit at zero temperature. In this case the
London � does not depend on the order parameter �in fact, it
depends only on the total electron density�, so that the
mixed-state order-parameter suppression cannot be referred
to as a general justification for employing ��B�.

D. On the superfluid density

The quantity �2�0� /�2�T� is often taken as a measure of
the superfluid density ns. This assignment has unambiguous
justification only for isotropic superconductors �see, e.g.,
Ref. 34� and when ��T� is defined as the penetration depth of
a small magnetic field �strictly speaking in the limit H→0�.
One of the attractive features of the standard London theory
is that one can extract 1 /�2�T� directly from the magnetiza-
tion �3� by measuring the constant slope dM /d�ln B� for each
temperature. This way of determining the superfluid density
ns rests, therefore, upon whether or not the standard London
model for M is valid. As we have seen in a number of ex-

FIG. 11. �Color online� ��b� /�c2 vs b=B /
Hc2 extracted from the flux-flow resistivity data
as explained in the text.
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amples above, this is quite often not the case.
Perhaps the best example of the futility of extracting ns

from magnetization data is provided by the data for V3Si. As
is seen in Fig. 9, e.g., for T=14 K, the slope dM /d�ln B�
decreases with the field increasing up to �1 T, but it grows
with further field increase toward Hc2. If one takes literally
the proportionality between ns and the slope dM /d�ln B�, one
should conclude that the field suppresses the “superfluid den-
sity” as long as B is under �1 T but for B�1 T, ns is en-
hanced by increasing field.

Hence, extracting any quantitative information about the
superfluid density or the penetration depth from the magne-
tization data with the help of the standard London model
should be taken “with a grain of salt” at best even for such
“simple” materials as V3Si, not to mention MgB2 in which
the different field behavior of the two gaps further compli-
cates the matter.28,32,33

To summarize, the field dependence of the core size ��B�
has been incorporated in the London model to describe
intermediate-field reversible magnetization M�B ,T� for ma-
terials with large �. The dependence ��B� is directly related
to deviations in M�ln B� from linear behavior prescribed by
the standard London model. A method to extract ��B� from

the magnetization data is proposed. For most materials ex-
amined, ��B� so obtained decreases with increasing field; the
dependence becomes weaker with increasing temperature or
with strengthening the nonmagnetic scattering, in qualitative
agreement with theoretical predictions and with existing
�SR, SANS, and flux-flow resistivity data. The method,
however, fails when applied to MgB2 and—surprisingly—to
V3Si, the subject for a separate discussion.

ACKNOWLEDGMENTS

The authors thank Morten Eskildsen for useful discus-
sions and for sharing SANS data on CeCoIn5 before publi-
cation. They also thank P. Gammel for providing NbSe2 crys-
tals. Ames Laboratory is operated for U.S. DOE by the Iowa
State University under Contract No. W-7405-Eng-82. Re-
search at ORNL was sponsored by the Division of Materials
Sciences and Engineering, Office of Basic Energy Sciences,
U.S. Department of Energy, under Contract No. DE-AC05-
00OR22725 with Oak Ridge National Laboratory, managed
and operated by UT-Battelle, LLC. R.P. acknowledges sup-
port from NSF Grant No. DMR-05-53285 and from the Al-
fred P. Sloan Foundation.

*Corresponding author. Electronic address: prozorov@ameslab.gov
1 P. DeGennes, Superconductivity of Metals and Alloys �Addison-

Wesley, New York, 1989�.
2 J. E. Sonier, J. Phys.: Condens. Matter 16, 4499 �2004�.
3 In �SR experiments, the field-dependent muons decay is utilized

to map the field distribution in the mixed state. One of the ways
to estimate the core size is to extract the distribution of micro-
scopic supercurrents and to define the core boundary as a place
where the current reaches maximum. Another way is to fit the
experimental field distribution to the distribution obtained within
the London model in which � enters via a somewhat uncertain
cutoff �see details in Ref. 2�. Both methods yield qualitatively
similar results.

4 L. DeBeer-Schmitt, C. D. Dewhurst, B. W. Hoogenboom, C.
Petrovic, and M. R. Eskildsen, Phys. Rev. Lett. 97 127001
�2006�.

5 V. G. Kogan, Phys. Rev. B 32, 139 �1985�; V. G. Kogan and N.
Nakagawa, ibid. 35, 1700 �1987�.

6 V. G. Kogan and N. V. Zhelezina, Phys. Rev. B 71, 134505
�2005�.

7 P. Miranović, M. Ichioka, and K. Machida, Phys. Rev. B 70,
104510 �2004�.

8 K. O. Cheon, I. R. Fisher, V. G. Kogan, P. C. Canfield, P. Mira-
novic, and P. L. Gammel, Phys. Rev. B 58, 6463 �1998�.

9 C. S. Oglesby, E. Bucher, C. Kloc, and H. Hohl, J. Cryst. Growth
137, 289 �1994�.

10 J. Karpinski, M. Angst, J. Jun, S. M. Kazakov, R. Puzniak, A.
Wisniewski, J. Roos, H. Keller, A. Perucchi, L. Degiorgi, M. R.
Eskildsen, P. Bordet, L. Vinnikov, and A. Mironov, Supercond.
Sci. Technol. 16, 221 �2003�.

11 M. Yethiraj, D. K. Christen, D. McK. Paul, P. Miranovic, and J. R.
Thompson, Phys. Rev. Lett. 82, 5112 �1999�.

12 M. Tinkham, Introduction to Superconductivity �McGraw-Hill,
New York, 1996�, Sec. 5.3.2.

13 Eq. �4� is in fact a general expansion of a function singular as
b=B /Hc2→0: c1 /b+c2 ln b+c3+c4b+¯.

14 E. H. Brandt, J. Low Temp. Phys. 26, 709 �1977�.
15 Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P. Maloz-

emoff, and F. Holtzberg, Phys. Rev. B 43, 2844 �1991�.
16 A. E. Koshelev, Phys. Rev. B 50, 506 �1994�.
17 V. G. Kogan, A. Gurevich, J. H. Cho, D. C. Johnston, Ming Xu,

J. R. Thompson, and A. Martynovich, Phys. Rev. B 54, 12386
�1996�.

18 The Ginzburg-Landau �GL� approach for treating the mixed-state
magnetization can be extended to low temperatures only for spe-
cial situations like gapless superconductivity. Moreover, even
close to Tc where GL works, there is no closed GL expression
for the magnetization away of Hc2. On the other hand, the mag-
netization data near Tc are noisy, and comparison with experi-
ment in this domain would be difficult if not impossible even if
the GL theory would have made a prediction for ��H�.

19 D. K. Christen, H. R. Kerchner, S. T. Secula, and Y. K. Chang,
Proceedings of the 17th International Conference on Low Tem-
perature Physics, Karlsruhe, Germany, 1984, edited by U. Eck-
ern, A. Schmid, W. Weber, and H. Wuehl �Elsevier, Amsterdam,
1984�, p. 1035.

20 This suggests a possibility of a certain scaling procedure as a
result of which all M�ln b� of Fig. 9 nearly collapse to a single
curve. We will not dwell on this matter, since the physical mean-
ing of such a scaling is still unclear.

21 One can calculate the linear slope dM /dB�B→Hc2
using Eq. �4� to

obtain �1+2�+ln �� /16
�2. The Abrikosov slope is
�1/8
�2�A with �A=1.16 for a triangular lattice at T→Tc. It is
now easy to see that Eq. �4� with parameters � and � from the

EFFECT OF FIELD-DEPENDENT CORE SIZE ON… PHYSICAL REVIEW B 74, 184521 �2006�

184521-9



table in Fig. 9 for T=16 K �which is close to Tc�16.8 K� gives
the slope of the same order as that calculated according to Abri-
kosov. This suggests that in V3Si the Abrikosov domain might
be very broad. We note that if �c would behave as ��c2 /�b in a
broad domain under Hc2, the intervortex distance would have
been on the order of �c; in other words, one would expect Abri-
kosov’s linear M�B� in this domain. This speculation is worth
experimental examination.

22 J. E. Sonier, F. D. Callaghan, R. I. Miller, E. Boaknin, L.
Taillefer, R. F. Kiefl, J. H. Brewer, K. F. Poon, and J. D. Brewer,
Phys. Rev. Lett. 93, 017002 �2004�.

23 E. H. Helfand, and N. R. Werthamer, Phys. Rev. 147, 288 �1966�.
24 K. Izawa, A. Shibata, Yuji Matsuda, Y. Kato, H. Takeya, K.

Hirata, C. J. van der Beek, and M. Konczykowski, Phys. Rev.
Lett. 86, 1327 �2001�.

25 K. Takaki, A. Koizumi, T. Hanaguri, M. Nohara, H. Takagi, K.
Kitazawa, Y. Kato, Y. Tsuchiya, H. Kitano, and A. Maeda, Phys.
Rev. B 66, 184511 �2002�.

26 Y. Matsuda, A. Shibata, K. Izawa, H. Ikuta, M. Hasegawa, and Y.
Kato, Phys. Rev. B 66, 014527 �2002�.

27 A. Shibata, M. Matsumoto, K. Izawa, Y. Matsuda, S. Lee, and S.
Tajima, Phys. Rev. B 68, 060501�R� �2003�.

28 M. Angst, D. Di Castro, D. G. Eshchenko, R. Khasanov, S. Ko-
hout, I. M. Savic, A. Shengelaya, S. L. Budko, P. C. Canfield, J.
Jun, J. Karpinski, S. M. Kazakov, R. A. Ribeiro, and H. Keller,
Phys. Rev. B 70, 224513 �2004�.

29 V. G. Kogan, S. L. Bud’ko, I. R. Fisher, and P. C. Canfield, Phys.
Rev. B 62, 9077 �2000�.

30 V. G. Kogan, P. Miranovic, and D. McK. Paul, Series on Direc-
tions in Condensed Matter Physics, edited by C. A. R. Sa de
Melo �World Scientific, Singapore, 1998�, Vol. 13, p. 127.

31 R. Cubitt, M. R. Eskildsen, C. D. Dewhurst, J. Jun, S. M. Kaza-
kov, and J. Karpinski, Phys. Rev. Lett. 91, 047002 �2003�.

32 M. Eisterer, M. Zehetmayer, H. W. Weber, and J. Karpinski, Phys.
Rev. B 72, 134525 �2005�.

33 T. Klein, L. Lyard, J. Marcus, Z. Holanova, and C. Marcenat,
Phys. Rev. B 73, 184513 �2006�.

34 A. A. Abrikosov, Fundamentals of the Theory of Metals �North-
Holland, New York, 1988�.

KOGAN et al. PHYSICAL REVIEW B 74, 184521 �2006�

184521-10


