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We consider the scenario where a four-lattice constant, rotationally symmetric charge density wave �CDW�
is present in the underdoped cuprates. We prove a theorem that puts strong constraint on the possible form
factor of such a CDW. We demonstrate, within mean-field theory, that a particular form factor within the
allowed class describes the angle-resolved photoemission and scan tunneling spectroscopy well. We conjecture
that the “large pseudogap” in cuprates is the consequence of this type of charge density wave.
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I. INTRODUCTION

After almost two decades of experimental study, it is
known that the high temperature superconductors have the
following known ordered states: �i� antiferromagnetic order
at very low doping �x�3% �, �ii� the d-wave superconduct-
ing �DSC� order for 5% �x�30%. While these two orders
exist in all families of cuprates, there is a third order, namely,
�iii� a four-lattice constant charge and eight-lattice constant
spin density wave order, occurring near doping x=1/8 in the
La1.48Nd0.4Sr0.12CuO4/La1.875Ba0.125CuO4 �LNSCO/LBCO�
systems.1 There is a widespread belief that this charge/spin
density wave order is anisotropic, i.e., they form stripes.1–4

A significant part of the high-Tc mystery lies in the behav-
ior of the underdoped systems.5 Based on specific heat,6

nuclear magnetic resonance,7 DC transport,8 optical and Ra-
man spectroscopy,9,10 angle-resolved photoemission
�ARPES�11 and tunneling,12–16 Tallon and Loram have made
the case that the high-Tc superconductors possess two energy
gaps, a pseudogap and a superconducting gap.6 Recently
ARPES experiments on LSCO systems17 and underdoped
Bi2212 �Ref. 18� both point to a large pseudogap in the
antinodal region and a superconducting gap near the Bril-
louin zone diagonals. A similar result has also been found in
electronic Raman scattering experiment on Hg1201 �Ref.
19�. In addition, it is shown that for underdoped Bi2212 a
large pseudogap exists in the antinodal region even at tem-
perature �3Tc, while a gapless Fermi arc exists near the
nodes.20

Recently, there are clear evidences from the the scan tun-
neling spectroscopy �STM� studies suggesting the presence
of a four-lattice constant checkerboard order in NaCCOC
�Ref. 14� and underdoped Bi2212.15,16 Interestingly ARPES
study has shown that in NaxCa2−xCuO2Cl2, where STM
found checkerboard order,14 the Fermi arcs survive.21

In view of these new experimental results we ask the
question “can the pseudogap in underdoped cuprates be
caused by some kind of checkerboard CDW”? To answer the
question, we will look at the effects of the checkerboard
CDW on low energy quasiparticles. Since the existence of
low energy quasiparticles is an experimental fact, it is rea-
sonable to model the influence of CDW by an effective scat-
tering Hamiltonian of the form

HCDW = �
Q

�
k

�
�

�f�k,Q�Ck+Q�
+ Ck� + H.c.� , �1�

where Q is the CDW ordering wave vector and f�k ,Q� the
form factor.

In the following, we will first explore the symmetry prop-
erty of the checkerboard CDW form factor using the experi-
mentally observed STM patterns in Sec. II. In Sec. III, we
compare the low energy ARPES and STM spectral functions
generated by two representatives among the allowed form
factors. Section IV is the summary.

II. TWO THEOREMS ABOUT f„k,Q…

In Fig. 1�a�, we reproduce the STM dI /dV image of
NaxCa2−xCuO2Cl2 from Ref. 14. This particular image is
made at bias voltage 30 mV. However, the same checker-
board pattern was seen in a wide bias range −150 mV�V
�150 mV. Experimentally, it was determined that such a
checkerboard pattern contains ±Q, where

Q = �2�/4,0�,�0,2�/4� �2�

as its fundamental ordering wave vector. Hence we limit the
Q summation in Eq. �1� to those given by Eq. �2� and k to
the first Brillouin zone. In Fig. 1�b�, we reproduce the two-
point correlation function of the observed image presented in
Ref. 14. From Figs. 1�a� and 1�b� we construct a caricature in
Fig. 1�c� to capture the essence of the observed checker-
board. Interestingly, in each 4�4 unit cell there are two in-
equivalent centers about which the checkerboard is symmet-
ric under

C4v = �E,C2,�x,�y,C4,C4
3,�x+y,�x−y� , �3�

the point group of the square lattice. �Here E represents iden-
tity, and C2,4 denote 180 and 90 degree rotations, and � de-
notes reflection.� In the following, we take this as implying
that HCDW is C4v invariant about these two centers.

Theorem I. A CDW that has the ordering wave vectors
given by Eq. �2� and possesses a center of C4v symmetry in
its unit cell must have the following properties.

�1� There must exist another inequivalent C4v center in the
unit cell. This second center is displaced from the first by the
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�2,2� translation or its equivalent. About these two centers
f�k ,Q� has s symmetry.

�2� There must exist two other centers around which
HCDW remains invariant under C2v, the subgroup formed by
the first four elements of C4v, but changes sign under
C4 ,C4

3 ,�x+y ,�x−y. Spatially these two new centers must be
displaced from the two C4v centers by the �2,0� and �0,2�
translation or their equivalents. About these two centers
f�k ,Q� has d symmetry.

Proof. Let us assume HCDW is invariant under C4v at the
origin, i.e., RHCDWR−1=HCDW where R�C4v. This implies

f�Rk,RQ� = f�k,Q� �4�

from Eq. �1�. After a translation t the form factor changes to

f�k,Q� → g�k,Q� 	 f�k,Q�eiQ·t, �5�

where t can be any one of the 16 possible displacements
within the unit cell

t = �m,n�, m,n = 0,1,2,3. �6�

Due to the fact that Q only takes one of the four possible
values given in Eq. �2� it can be easily checked that for t
= �2,2�

g�Rk,RQ� = g�k,Q� ∀ R � C4v, �7�

and for t= �2,0� , �0,2�,

g�Rk,RQ� = g�k,Q� R � C2v,

g�Rk,RQ� = − g�k,Q� R � C4v − C2v, �8�

where C4v−C2v	�C4 ,C4
3 ,�x+y ,�x−y�. Q.E.D.

Theorem I implies that any 90-degree rotationally sym-
metric CDW with �±2� /4 ,0� , �0, ±2� /4� ordering wave
vectors must simultaneously possess s-symmetry centers and
d-symmetry centers. The presence of both symmetry centers
is a necessary consequence of the CDW being rotationally
symmetric. Conversely any four lattice constant CDW that
does not possess both symmetry centers must break rotation
symmetry. In addition, it can be shown easily that a rotation-
ally symmetric CDW discussed above possesses six in-
equivalent sites in the unit cell,22 hence allowing six different
values of dI /dV. This is shown in Fig. 1�d�.

Theorem II. If HCDW is time reversal invariant, f�k ,Q�
must be real if one chooses either d- or s-symmetry center as
the origin.

Proof. Time reversal symmetry requires

f*�k,Q� = f�− k,− Q� . �9�

Since f�k ,Q� is invariant under the 180 degree rotation
about the s and d centers we have

f�k,Q� = f�− k,− Q� . �10�

As a result,

f*�k,Q� = f�k,Q� , �11�

i.e., f�k ,Q� is real. Q.E.D.

III. EFFECTS OF THE CDW ON ARPES
AND STM SPECTRA

In this section we apply the two theorems proven above
and take the input from a previous renormalization group
calculation23 to guess the plausible form of f�k ,Q�. We then
investigate the effect of the checkerboard CDW on the STM
and ARPES spectral functions of the low energy quasiparti-
cles. We stress that the purpose of this section is not to prove
that the ground state of certain microscopic Hamiltonian has
CDW order. Rather, we take a phenomenological approach
by assuming its existence and look at its consequences that
are observable by STM and ARPES.

In Ref. 23 it was shown that, with the help of electron-
phonon interaction, a class of electron-electron scattering is
enhanced at low energies. This class of scattering involves
�momentum conserving� scattering of a pair of quasiparticles
near the antinodes. For example, consider a pair of quasipar-
ticles lying on the opposite sides of the almost nested Fermi
surface near the �� ,0� antinodes as shown in Fig. 2�a�. After
the scattering these two quasiparticles switch sides. The mo-
mentum transfer in such a scattering is the “nesting wave
vector” of the antinodes. For systems such as NaCCOC �Ref.
21� and underdoped Bi2212 �Ref. 24� it has been shown that
such nesting wave vectors are approximately given by Eq.
�2�. Interestingly, Ref. 23 also shows that accompanying
each such scattering there is a related process, whose scatter-
ing amplitude has opposite sign, where one of the quasipar-
ticle scattering takes place near the �0,�� rather than the

FIG. 1. �Color online� STM dI /dV map �a� and the autocorre-
lation image of 
E
�100 meV LDOS maps �b� from Hanaguri et al.
�Ref. 14� on NaCCOC, showing the 4�4 ordering. �c� Caricature
of the observed image shown in �a�. �d� Possible LDOS pattern
which exhibits six independent intensities in the 4�4 unit cell. In
panels �c� and �d�, two nonequivalent s-symmetry centers are indi-
cated by arrows. In panel �d�, the d-symmetry centers are indicated
by the ellipses.
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�� ,0� antinode �Fig. 2�b��. It was also noticed that when this
type of quasiparticle scattering grows strong it tends to drive
a CDW whose form factor has the property that

sign�f�Rk,Q�� = − sign�f�k,Q�� for R � C4v − C2v.

�12�

In the following, let us choose the d-symmetry center as
the origin. Thus

f�Rk,RQ� = − f�k,Q� for R � C4v − C2v. �13�

Combine Eq. �13� with Eq. �12� we obtain

sign�f�k,RQ�� = sign�f�k,Q�� for R � C4v − C2v.

�14�

In addition, Eq. �12� plus the continuity condition requires

f�k,Q� = 0 for k along x̂ ± ŷ . �15�

The above considerations lead us to the following ansaz for
the CDW form factor

f�k,Q� = Sk�Q��cos kx − cos ky� 	 Sk�Q�f0�k� , �16�

where Sk�Q��0. In the following we shall pick a simple
realization of Eq. �16� and focus on k lying close to the
Fermi surface.

In general the CDW couples each k to other 15 k points
in the first Brillouin zone. However, most of these 16 k’s lie
far away from the Fermi surface, hence can be omitted in the
low-energy theory. This suggests that one only needs to keep
a few close neighbors for each k. Another important consid-
eration guiding our construction of HCDW is the requirement
that a robust antinodal CDW gap exists for reasonable
change of doping. It turns out that this requirement is satis-
fied as long as the nested scattering across the antinodal
Fermi surface is the dominant scattering process.

Put all the constraints together we consider the following
quasiparticle Hamiltonian in the absence of superconducting
pairing

H = �
k,�

	�
+�k�A�k�	��k� , �17�

where

	�
+�k� = �ck,�

+ ,ck+Q1,�
+ ,ck+Q2,�

+ ,ck−Q2,�
+ � , �18�

and

A�k� =�

k S0f0�k� S1f0�k� S2f0�k�

S0f0�k� 
k+Q1
0 0

S1f0�k� 0 
k+Q2
0

S2f0�k� 0 0 
k−Q2

� . �19�

In Eq. �19�

Q1 = − sign�kx��2�/4,0�, Q2 = �0,2�/4� for 
kx
 � 
ky
 ,

Q1 = − sign�ky��0,2�/4�, Q2 = �2�/4,0� for 
kx
 � 
ky


as shown schematically in Fig. 2�c�. In addition, we
expect S0 to be stronger than S1 and S2. For the normal
state dispersion, we use 
k= t0+ t1�cos�kx�+cos�ky�� /2
+ t2 cos�kx�cos�ky� + t3�cos�2kx� +cos �2ky�� /2 + t4�cos�2kx�
�cos�ky�+cos�2ky�cos�kx�� /2+ t5 cos�2kx�cos�2ky�, with the
hopping constants �in eV� �t1 , . . . , t5�= �−0.5951,0.1636,
−0.0519,−0.1117,0.0510�.25 In the following, we will com-
pare the effects of the CDW for the two cases where the
Fermi surface is nested/not nested by the Q given by Eq. �2�.
�We adjust t0 to control the degree of nesting.� As to the
CDW order parameter, we choose

S0 = �c, S1 = s�c, S2 = s�c. �20�

We first discuss the case with Fermi surface nesting. In
Figs. 3�a� and 3�c� we present the real space dI /dV image at
bias voltage 20 mV and the ARPES intensity map at the
Fermi level. These results are calculated with s=0.2 in Eq.
�20�. The primary effect of changing s is to �1� change the
intensity variation in the black perimeter in each unit cell in
Fig. 3�a�; and �2� affect the strength of shadow band in Fig.
3�c� �see later�. Except these changes, the main features of
both results are preserved. In Fig. 3�b� we show the dI /dV
image resulting from Eq. �17� where the f0�k� in Eq. �19� is
replaced by 
cos kx−cos ky
. �Of course, after such a choice
the d-symmetry center becomes the s-symmetry center.� The
purpose of this figure is to demonstrate the sensitivity of the
real space image on the sign of f0. Indeed, while the ARPES

FIG. 2. The two enhanced sets of electron-electron scattering
�panels �a� and �b��, as obtained from a renormalization group cal-
culation �Ref. 23�. The scattering amplitude between these two sets
differs by a sign. �c� The CDW-induced quasiparticle scatterings
�only those in the first quadrant of the Brillouin zone are shown�.
The solid lines in these figures represent the normal state Fermi
surface.

FIG. 3. Panel �a� and �b� are the dI /dV images for the CDW
state where the f0�k� in Eq. �17� and Eq. �19� is cos kx−cos ky and

cos kx−cos ky
, respectively. The window of view is 15�15 lattice
unit cells. Panel �c� is their Fermi energy ARPES intensity maps
�both form factors give the same intensity map�. Here only the first
quadrant of the Brillouin zone is shown. In making these figures we
have chosen �c to produce a 60 meV gap at the antinodes. The
parameter s in Eq. �20� is chosen to be 0.2. A quasiparticle energy
broadening of 10 meV and a t0=0.0945 eV are used.
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image is completely unaffected by such a change, the real
space dI /dV is strongly modified. Upon a comparison with
the checkerboard pattern observed in NaxCa2−xCuO2Cl2 �Ref.
14�, it is clear that the form factor cos kx−cos ky �Fig. 3�a��
produces the real space description best. To better understand
the Fermi arc present in Fig. 3�c� we note that in the presence
of CDW, the new Fermi surface is determined by

det�A�k�� = 0. �21�

Since det�A�k�� is real �because A�k� is Hermitian�
det�A�k��=0 yields a single equation with two unkowns �kx

and ky�. Generically, one expects the solutions to form closed
one-dimensional curves. Since f0�k� vanishes at the node, it
is natural to expect the Fermi surface to be practically unaf-
fected in its vicinity. Such an unaffected piece of the Fermi
surface and its CDW shadows form a closed contour. The
reason that in Fig. 3�c� only a Fermi arc is visible is due to
the CDW coherence factor.26 In Fig. 3�c�, the strongest
shadow band effect shows up near the end of the Fermi arcs.
Note that such a shadow band position is very different from
that expected from antiferromagnetism. Presently there is no
report of seeing such shadow bands.20,27 The reason may be:
�1� the CDW correlation length as observed by STM experi-
ment is not sufficiently long �it is typically of
10 nanometers�; �2� in the pseudogap regime, the supercon-
ducting pairing still persists. In all cases we studied, the su-
perconducting pairing is very effective in weakening the
shadow band effect. When moving away from the zero bind-
ing energy, we find that the main changes in the ARPES
intensity map are: �1� the intensity in the antinodal regions
increases, and �2� the Fermi arcs shrink and move toward the
origin of the first Brillouin zone.

By considering all panels of Fig. 3, it is obvious that it is
the checkerboard CDW with f0�k�=cos kx−cos ky that repro-
duces both the ARPES and STM phenomenology well.
Therefore, we will only consider this kind of form factor in
the rest of the paper.

Now, we turn to the case without Fermi surface nesting.
In this case, using the checkerboard CDW with an order
parameter of the same magnitude as that in Fig. 3, we obtain
a weaker fragmentation of the Fermi surface as shown in Fig.
4�a�. As to the real space pattern �not shown�, the only dif-
ference with Fig. 3�a� is a slight increase in the intensity
variation in the dark perimeter region.

Next, we turn on a DSC pairing and ask what is the sig-
nature of the checkerboard CDW and superconducting pair-
ing coexistence in STM. In this case the Hamiltonian be-
comes

H = �
k

�+�k�H�k���k� , �22�

where

�+�k� = �	↑
+�k�,	↓�− k�� , �23�

and

H�k� = 
 A�k� B�k�
B*�k� − A�− k�

� . �24�

In the above equations

Bij�k� = 0 for i � j ,

Bii�k� = �k,�k+Q1
,�k+Q2

,�k−Q2
for i = 1,2,3,4. �25�

For d-wave superconducting �DSC� pairing �k=�0�cos kx

−cos ky� /2. In the presence of inversion symmetry �A�−k�
=A�k�� the Hamiltonian in Eq. �24� can also be written

H�k� = A�k� � �3 + B�k� � �1. �26�

In that case because H�k� anticommutes with I � �y the
eigenspectrum is particle-hole symmetric. Under such condi-
tion the zero-energy eigenvectors are also eigenvectors of I
� �y. As a result, the locus of zero energy satisfies

det�A�k� ± iB�k�� = 0. �27�

Since this determinant is complex, setting its real and imagi-
nary parts to zero gives two equations for the two unknown
kx and ky. Consequently, one expects the solutions to be iso-
lated points in the Brillouin zone. Thus with the DSC pairing
the Fermi arc produced by checkerboard CDW is reduced to
point gap nodes.

In Figs. 4�b� and 4�c� we consider the case where a
60 meV checkerboard CDW order parameter coexists with a
�0=40 meV DSC pairing. Figure 4�b� shows the spatial av-
eraged local density of states �LDOS�. Note that the CDW
feature on the negative bias side is much weaker than that of
the positive side. This is because it is overwhelmed by the
density of states due to the van Hove singularity. The two
peaks on the positive bias side are the original antinodal
coherence peak split by the CDW order. We have checked
that the energy separation between these peaks is propor-
tional to the CDW order parameter. Another way to deter-
mine the strength of the CDW order is to Fourier transform
LDOS at the CDW ordering wave vector. In Fig. 4�c�, the
real part of the q= �� /2 ,0� component of LDOS is shown.
The two peaks on the positive bias side of Fig. 4�b� now
appear as a peak and an antipeak. Again, the distance be-
tween them is proportional to the CDW order parameter.
Thus we propose that by studying the Fourier transformed
LDOS, it is possible to extract the strength of CDW ordering.

In Fig. 5�a�, we show several ARPES momentum distri-
bution curves �MDC� along the momentum cut �−� /2 ,��

FIG. 4. �a� The ARPES intensity at EF for the checkerboard
CDW with the form factor cos kx−cos ky and a 60 meV gap. �b� and
�c� are the q= �0,0� and q= �� /2 ,0� Fourier components of LDOS
for a state with a 60 meV CDW gap and a �0=40 meV DSC pair-
ing parameter. A t0=0.1215 eV is used.
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→ �� /2 ,�� for the checkerboard CDW. All energies consid-
ered here are below the CDW gap. The presence of two
nondispersive MDC peaks separated by the CDW ordering
wave vector is apparent. This is very similar to that observed
in Ref. 21.

In Fig. 5�b�, we present the energy gap along the normal
state Fermi surface for a pure checkerboard CDW state
�dashed curve� and a state with both checkerboard CDW and
DSC pairing �solid curve�. The purpose of this figure is to
illustrate the effect of DSC pairing in the pseudogap state. It
shows how the Fermi arc is replaced by a gap node. With
thermal phase fluctuations, this explains why Fermi arcs
shrink to four points as temperature approaches zero as ob-
served recently.20 Given these results, we feel quite tempted
to associate the larger checkerboard CDW gap with the large
pseudogap and the smaller pairing gap on the Fermi arc with
the small pseudogap.

In the literature it is widely believed that the pseudogap is
a consequence of the short-range antiferromagnetic
correlation.5 Thus it is natural to ask what is the relation
between the checkerboard CDW discussed above and such
physics. On a microscopic level the CDW presented in this

paper represents the modulation in the hopping �or antiferro-
magnetic exchange� integrals. Consequently, it is a kind of
spin Peirls distortion which, of course, is compatible with the
spin singlet pairing tendency of a quantum antiferromagnet.
In addition to the above remarks we note that in a recent
paper28 it is found that checkerboard CDW is a self-
consistent solution of a t−J-like model at mean-field level,
again testify that checkerboard CDW does not contradict the
superexchange physics.

IV. CONCLUSION

In this paper, we present a symmetry constraint on the
form factor of a 90 degree rotationally symmetric, commen-
surate, checkerboard charge density wave. Further guided by
a previous renormalization group study23 we construct a
simple model describing the scattering of the low energy
quasiparticles by the CDW. We then calculate the low energy
ARPES and STM spectra using this simple model. The re-
sults compare favorably with the existing experiments. In
particular, the results show a spatial dI /dV pattern similar to
the one observed in NaxCa2−xCuO2Cl2 and underdoped
Bi2212 by STM �Refs. 14 and 16�. Moreover, in the momen-
tum space it produces Fermi arcs resembling those observed
by ARPES �Refs. 17 and 21�. In the presence of a d-wave
superconducting pairing, the Fermi arcs of the checkerboard
CDW are reduced to four gap nodes.20 Therefore, this study
supports the notion that the large antinodal pseudogap in
underdoped cuprates is generated by the checkerboard
charge density wave29–31 conjectured at the beginning of the
paper.
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