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Dynamical properties of an impurity spin coupled symmetrically to sublattices of ordered two-dimensional
Heisenberg quantum antiferromagnets �i.e., frustrated impurity spin� are discussed at T�0 �existence of a
small interaction stabilizing the long range order at T�0 is implied�. We continue our study on this subject
�Phys. Rev. B 72, 174419 �2005��, where spin-1

2 defect is discussed and the host spin fluctuations are consid-
ered within the spin-wave approximation �SWA�. In the present paper we �i� go beyond SWA and �ii� study
impurities with spins S�1/2. It is demonstrated that in contrast to defects coupled to sublattices asymmetri-
cally longitudinal host spin fluctuations play an important role in the frustrated impurity dynamics. We show
that the effect of the host system on the defect is completely described by the spectral function as it was within
SWA. The spectral function, that is proportional to �2 within SWA, acquires terms proportional to �2 and �T2

originating from longitudinal host spin fluctuations. It is observed that the spin-1
2 impurity susceptibility has the

same structure as that obtained within SWA: the Lorenz peak and the nonresonant term. The difference is that
the width of the peak becomes larger being proportional to f2�T /J�3 rather than f4�T /J�3, where f is the
dimensionless coupling parameter. We show that transverse static susceptibility acquires a new negative loga-
rithmic contribution. In accordance with previous works we find that host spin fluctuations lead to an effective
one-ion anisotropy on the impurity site. Then defects with S�1/2 appear to be split. We observe strong
reduction of the value of the splitting due to longitudinal host spin fluctuations. We demonstrate that the
dynamical impurity susceptibility contains 2S Lorenz peaks corresponding to transitions between the levels,
and the nonresonant term. The influence of finite concentration of the defects n on the low-temperature
properties of antiferromagnets is also investigated. Strong spin-wave damping proportional to nf4��� is ob-
tained originating from the nonresonant terms of the susceptibilities.
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I. INTRODUCTION

The problem of impurity spins in two-dimensional �2D�
Heisenberg quantum antiferromagnets �AFs� has attracted
much attention in the last two decades.1–14 The majority of
works are devoted to defects coupled asymmetrically to sub-
lattices of AFs. Among such impurities are added spin
coupled to one host spin, substitutional spin and vacancy that
is the particular case of the added spin with the coupling
strength g→�. Such works are stimulated by a variety of
experiments studying cuprates with magnetic and nonmag-
netic impurities. Defects coupled symmetrically to sublattices
of AFs �see Fig. 1� are much less studied because such ob-
jects are rare in occurrence. At the same time they have
different properties11,14 and are also of interest. For instance,
attempts were made to model holes in CuO planes of some
high-Tc compounds being in antiferromagnetic phase by
spin-1

2 impurity coupled symmetrically to two neighboring
host spins.11–13

In our recent paper14 �hereafter referred to as paper I� we
studied dynamical properties of impurity coupled symmetri-
cally to two neighboring spins in 2D AFs at T�0. A tech-
nique was proposed based on Abrikosov’s pseudofermion
technique15 that allows one to discuss dynamics of an impu-
rity with arbitrary spin value S. Meanwhile we focus in paper
I on the particular case of spin-1

2 defect. Our aim was to find
the impurity dynamical susceptibility ����. We assumed that
the impurity dynamics is governed by interaction with spin
waves. Then, two kinds of the host systems are considered in
paper I: �i� ordered 2D AFs in which the long range order at

T�0 is stabilized by a small interaction �for definiteness
interplane interaction� ��J, where J is the coupling con-
stant between the host spins; and �ii� isotropic 2D AFs. We
bared in mind that in isotropic 2D AFs only spin waves are
well defined with energies much larger than Jsa /�, where a
is the lattice constant, s is the value of host spin, and �
	 exp�const/T� is the correlation length. It was obtained
within the spin-wave approximation �SWA� that, similar to
the spin-boson model, the effect of the host system on the
defect is completely described by the spectral function which
was assumed to be proportional to �2 in calculations of ����.
We demonstrated that the spectral function is proportional to
�2 in 2D AFs and in the ordered quasi-2D AFs at
�
Jsa /� and �
�, respectively. Notice that only trans-
verse host spins fluctuations contribute to the spectral func-
tion within SWA. Then, only processes of absorption or
emission of one spin wave by the impurity is taken into
account within SWA.

FIG. 1. Unit cell of a 2D AF with impurity spin coupled �a�
symmetrically and �b� asymmetrically to AF sublattices. Strengths
of coupling with corresponding host spins g and g1�g2 are de-
picted. The local Néel order is also shown. Only symmetrically
coupled impurities are discussed in the present paper.
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The calculations of ���� were performed in paper I within
the fourth order of the dimensionless coupling parameter
f 	g /J. We show that the transverse impurity susceptibility
����� has a Lorenz peak with the width �	 f4J�T /J�3 that
disappears at T=0, and a nonresonant term. The imaginary
part of the nonresonant term is a constant independent of T at
���
� and the real part has a logarithmic divergence of the
form f2 ln���2+�2� /J2�. The longitudinal susceptibility
����� has only the nonresonant term which differs from that
of ����� by a constant. The fact that the spectral function in
a 2D AF is proportional to �2 only at �
 �� or Jsa /�� leads
to the following restriction on the range of validity of the
results obtained: max�� , ����
 �� or Jsa /��. Notice that in
the case of an isotropic 2D AF at T�0 this relation deter-
mined the range of validity of our assumption that the impu-
rity dynamics is governed by interaction with spin waves.

It was observed that the static susceptibility ��0� has the
free-spin-like term 1/ �4T� and a correction proportional to
f2 ln�J /T�. Quite a different behavior of ��0� was obtained in
the regime of T� �g� for asymmetrically coupled defects:5,6

the classical-like term S2 / �3T� and the logarithmic correction
proportional to ln�J /T� rather than f2 ln�J /T�.

The influence of the finite concentration of the defects n
on the low-temperature properties of a 2D AF was also stud-
ied in paper I. It was shown that correction to the square of
the spin-wave spectrum is proportional to nf2�����. Then
two regimes were considered, ���
�0	 f2T2 /J and
�����0, at which, respectively, nonresonant and resonant
parts of ����� prevail. In the most interesting case of
���
�0 we found the logarithmic correction to the spin-
wave velocity and an anomalous damping of the spin waves
proportional to nf4���. Such damping was obtained also in
Refs. 1 and 16 where asymmetrically coupled impurities
were studied in 2D AFs.

In the present paper we continue our discussion of sym-
metrically coupled defects in 2D AFs and �i� go beyond
SWA and �ii� study defects with S�1/2. In particular, lon-
gitudinal host spin fluctuations come into play outside SWA.
They lead to two kinds of processes: absorption or emission
of two magnons by the impurity and scattering of one spin
wave on the impurity. We find that in the case of an isotropic
2D AF at T�0 our assumption that the impurity dynamics is
governed by interaction with spin waves is wrong at any T
and �. This circumstance manifests itself in the fact that spin
waves with wavelength of the order of � are important in the
processes of absorption or emission of two magnons and
scattering of one magnon. Thus, our approach can be applied
to ordered 2D AFs only.

It is demonstrated that longitudinal host spin fluctuations
lead to two important contributions to the spectral function
which should be taken into account. One of them is propor-
tional to T2� /s and corresponds to scattering of one spin
wave on the impurity. Another contribution has the form
�2v�T� /s, where v�T� is a series in �T /s�ln�T / �s���, and
originates from two processes: emission or absorption of two
spin waves by the impurity and the scattering of one magnon
on the impurity.

It is demonstrated that spin-1
2 impurity susceptibility

����� has the same structure as that obtained within SWA:

the Lorenz peak and the nonresonant term. The difference is
that the width of the peak � acquires large correction of the
first order of f2: �	 f2J�T /J�3. This term dominates if the
following condition is fulfilled that does not depend on s:
�g� /J�5. Besides, some constants in the expression for
����� acquire thermal corrections. The width of the Lorenz
peak in ����� is zero within our precision. We observe that
longitudinal host spin fluctuations lead to a new logarithmic
correction to ���0� proportional to −�f2 / �Js��ln�T / �s���.

Corrections to the spin-wave spectrum have the same
form as those obtained within SWA. The difference is that
some constants acquire thermal corrections, � has another
form and the quantity �0 separating two regimes becomes
larger being proportional to T2 /J rather than f2T2 /J.

It should be pointed out that the obtained remarkable in-
fluence of longitudinal host spin fluctuation on frustrated im-
purity spin dynamics is quite unusual. There is no such in-
fluence in the case of asymmetrically coupled defects. We
show below that longitudinal fluctuations give a negligibly
small correction to the spectral function and there is no rea-
son to expect any perceptible influence from them. Thus, we
confirm that the frequently used T-matrix approach1,16,17

based on Dyson-Maleev transformation and dealing with
only the bilinear part of the Hamiltonian is appropriate for
discussing the asymmetrically coupled defects.

We find also ���� for symmetrically coupled impurities
with S�1/2. It is well known that host spin fluctuations lead
to an effective one-ion anisotropy on the impurity site

in three-dimensional �3D� AFs, −C̃�T�Sz
2g2 /J, where

C̃�T��0.18,19 Then defects with S�1/2 appear to be split
and magnetization of sublattices is a hard axis for them. We
obtain the same one-ion anisotropy for defects in 2D AFs. In

particular we observe a large reduction of the value of C̃�T�
obtained within SWA by 1/s corrections stemming from lon-
gitudinal host spin fluctuations. We show that thermal cor-

rections reduce C̃�T� further and can change the sign of C̃�T�
at T�TN.

Then we find that if T is greater than the value of the
defect splitting, transverse dynamical susceptibility contains
2S Lorenz peaks corresponding to transitions between impu-
rity levels and a nonresonant contribution. Widths of the
peaks are proportional to f2J�T /J�3 as in the case of S=1/2.
When T is lower than the distance between nearest impurity

levels �	C̃�T�g2 /J� there are only peaks corresponding to
transitions between low-lying levels. Longitudinal suscepti-

bility has only the nonresonant term. At T
 C̃�T�g2S2 /J
static susceptibility has the same structure as that of
S=1/2: term S�S+1� / �3T� and a logarithmic correction. If

T� C̃�T�g2 /J, ��0� of integer and half-integer spins behave
differently. The imaginary part of the nonresonant term is a
constant that leads to abnormal spin-wave damping propor-
tional to nf4���, as in the case of spin-1

2 impurity.
It is explained in paper I that in the case of finite concen-

tration of defects the results obtained within our method have
a limited range of validity. This is because the interaction
with defects modifies host spin Green’s functions and the
bare spectral function acquires large corrections at energies
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around those of the Lorenz peaks. The problem should be
solved self-consistently to obtain correct expressions for the
impurity susceptibility and the spin-wave spectrum around
the resonance energies. Corresponding consideration is out
of the scope of the present paper. This large renormalization
of the spectral function can be interpreted as a resonance
scattering of spin waves on impurities. A similar situation
exists in the case of asymmetrically coupled defects �see dis-
cussion in Sec. V�. As a result in the vicinity of the reso-
nance energies one might expect strong deviation from lin-
earity of the real part of the spin-wave spectrum and an
increase of the spin-wave damping.

The rest of this paper is organized as follows. The model
and diagrammatic technique are discussed in Sec. II. Pseudo-
fermion Green’s functions and pseudofermion vertex are cal-
culated in Sec. III. The impurity dynamical susceptibility is
derived in Sec. IV. Influence of the defects on the spin-wave
spectrum is considered in Sec. V. Section VI contains our
conclusions. There are two appendixes with details of calcu-
lations.

II. TECHNIQUE AND GENERAL EXPRESSIONS

A. Technique

We discuss a Heisenberg AF with impurity spin S coupled
to two neighboring host spins s1 and s2 describing by the
Hamiltonian,

H = J

�i,j�

sis j + gS�s1 + s2� . �1�

It should be stressed that one can consider other symmetri-
cally coupled defects �e.g., those coupled to four host spins�
on the equal footing. The results would differ by some con-
stants only. It is convenient to use Abrikosov’s pseudofer-
mion technique15 and to represent the impurity spin as S
=
nmbn

†Snmbm, where n and m are the spin projections, and
bn

† and bn are operators of creation and annihilation of
pseudofermions. We calculate below impurity susceptibility
���� using the diagrammatic technique. First diagrams for
���� and a graphical representation of the result of all dia-
grams’ summation are shown in Fig. 2. Thin lines with ar-
rows in the picture represent the bare pseudofermion Green’s
functions: G

mm�
�0� �i�n�=mm��i�n−��−1, where � is the chemi-

cal potential of pseudofermions that should be tended to in-
finity in the resultant expressions. Wavy lines in the picture
denote magnon Green’s functions. As usual, diagrams with
only one pseudofermion loop should be taken into account
because each loop is proportional to the small factor of e−�/T.

Within SWA discussed in paper I only one virtual magnon
can be emitted or absorbed in each vertex. Beyond SWA one

must consider diagrams in which some vortexes contain two
and three magnon lines. Then, within SWA products contain-
ing many operators of host spins reduce to products of two-
spin Green’s functions while there is no such simplification
beyond SWA. Meanwhile we find below that within the first
order of g2, the order in which all calculations of the present
paper are done, diagrams with single and double wavy lines
that do not contain vertexes with three wavy lines give the
largest contributions. These are the diagrams shown in Figs.
2 and 3. Figure 4 gives examples of diagrams that should be
discarded. A double wavy line corresponds to longitudinal
susceptibility of the host spins. Thus, the diagrammatic tech-
nique used in paper I can be applied for the present task with
minor modification: the single wavy line and double wavy
line correspond to �−1N���Im ������ with � ,�=x ,y and
�−1N���Im �zz���, respectively, where N���= �e�/T−1�−1 is
the Planck’s function,

������ = − i
0

�

dtei�t��s1
��t� + s2

��t�,s1
��0� + s2

��0��� �2�

and �¯� denotes the thermal average; frequencies of func-
tions Im ������ should be taken so as they are contained in
arguments of G�0� functions with positive sign; integration
over all frequencies of functions Im ������ is taken in the
interval �−� ,��. Im ������ is referred to throughout this
paper as the spectral function.

It is shown in Appendix A that the imaginary part of
������ given by Eq. �2� has the following form in the or-
dered 2D AF at ���
�:

Im ������ = − A��

�
�2

sgn�������d��

− B
r�T�

s

�

�
� T

�
�2

�����z�z, �3�

d�� = ���1 − �z� +
v�T�

s
�z�z, �4�

where A and B are positive constants given by Eqs. �A4� and
�A8�, respectively, that are independent of s and which di-
mensionality is inverse energy. � is a characteristic energy
for which we have Eq. �A3� and ���� is a cutoff function

FIG. 2. Lower-order diagrams for the impurity dynamical sus-
ceptibility �P��� and a graphical representation of the result of the
overall series summation. Lines with arrows and wavy lines repre-
sent pseudofermion and magnon Green’s functions, respectively.

FIG. 3. Lower-order diagrams for the pseudofermion self-
energy part.

FIG. 4. Examples of diagrams for the pseudofermion self-
energy part �a� and vertex �b� containing vertexes with two and
three magnon lines. Such diagrams are negligibly small compared
to those presented in Figs. 3 and 5.
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that is equal to unity at �����, it drops rapidly to zero
outside this interval. Within the first order of 1 /s we have

r�T� = 1, v�T� =
8sJ

N


k

N��k�
�k

, �5�

where N is the number of spins in the lattice and �k is the
spin-wave energy which is equal to �8sJk at small k. The
logarithmic infrared singularity in the expression for v�T� is
screened by the interaction stabilizing the long range order at
T�0, v�T��T / ��sJ�ln�T / �s���. Notice that only the term
proportional to A�2d���1−�z� was obtained in paper I
within SWA. It originates from transverse host spin fluctua-
tions and corresponds to emission or absorption of one spin
wave by the impurity. The remaining two contributions to
Im ������ in Eq. �3� are of the next order of 1 /s. They stem
from longitudinal host spin fluctuations. The last term in Eq.
�3� is proportional to T2� and corresponds to scattering of
one spin wave on the impurity. This term can be larger than
�2. The correction proportional to v�T��2 originates from
two kinds of processes: emission or absorption of two spin
waves by the impurity and scattering of one magnon on the
impurity. To determine the range of values of v�T� we use the
well-known formula for the average z component of the host
spin,

�sz� = s −
1

N


k

4sJ − �k

2�k
−

4sJ

N


k

N��k�
�k

. �6�

The second and the third terms in Eq. �6� are equal approxi-
mately to 0.2 and T / �2�sJ�ln�T / �s���, respectively. The
third term must be much smaller than s within the spin-wave
approach. Comparing it with v�T� given by Eq. �5� one con-
cludes that v�T� / �2s� is much smaller than unity.

As it is explained in Appendix A, higher order 1 /s cor-
rections give contributions proportional to products of �2

��T2� and powers of �T / �s���ln�T / �s���. Hence, r�T� and
v�T� appear to be series in powers of �T / �s���ln�T / �s���.
We restrict ourselves in this paper by the first 1 /s correction
to r�T� and v�T�.

Terms in Eq. �3� proportional to v�T��2 will result in the
temperature corrections to some constants in ���� obtained
within SWA. It will also give a logarithmic contribution to
���0�. The last term in Eq. �3� will lead to the large renor-
malization of the Lorenz peak widths.

We show in Appendix A that one can lead to expressions
�3�–�5� considering an isotropic 2D AF at T�0. However
there is no parameter in this case to screen infrared singular-
ity of the function v�T�. This singularity signifies that host
excitations with wavelengths greater than the correlation
length � play an important part in the impurity dynamics.
Then spin-wave formalism is inadequate in this case and our
results are applicable for ordered 2D AFs only.

B. Dynamical susceptibility of the impurity

We have for the dynamical susceptibility after the analyti-
cal continuation from the discrete frequencies to the real
axis14,20–22

�P��� =
e−�/T

2�iN−�

�

dxe−x/T Tr�P�G�x + ���P
++�x + �,x�G�x�

− G*�x��P
−−�x,x − ��G*�x − ��

− G�x + ���P
+−�x + �,x�G*�x�

+ G�x��P
+−�x,x − ��G*�x − ���� , �7�

where N is the number of pseudofermions that is propor-
tional to e−�/T, P is a projection of impurity spin, and G��� is
the retarded Green’s function. The trace is taken over projec-
tions of the impurity spin, and signs at superscript of �P
denote those of imaginary parts of the corresponding argu-
ments �e.g., �P

+−�x ,y�=�P�x+ i ,y− i��. An energy shift by
� has been performed during the derivation of Eq. �7�. As a
result the Fermi function �e�x+��/T+1�−1 has been replaced by
e−�x+��/T and the functions G and �P no longer depend on �.
These are those functions we calculate in the next section by
the diagrammatic technique. It is clear that the bare pseudo-
fermion Green’s functions in this case are G

mm�
�0� ���

=mm� /�.
We derive below analytical expressions for the dynamical

susceptibility of the impurity. Perturbation theory is used for
this purpose according to the interaction. It can be done if the
dimensionless constants

f2 =
g2A

�
and h2 =

g2Br�T�
s�

�8�

are small. Two constants f and h both proportional to �g� are
introduced to distinguish contributions from the terms in Eq.
�3� proportional to �2 and T2�. Notice that h=0 within
SWA. Using Eqs. �A3�, �A4�, and �A8� we have f2

= �g /J�2�� / �4s� and h2= �g /J�2�2 /s2. Then g can be even
greater than J at large enough s.

III. PSEUDOFERMION GREEN’S FUNCTION
AND THE VERTEX

A. Green’s function

We turn to the calculation of the pseudofermion Green’s
function Gmn���. The Dyson equation for it has the follow-
ing form: �Gmn���=mn+
q�mq���Gqn���, where �mq���
are matrix elements of the self-energy. It is easy to show that
matrices ���� and G��� are diagonal, �mn���=mn�n���,
Gmn���=mnGn���=mn / ��−�n����. As we demonstrate in
paper I, there is further simplification in the case of two-level
impurity, ���� and G��� are proportional to the unitary ma-
trix.

Diagrams of the order of g2 for �n��� are shown in Fig. 3.
Let us represent the Green’s function in the form

Gn��� =
1 − Zn���

� + cn + i�n�� + cn�
, �9�

where Zn��� and �n��� are some functions, �n��� are real
ones, and cn are constants. Using Eq. �9� we have in the first
order of g2
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Zn
�1���� =

f2R�n
�1�

��


−�

�

dx
�x�N�x���x�

x + � + cn + i�n�x + � + cn�
,

�10�

�n
�1���� = h2R�n

�2�� T

�
�2

��1 + N�������� , �11�

cn
�1� = g2S�S + 1� − n2

�


−�

�

dx
N�x�Im ���x�

x

+ g2n2

�


−�

�

dx
N�x�Im �zz�x�

x
, �12�

where �����=�xx���=�yy���, the principal value of the in-
tegrals is implied in Eq. �12� and

R�n
�1� = �S�S��nnd�� = S�S + 1� − �1 −

v�t�
s
�n2, �13�

R�n
�2� = �SzSz�nn = n2. �14�

Summation over repeated greek indices is understood in Eq.
�13� and below. The logarithmic divergence in expression
�10� at real � is screened by the term i�n�x+�+cn� in the
denominator. We find that higher order diagrams both in g
and 1/s �e.g., that shown in Fig. 4�a�� give negligibly small
contributions to the self-energy part. It was obtained in paper
I that within SWA the first nonzero contribution to �n��� is
of the order of f4	g4. As is seen from Eq. �11�, longitudinal
host spin fluctuations lead to the correction of the order of
h2	g2. It is important to note that �n��� is the constant at
����T,

�n�� → 0� � �0n = h2R�n
�2��� T

�
�3

. �15�

Notice that within SWA this constant shows the same T
dependence,14 �0

�swa�	 f4T3 /�2.
Using Eqs. �9�–�12� the number of pseudofermions N can

be calculated up to the first order of g2 with the result

N = − 

n

1

�


−�

�

dxN�x�Im Gn��� � e−�/T

n

ecn/T. �16�

Notice that terms proportional to g2 cancel each other on the
right-hand part of Eq. �16�.

It should be stressed that one cannot use in Eq. �12� ex-
pression �3� for the imaginary part of ����x� because large x
are essential in the integrals. We must use exact expressions
for Im ����x� to find constants c: Eq. �A2� for Im ���x�, Eq.
�A5� for 1 /s correction to Im ���x�, and Eq. �A7� for
Im �zz�x�. As a result, one obtains up to an unimportant con-
stant independent of n,

cn
�1� = − �C −

C� + C��T�
2s

�n2g2

J
= − C̃�T�n2g2

J
, �17�

where

C =
J

�2��2  dk
1 + cos�kR12�

J0 + Jk
� 0.25, �18�

C� = C�1 −
1

�2��2  dk
�k

sJ0
� � 0.04, �19�

C��T� =
sJ

�2��4  dk1dk2
1 − cos��k1 + k2�R12�

�k1
�k2

�
�sJ0�2 + s2Jk1

Jk2
− �k1

�k2

�k1
+ �k2

+ 4C� 4sJ

�2��2  dk
N��k�

�k
�

� 0.13 +
4sJ

�2��2  dk
N��k�

�k
, �20�

where R12 is a vector connected host spin coupled to the
impurity. Jk=2J�cos kx+cos ky�, �k=s�J0

2−Jk
2 is the spin-

wave energy, and integrals are over the chemical Brillouin
zone. The constant C is of the zeroth order of 1 /s. It origi-
nates from transverse host spin fluctuations. Constants C�

and C��T� are first 1 /s corrections stemming from transverse
and longitudinal fluctuations, respectively. It is seen that their
sum is of the order of C at small s and it should be taken into
account. Temperature corrections are considered in C��T�
only because those to C� are much smaller. We note that the
thermal correction to C��T� coincides with that to �sz� given
by Eq. �6�. It should be pointed out that this correction re-

duces the value of C̃�T� and can change its sign at T�TN.36

Let us discuss the physical meaning of constants c given
by Eq. �17�. They describe splitting of the impurity caused
by the host spin fluctuations. The distances between the lev-
els are given by differences between corresponding constants
c. One infers from Eq. �16� that at T much smaller than the
distance between the nearest levels only those with maxi-
mum c are populated. As is clear from Eq. �17�, these are
levels with the smallest in absolute value projections on the
quantized axis. Then, the impurity splitting can be described

by the effective Hamiltonian −Sz
2C̃�T�g2 /J that is the effec-

tive one-ion anisotropy. Such anisotropy was obtained within
SWA for frustrated defects in 3D AFs.18,19

It is also seen from Eq. �17� that the spin-1
2 defect remains

degenerate because c1/2=c−1/2. We have taken advantage of
this circumstance in paper I and discarded constants c attrib-
uting them to renormalization of the chemical potential �.

B. Pseudofermion vertex

Let us turn to the consideration of the pseudofermion ver-
tex �P�x+� ,x�. First diagrams for this quantity are presented
in Fig. 5. It is shown in paper I that �Pmm��x+� ,x� is pro-
portional to Pmm� for S=1/2. However in general it has a
more complicated matrix structure.
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As is seen from Eq. �7�, we need four different branches
of �P�x+� ,x�. It is clear that �++= ��−−�* and within the first
order of g2 one has

�Pmn
++ �x + �,x�

= Pmn +
f2

��


l,q

Sml
� PlqSqn

� d��

�
−�

�

dyy�y�N�y���y�Gl�x + y + ��Gq�x + y� . �21�

It is seen from Eq. �21� that the poles of G functions are on
the one hand from the real axis. Hence, the second term in
Eq. �21� is small compared to the first one and we can restrict
ourselves by this precision. The term proportional to h2 is
discarded in Eq. �21� being negligibly small due to the factor
�T /��2.

The situation is different in the case of �+−= ��−+�*. Poles
of the Green’s functions under integrals appear to be on the
opposite sides of the real axis. As a result at �=0 the integral
diverges at finite x as widths �0 and constants c tend to zero.
Then one must consider entire series to find �+−. After analy-
sis of diagrams for �+− and evaluation of their contribution
to �P��� we find that the most important diagrams within
each order of g2 are taken into account in the following equa-
tion:

�Pmn
+− �x + �,x�

= Pmn +
f2

��


l,q

Sml
� PlqSqn

� d��

�
−�

�

dyy�y�N�y���y�Gl�x + y + ��Gq
*�x + y�

+
h2T2

��2Smm
z Snn

z 
−�

�

dyyN�y���y��Pmn
+− �x + y + �,x + y�

�Gm�x + y + ��Gn
*�x + y� . �22�

Notice that this equation differs from that obtained in paper I
within SWA. It takes into account only ladder diagrams
shown in Fig. 5 whereas within SWA one must consider also
diagrams with crossing of two neighboring rungs. Equation
�22� can be easily solved if one notes that the last term in
this equation should be taken into account only when
��+cm−cn � �T. Outside this interval the last term is much
smaller than the second one. At such � the area of integra-
tion near the poles of the Green’s functions is essential in the
last term in Eq. �22� and it gives the resonant contribution

�Pmn
+− �x + �,x�

= Pmn +
f2

��


l,q

Sml
� PlqSqn

� d��

�
−�

�

dyy�y�N�y���y�Gl�x + y + ��Gq
*�x + y�

− 2ih2Smm
z Snn

z � T

�
�2

�x + cn�N�− x − cn���x + cn�

�
�Pmn

+− �� − cn,− cn�
� + cm − cn + i�0m + i�0n

. �23�

Equation �23� has the same structure as the equation derived
in paper I. The difference is that �0 and the third term are of
the order of g2 rather than g4. Solving Eq. �23� one obtains

�Pmn
+− �x + �,x�

= Pmn +
f2

��


l,q

Sml
� PlqSqn

� d��

�
−�

�

dyy�y�N�y���y�Gl�x + y + ��Gq
*�x + y�

+ 2ih2Smm
z Snn

z Pmn�� T

�
�3 ��x + cn�

� + cm − cn + 2i�mn
,

�24�

�mn = h2�m − n�2�

2
� T

�
�3

. �25�

We use in Eq. �24� that the following x will be important for
calculation contributions to �P��� from �+−: �x+cn � �T.
Note, the third term in Eq. �24� is much greater than the
second one when ��+cm−cn � ��0 / f2. It should be pointed
out that �mn=0 for P=Sz. Evidently, temperature depen-
dences of �mn for P=Sx ,Sy and �0 given by Eq. �15� are the
same. Within SWA the constant �mn has the same T depen-
dence but it is of the order of g4,14 �mn

�swa�	 f4T3 /�2.

IV. IMPURITY SUSCEPTIBILITY

We can derive now the impurity susceptibility using the
general expression �7�, Eqs. �9�–�11� for the Green’s func-
tion, Eqs. �21� and �24� for the branches of the vertex, and
Eq. �16� for the number of pseudofermions N. It is conve-
nient to discuss separately the cases of S=1/2 and S�1/2.

A. Spin-1
2 impurity

As a result of tedious calculations some details of which
are presented in Appendix B we have for the dynamical sus-
ceptibility of the impurity up to terms of the order of g2,

�P��� =
1

4T

2i�

� + 2i�
+ 2R�

f2

��


−�

�

dx
sgn�x���x�
x + � + 2i�0

,

�26�

FIG. 5. Lower-order diagrams for pseudofermion vertex
�P�x+� ,x�.
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R� =
PS��S�,P�d��

2S + 1
, �27�

where we introduce the notation Ȳ =Tr�Y�, �0=h2T3 / �4�2�,
�=0 for P=Sz, and �=h2T3 / �2�2� for P=Sx,y. Expression
�26� differs from that obtained in paper I only by the form of
�0 and � and by the thermal 1 /s correction to R�. The first
term in Eq. �26� is the Lorenz peak with the width �. The last
term is the nonresonant part of the susceptibility. Its imagi-
nary part at �� � 
�0 is proportional to sgn��� and the real
one contains the logarithmic singularity of the form
ln��2+�0

2�. At T=0 and ��0 the nonresonant contribution
survives only and the susceptibility has the logarithmic sin-
gularity. It is clear that longitudinal host spin fluctuations
become important if �0
�0

�swa� and �
��swa�. These condi-
tions are fulfilled when �g � /J�5, i.e., for weakly coupled
defects being considered. The contrast between results which
do and do not take into account the longitudinal host spin
fluctuations is illustrated by Fig. 6, where we plot
Im ����� /� using Eq. �26�.

The nonresonant term gives the main contribution to the
susceptibility �26� when

� 
 �0 =
�

s
� T

�
�2

. �28�

Notice that �0	 f2T2 within SWA.
Using results of calculations presented in Appendix B we

find that static susceptibility �P�0� does not depend on � and
�0,

�P�0� =
1

4T
�1 − 4f2UR�� + 4R�

f2

��
ln��

T
� , �29�

U = −
4SJ2

�3/2  dx
Im ���x�

x�x�

=
2J2

�5/2  dk
�1 + cos�kR���J0 − Jk�

�J0
2 − Jk

2�3/2 � 0.39. �30�

It is taken into account in Eq. �30� that one cannot use Eq.
�3� for Im ���x� because large x are important in the
integral.37 Equation �A2� is used to find U as it was done
above for calculation of constants c. It is seen from Eq. �29�
that the static susceptibility contains the free-spin-like term
�4T�−1 whose amplitude is slightly reduced by the interaction
and the logarithmic correction proportional to f2. Static sus-
ceptibility has the same form as that obtained in paper I
within SWA with the only difference in the form of the con-
stant R�=R�

�swa�+ �v�T� / �2s��PSz�Sz , P�. Notice that R�

=R�
�swa�=1/4 for P=Sz and ���0�=��

�swa��0�. In contrast R�

=R�
�swa�+v�T� / �8s�=1/8+v�T� / �8s� for P=Sx,y and the

transverse static susceptibility has the form

���0� =
1

4T
�1 − f2

U
2
� − f2

U
��s�

ln� T

s�
� +

f2

2��
ln��

T
� .

�31�

Thus the longitudinal host spin fluctuations lead to another
logarithmic term in ���0�.

B. Impurities with S�1/2

1. Dynamical susceptibility

The calculations are slightly more tedious for impurity
with S�1/2. As a result of simple evaluations presented in
Appendix B we lead to the following quite cumbersome ex-
pression for the impurity susceptibility:

���� =
e−�/T

N 

m,n
��Pnm�2�e�cm+2i�nm−i�0n�/T − e�cn−i�0n�/T�

1

� + cm − cn + 2i�nm

+ �Pnm�2�R�n
�1� + R�m

�1� ��ecn/T + ecm/T�
f2

2��


−�

�

dx
sgn�x���x�

x + � + cm − cn + i�0n + i�0m

+ 

q,l

2 Re�PnmSmq
� PqlSln

�d���
� + cm − cn + i�0n + i�0m

f2

��


−�

�

dx�x�xN�x���x� � � e�cm+i�om�/T

�x − � + cl − cm − i�0l − i�0m��x + cq − cm + i�0q − i�0m�

−
e�cn−i�on�/T

�x + � + cq − cn + i�0q + i�0n��x + cl − cn + i�0n − i�0l�
�� . �32�

FIG. 6. The even-� function Im������ /���2 for spin-1
2 impu-

rity at T /�=0.1 and f =0.1 with longitudinal host spin fluctuations
being �solid line� and not being �dotted line� taken into account.
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The first term here is zero for longitudinal susceptibility �P
=Sz and thus m=n�. In the case of transverse susceptibility it
gives 2S Lorenz peaks corresponding to transitions between
impurity levels. Using Eq. �17� we obtain for the resonant
frequencies

�res
�n� = �cn − cn−1� = �2n − 1�C̃�T�g2/J , �33�

where n=S ,S−1, . . . ,nmin and nmin=1/2 and 1 for half-
integer and integer spins, respectively. Then in contrast to
half-integer spins there is no resonance peak at zero fre-
quency in the case of integer spins. Notice that the distance
between frequencies does not depend on S. The second and
the third terms in Eq. �32� give contributions to the nonreso-
nant term. The third term contains also a resonant contribu-
tion. As is explained in Appendix B, this contribution should
be discarded because the resonant terms of the susceptibility
are calculated within the zeroth order of g2.

One makes sure after simple transformations that Eq. �32�
coincides with Eq. �26� if S=1/2. It is more convenient to
discuss expression �32� further in some limiting cases in
which ���� has simpler forms. Let us consider the suscepti-
bility when temperature is greater than the impurity splitting,

T
 C̃�T�g2S2 /J, and when T is much smaller than the energy

between nearest impurity levels, T� C̃�T�g2 /J.

T
 C̃�T�g2S2 /J. Equation �32� can be simplified greatly in
this case if one expands exponents ecn/T up to the second
term and notes that the nonresonant terms should be taken

into account at �� � 
 C̃�T�g2S /J only. As a result one obtains

�P��� =
1

T�2S + 1�
n,m
�Pnm�2

cm − cn + 2i�nm

� + cm − cn + 2i�nm

+ 2R�

f2

��


−�

�

dx
sgn�x���x�
x + � + i

, �34�

where R� is given by Eq. �27�. Notice that Eq. �34� coincides
with Eq. �26� if S=1/2. The imaginary part of the nonreso-
nant term is greater than that of resonant terms when �� �

�0, where �0 is given by Eq. �28�. The real part of the
nonresonant term dominates in Eq. �34� at �� � 
 f��� /T.
To illustrate our results we plot in Fig. 7 the even-� function
Im ����� /� using Eq. �34� for S=3/2 and S=2.

T� C̃�T�g2 /J. At such small temperatures only low-lying
impurity levels contribute to susceptibility. The transverse
susceptibility for integer impurity spin has the form

��
int��� =

2�P01�2

� + c0 − c1 + 2i�01
−

2�P01�2

� − �c0 − c1� + 2i�01

+ i
f2

�
��P01�2�R�0

�1� + R�1
�1��sgn�� + c1 − c0�

− 

m,q,l

Re�P0mSmq
� PqlSl0

�d���
� + cm − c0 + i�0m

�� + cq − c0�2

� + cq − cl + i�0q + i�0l

��1 + sgn�� + cq − c0�� − �� → − ��� , �35�

where ��→−�� denotes terms inside the parentheses with
−� set instead of �. The first two terms in Eq. �35� describe
transitions between three low-lying impurity levels:
�−1↔0� and �0↔1�. The last term in Eq. �35� is the non-
resonant part of the susceptibility that is zero between the
resonance peaks �= ± �c0−c1�. Beyond this interval it is neg-
ligibly small near the resonance peaks, i.e., at ��+c0−c1 �
�T3/2 /�� and ��− �c0−c1� � �T3/2 /��, but it gives the main
contribution to the imaginary part of the susceptibility out-
side these two intervals being of the order of f2. The real part
of the nonresonant term is small compared to that of the
resonant terms at �� � ��.

In the case of half-integer impurity spins the transverse
susceptibility has the form

��
half-int��� =

�P−�1/2��1/2��2

T

2i�−�1/2��1/2�

� + 2i�−�1/2��1/2�
+

�P�1/2��3/2��2

� + c1/2 − c3/2 + 2i��1/2��3/2�
−

�P�1/2��3/2��2

� − �c1/2 − c3/2� + 2i��1/2��3/2�
+ i

f2

4�

� 

n=±1/2

�

m

�Pnm�2�R�n
�1� + R�m

�1� �sgn�� + cm − cn� − 

m,q,l

2 Re�PnmSmq
� PqlSln

�d���
� + cm − cn + i�0m + i�0n

�
�� + cq − cn�2

� + cq − cl + i�0q + i�0l
�1 + sgn�� + cq − cn�� − �� → − ��� , �36�

FIG. 7. The even-� function Im������ /���2 calculated using
Eq. �34� for impurity with S=3/2 �solid line� and S=2 �dotted line�
at T /�=0.05 and f =0.1.
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where the first three terms describe transitions between four
low-lying impurity levels: �−3/2↔−1/2�, �−1/2↔1/2�,
and �1/2↔3/2�. The nonresonant part of the susceptibility
is negligibly small in the vicinity of the resonance peaks,
i.e., at �� � �T2 /�, ��+c1/2−c3/2 � �T3/2 /��, and
��− �c1/2−c3/2� � �T3/2 /��. Outside these three intervals the
nonresonant term is of the order of f2 and it gives the main
contribution to the imaginary part of the susceptibility. The
real part of the nonresonant term is small compared to that of
the resonant terms at �� � ��.

2. Static susceptibility

T
 C̃�T�g2S2 /J. Using results of Appendix B one finds for
static susceptibility in this regime

�P�0� =
S�S + 1�

3T
�1 − f2U 3R�

S�S + 1�� + 4R�

f2

��
ln��

T
� ,

�37�

where R� and U are given by Eqs. �27� and �30�, respectively.
Equation �37� coincides with Eq. �29� at S=1/2. It is seen
that static susceptibility of large-S impurities has the same
structure as that of the spin-1

2 defect.

T� C̃�T�g2 /J. At small temperature integer and half-
integer impurity spins behave differently. Thus, transverse
static susceptibility of an integer spin is a constant,

��
int�0� =

4�P01�2

c0 − c1
, �38�

whereas the longitudinal one is exponentially small, ��
int�0�

�0.
Transverse static susceptibility of a half-integer spin has

the form

��
half-int�0� =

1

T
��P−�1/2��1/2��2 − f2UQ� + 4Q

f2

��
ln��

T
�

+
2�P�1/2��3/2��2

c1/2 − c3/2
, �39�

Q =
1

2�
n,m
��Pnm�2R�n

�1� − 

n,m,q,l

�PnmSmq
� PqlSln

� d��� , �40�

where primes over sums signify that summation is taken over
projections 1/2 and −1/2 only. It is seen that only transitions
between states with projections ±1/2 contribute to the first
two terms in Eq. �39�. The last term represents the contribu-
tion to the susceptibility from transitions between states with
projections ±1/2 and ±3/2. It is of the order of 1 / f2 being
much larger than the logarithmic term up to exponentially
small temperatures T	�e−1/f4

.
Longitudinal static susceptibility of a half-integer spin be-

haves like that of the spin-1
2 defect,

��
half-int�0� =

1

T
��P−�1/2��1/2��2 − f2UQ�� + 4Q

f2

��
ln��

T
� ,

�41�

Q� =
1

2�
n,m
��Pnm�2R�n

�1� − 

q,l



n,m

�PnmSmq
� PqlSln

� d��� , �42�

where Q is given by Eq. �40�. In contrast to ��
half-int�0� there

is no term proportional to 1/ f2 in ��
half-int�0� screening the

logarithmic correction.
As it is explained in paper I, there is a restriction on the

range of validity of the resultant expressions for �P���. It is
the consequence of the fact that the function Im ���� has the
form �3� if ���
� only. It is easy to see that in all calcula-
tions performed above one can use the function of the form
�3� if the following condition on � and widths �0 holds:
max�min��0n� , ����
�.

V. INFLUENCE OF DEFECTS ON THE HOST SYSTEM

We discuss in this section the influence of finite concen-
tration of the defects n on the spin-wave spectrum of AF. It is
demonstrated in paper I that in the vicinity of the points
k=0 and k=k0, where k0 is the antiferromagnetic vector, the
denominator of host spin Green’s functions determined by
the spin-wave spectrum has the form

D��,k� = �2 − �k
2�1 −

nf2

2�
�u�k������� , �43�

u�k� =
1

2
+

�kR12�2

k2 , �44�

where R12 is the vector connected host spin coupled to im-
purity �it is assumed from the beginning that this vector is
the same for all defects�. The unperturbed spectrum is linear
at k�k0 and k	k0: �k=ck=�8sJk. It is seen from Eqs. �43�
and �44� that the spectrum depends on the direction of the
momentum k as a result of interaction of magnons with the
defects. This circumstance is a consequence of our assump-
tion that the vector R12 is the same for all impurities. In fact,
it can have four directions and the value �R12k�2 /k2 can have
two different values, cos2 �k and sin2 �k, where �k is the
azimuthal angle of k. It easy to realize that u�k�=1 if all four
ways of coupling of the impurity with the AF are equally
possible.

Let us turn to spin-1
2 impurity. It is convenient to consider

separately regimes of ���
�0 and �����0, where �0 is
given by Eq. �28�. In these cases the nonresonant and the
resonant parts, respectively, dominate in the impurity suscep-
tibility �26�. The results are summarized in Table I. They are
very similar to those derived in paper I within SWA. The
only difference is in the form of �0, �, and R�. It is seen that
due to interaction with defects the spin-wave velocity ac-
quires negative corrections and strong spin-wave damping
arises proportional to nf4� at �
�0.

As it is explained in paper I the results obtained within
our method have a limited range of validity which is also
indicated in Table I. This is because the interaction with de-
fects modifies host spin Green’s functions and the bare spec-
tral function Im ���

�0���� given by Eq. �3� renormalizes as
follows:
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Im ������ = Im ���
�0���� − snf2B Im �����d��, �45�

B =
4J2

�5/2  dk�1 + cos�kR12�
J0 + Jk

�2

� 0.8. �46�

The last term in Eq. �45� becomes larger than Im ���
�0���� at

small enough energies indicated in Table I and the problem
should be solved self-consistently. Corresponding consider-
ation is out of the scope of the present paper.

This large renormalization of the spectral function at
small energies can be interpreted as a resonance scattering of
spin waves on impurities. A similar situation exists in the
case of asymmetrically coupled defects. Let us discuss, for
example, an AF with an impurity spin weakly coupled to one
host spin. According to results obtained within the T-matrix
approach the defect leads to a resonant level inside the spin-
wave band.17,23,24 The energy of this level is of the order of
the energy cost for creation of spin excitation on the impu-
rity. First perturbation corrections to observables increase
rapidly near the resonant level due to the resonance
scattering.17 In the case of the frustrated spin-1

2 defect the
energy of creation of the spin excitation on the impurity is
zero and the resonance scattering takes place at zero energy.

In the vicinity of the resonance peak, where our theory is
not applicable, one might expect strong deviation from lin-
earity of the real part of the spin-wave spectrum and an en-
hancement of the spin-wave damping as in the case of asym-
metrically coupled defects.17

Particular expressions for spin-wave velocity and damp-
ing in the case of S�1/2 can be obtained straightforwardly
using Eqs. �34�–�36� and �43�. Because of their cumbersome-
ness we do not present here the results. We would like to
point out only that there is the abnormal spin-wave damping
proportional to nf4��� �stemming from the nonresonant part

of ������ when �i� ���
T2 if T
 C̃�T�g2S2 /J, �ii�
����−�res

�n��
T3/2 for n�1/2 and ����−�res
�1/2��
T2 if

T� C̃�T�g2 /J, where �res
�n� are given by Eq. �33�. The range of

validity of the results obtained within our approach can be
found comparing the last term in Eq. �45� with the first one

as it was done for S=1/2. The results are not valid in the
vicinity of the resonance peaks due to the resonance scatter-
ing of spin waves on impurities. At such energies one might
expect strong deviation from linearity of the real part of the
spin-wave spectrum and increase of the spin-wave damping.

Thermodynamic quantities of AFs with defects can be
found, in principle, using impurity susceptibility. But due to
the limiting range of validity of our results and due to the
fact that thermodynamic quantities are expressed via inte-
grals containing susceptibility one cannot calculate them be-
cause it is impossible to perform the integration over the
essential energy area �in particular, over small energies�. We
explain this situation in detail in paper I by the example of
the specific heat. We do not obtain any noticeable corrections
to the specific heat after integration over energies at which
our results are valid.

VI. CONCLUSION

In the present paper we discuss dynamical properties of
an impurity spin coupled symmetrically to sublattices of 2D
Heisenberg quantum antiferromagnets �see Fig. 1� at T�0
�existence of a small interaction stabilizing the long range
order at T�0 is implied�. We continue our study on this
subject started in paper I where the spin-1

2 defect was dis-
cussed and the host spins fluctuations are considered within
the spin-wave approximation �SWA�. In the present paper we
�i� go beyond SWA and �ii� study impurities with spins
S�1/2. We show that the effect of the host system on the
defect is completely described by the spectral function as it
was within SWA. It is demonstrated that longitudinal host
spin fluctuations lead to two important contributions to the
spectral function that is proportional to �2 within SWA. They
have the form r�T�T2� /s and �2v�T� /s, where s is the value
of the host spin, and r�T� and v�T� are series in
�T /s�ln�T / �s���. First terms in these series are given by Eq.
�5�.

It is demonstrated that transverse spin-1
2 impurity suscep-

tibility �
�

�1/2���� has the same structure as that obtained
within SWA: the Lorenz peak and the nonresonant term. The

TABLE I. Renormalization of spin-wave damping and velocity by interaction with spin-
1

2
impurities in

two regimes, ���
�0 and �����0, where �0 is given by Eq. �28�. Ranges of validity of the theory in each
regime are also presented �see the text�.

���
�0 �����0

Spin-wave damping
���

nf4

2�
R�u�k�

�

T

�2�

�2 + 4�2

nf2

8�
u�k�

Spin-wave velocity
c�1 − ln��

�
�2nf4

�2 R�u�k� c�1 −
�

T

�2

�2 + 4�2

nf2

2�
u�k�

Range of validity of the theory ���
�


 0.1�R�
�nf2 �����2 + 4�2�

�3 
 0.004nf2�

T
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difference is that the width of the peak � becomes larger
being proportional to f2J�T /J�3 rather than f4J�T /J�3. Be-
sides some constants in the expression for �

�

�1/2���� acquire
thermal corrections. The width of the Lorenz peak in longi-
tudinal impurity susceptibility is zero within our precision.
The resultant expression for ��1/2���� is given by Eq. �26�.
We observe that longitudinal host spin fluctuations lead to a
logarithmic correction to transverse static susceptibility �31�
proportional to −�f2 / �Js��ln�T / �s���. It is demonstrated that
corrections to � from longitudinal host spin fluctuations
dominate if �g� /J�5.

We derive also expressions for ���� for symmetrically
coupled impurities with S�1/2. It is well known that host
spin fluctuations lead to an effective one-ion anisotropy on

the impurity site in 3D AFs, −C̃�T�Sz
2g2 /J, where

C̃�T��0.18,19 Then defects with S�1/2 appear to be split
and magnetization of sublattices is a hard axis for them. We
obtain the same one-ion anisotropy for defects in 2D AFs. In

particular we observe large reduction of the value of C̃�T�
obtained within SWA by 1/s corrections stemming from lon-
gitudinal host spin fluctuations. We show that thermal cor-

rections reduce C̃�T� further and can change the sign of C̃�T�
at T�TN.

Then we find that if T is greater than the value of the
defect splitting, transverse dynamical susceptibility contains
2S Lorenz peaks corresponding to transitions between impu-
rity levels and a nonresonant contribution. Widths of the
peaks are proportional to f2J�T /J�3 as in the case of S=1/2.
When T is lower than the distance between nearest impurity

levels �	C̃�T�g2 /J� there are only peaks corresponding to
transitions between low-lying levels. Longitudinal suscepti-
bility has only the nonresonant term. As it was in the case of
spin-1

2 impurity, the imaginary part of the nonresonant term
is a constant that leads to abnormal spin-wave damping pro-

portional to nf4���. At T
 C̃�T�g2S2 /J static susceptibility
has the same structure as that for S=1/2, term
S�S+1� / �3T�, and the logarithmic correction. If

T� C̃�T�g2 /J, ��0� behaves differently for integer �Eq. �38��
and half-integer �Eqs. �39� and �41�� spins.

Corrections to the spin-wave spectrum are obtained in the
case of finite concentration of spin-1

2 defects. They are sum-
marized in Table I. They have the same form as those ob-
tained within SWA. The difference is that some constants
acquire thermal corrections, � has another form, and the
quantity �0 separating two regimes appears to be propor-
tional to T2 / �sJ� rather than f2T2 /J. In particular, we find
strong spin-wave damping proportional to nf4��� for all S
originating from the nonresonant terms of the susceptibili-
ties.
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APPENDIX A: CALCULATION OF Im ���„�…

In this appendix properties of the imaginary part of the
function ������ are discussed. General expression for
������ is given by Eq. �2�. We show that Im ������ has the
form �3� and find constants A and B, the characteristic energy
�, and tensor d��.

One has from Eq. �2�,

������ =
2

N


k

�1 + cos�kR12���s−k
� sk

���, �A1�

where �¯�� denote retarded Green’s functions, N is the
number of spins in the lattice, and R12 is the vector connect-
ing two host spins coupled to the defect. Thus we must cal-
culate the spin Green’s functions �s−k

� sk
���.

It is demonstrated in paper I that only diagonal compo-
nents of �s−k

� sk
��� are nonzero. Only xx and yy components

are nonzero within the spin-wave approximation �SWA�. At
T=0 we have for them in the isotropic 2D AF,14

Im ������ = − d��

s2

4�
 dk„�1 + cos�kR12���J0 − Jk�

+ �1 + cos��k + k0�R12���J0 + Jk�…

�
1

�k
��� − �k� − �� + �k�� , �A2�

where d��=���1−�z�, k0 is the antiferromagnetic vector,
the lattice constant is taken to be equal to unity, Jk

=2J�cos kx+cos ky�, �k=s�J0
2−Jk

2 is the spin-wave energy,
and the integral is over the magnetic Brillouin zone. If
����sJ we have Jk�J0−Jk2, cos�kR12��1− �kR12�2 /2, and
�k=ck=�8sJk. Notice that �k0R12�=� mod 2� if the impu-
rity is coupled to spins from different sublattices and both
terms in the boldface parentheses in Eq. �A2� are propor-
tional to k2. Then integration in Eq. �A2� can be easily car-
ried out if one takes advantage of the approximation for
magnons similar to the Debye one for phonons: the spectrum
is assumed to be linear, �k=ck, up to cutoff momentum k�

defined from the equation 4�N=V�0
k�dkk, where V is the

area of the lattice. As a result we lead to terms proportional
to d���1−�z� in expression �3� for Im ������ in which

� = ck� = sJ8�� , �A3�

A =
2�

J
. �A4�

The constant A should be multiplied by 2 if the defect is
coupled to four host spins �two by two from each sublattice�.

It is easy to conclude that if a small interplane interaction
of the value of ��J is taken into account the above result
for Im ������ is valid when ���
�. At the same time
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Im ������ has another � dependence if �����. It is well
established25–28 that spin waves are well defined in the para-
magnetic phase of 2D AFs if their wavelength is much
smaller than the correlation length �	exp�const/T�. Thus,
the above result for Im ������ is valid when ���
Ja /�.

Let us go beyond SWA. It is well known that the spin-
wave interaction gives negligibly small corrections to the
spin-wave spectrum and other physical quantities in isotropic
Heisenberg AFs.25,29–33 For instance, simple calculations
show that transverse components of Im ������ given by Eq.
�A2� are multiplied by

�1 −
1

2s�1 −
1

N


k

�k

sJ0
�� � 1 −

0.08

s
�A5�

after taking into account first 1 /s corrections. Meanwhile
small interactions of the value of � possibly could lead to a
great renormalization of physical observable quantities at
�����.33,34 At the same time we derive Im ������ at
���
�. Thus we can use the expressions for xx and yy com-
ponents obtained above within SWA.

We must take into account also the longitudinal spin sus-
ceptibility �sk

z s−k
z ��. The first correction to it is of the first

order of 1 /s. This quantity has been examined in Ref. 35.
Nevertheless we derive now the corresponding expressions
in a more convenient form. Using retarded Green’s functions
g�� ,k�= �ak ,ak

†��, f�� ,k�= �ak ,a−k��, ḡ�� ,k�= �a−k
† ,a−k��

=g*�−� ,−k�, and f†�� ,k�= �a−k
† ,ak

†��= f*�−� ,−k�, where ak

and ak
† are operators of magnon creation and annihilation, we

have

�sk
z s−k

z �� = −
T

N


�1



k1+k2=k+k0

�f�i�1,k1�f†�i� − i�1,k2�

+ ḡ�i�1,k1�g�i� − i�1,k2�� . �A6�

Functions f and g were calculated, e.g., in paper I. After
simple evaluations one obtains

Im �zz��� =
�

2N2 

k1,k2

1 − cos��k1 + k2�R12�
�k1

�k2

� ��1 + 2N��k1
����sJ0�2 + s2Jk1

Jk2
− �k1

�k2
�

���� + �k1
+ �k2

� − �� − �k1
− �k2

��

+ 2�N��k2
� − N��k1

��

���sJ0�2 + s2Jk1
Jk2

+ �k1
�k2

��� + �k1
− �k2

�� ,

�A7�

where the summations are over the chemical Brillouin zone.
The first term in the curly brackets in Eq. �A7� corresponds
to emission or absorption of two magnons whereas the last
term describes scattering of one spin wave. Let us discuss
first the case of T=0. The Planck’s functions in Eq. �A7� are
zero and Im �zz��� is proportional to �3. Therefore, it is
small in comparison with xx and yy components obtained
above.

At finite temperatures we have two important contribu-
tions to Im �zz���. One of them arises at ����T and origi-
nates from the second term in the curly brackets in Eq. �A7�.
It can be brought to the form −�T2B / �s�3�, where

B =
24��

J


0

�

dx
x2ex

�ex − 1�2 =
8�5/2

J
. �A8�

The second contribution originates from both terms in the
curly brackets in Eq. �A7� and has the form
−A�2 sgn���v�T� / �s�2�, where v�T�=8sJ /N
kN��k� /�k.
The logarithmic infrared singularity in this expression is
screened by the interaction stabilizing the long range order at
T�0: v�T���8/����T /��ln�T / �s���. There is no parameter
screening this singularity in isotropic 2D AFs. This singular-
ity signifies that the spin-wave approach does not suit for
discussing the impurity dynamics in isotropic 2D AFs.

It should be stressed that higher order 1 /s corrections can
give contributions proportional to products of �2 ��T2� and
powers of �T / �s���ln�T / �s���. As a result the obtained
above correction proportional to �T2 should be multiplied by
a function r�T�. This function as well as v�T� appear to be a
series in �T / �s���ln�T / �s���. To find general expression for
r�T� and v�T� is out of the scope of the present paper. Thus,
we lead to the zz component of Im ������ in Eq. �3�.

Notice that in the case of impurity coupled to one host
spin, terms in Eq. �A2� containing cos�kR12� should be dis-
carded and the spectral function appears to be proportional to
a constant within SWA. There is no large corrections to this
constant from higher order 1 /s terms. Hence, one could not
expect that longitudinal fluctuations play any remarkable role
in this case. Then, we confirm that the so-called T-matrix
approach1,16,17 is appropriate for asymmetrically coupled de-
fects. Recall that it is based on Dyson-Maleev transformation
and deals with only the bilinear part of the Hamiltonian.

APPENDIX B: CALCULATION OF THE IMPURITY
SUSCEPTIBILITY

We present in this appendix some details of the impurity
dynamical susceptibility calculation. We use for this general
expression �7� and Eqs. �9�, �21�, and �24� for the Green’s
function and the branches of the vertex. The expression for
�P��� is derived up to the order of g2.

According to Eqs. �7�, �21�, and �24� the dynamical sus-
ceptibility can be represented as a sum of three components.
The first one, �1���, originates from Eq. �7� as a result of
replacement of the vertex by unity. The second, �2���, ap-
pears from f2 terms in Eqs. �21� and �24�. The third, �3���, is
a result of replacement of the vertex by the third term from
Eq. �24�. Calculations of these three quantities are similar to
those performed in paper I. Then we discuss the results only.

For �1��� we obtain
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�1��� =
e−�/T

N 

n,m

�Pnm�2� e�cm+i�0m�/T − e�cn−i�0n�/T

� + cm − cn + i�0n + i�0m
�1 − �R�n

�1� + R�m
�1� �

f2

2��


−�

�

dx
�x��N�x� − N�− x����x�

x + � + cm − cn + i�0n + i�0m
�

+ �R�n
�1� + R�m

�1� ��ecn/T + ecm/T�
f2

2��


−�

�

dx
sgn�x���x�

x + � + cm − cn + i�0n + i�0m
� . �B1�

For �2��� one has

�2��� =
e−�/T

N 

n,m,q,l

2 Re�PnmSmq
� PqlSln

�d���
� + cm − cn + i�0n + i�0m

f2

��


−�

�

dx�x�xN�x���x�

� � e�cm+i�om�/T

�x − � + cl − cm − i�0l − i�0m��x + cq − cm + i�0q − i�0m�
−

e�cn−i�on�/T

�x + � + cq − cn + i�0q + i�0n��x + cl − cn + i�0n − i�0l�
� .

�B2�

Equation �B2� has a simple form at ���
 C̃�T�g2S /J,

�2��� = −
e−�/T

N 

n,m,q,l

Re�PnmSmq
� PqlSln

�d����ecn/T + ecm/T�

�
f2

��


−�

�

dx
sgn�x���x�
x + � + i

. �B3�

For �3��� one obtains

�3��� =
e−�/T

N 

n,m

�Pnm�2� e�cm+2i�nm−i�0n�/T − e�cn−i�0n�/T

� + cm − cn + 2i�nm

−
e�cm+i�0m�/T − e�cn−i�0n�/T

� + cm − cn + i�0n + i�0m
� . �B4�

It should be stressed that we use while calculating Eq. �B4�
that � is close to one of the resonance frequencies �res

�n� given

by Eq. �33�, ����−�res
�n���T. Meanwhile we can use expres-

sion �B4� at all � as it is much smaller than �1��� far from
the resonances.

It should be noted that the resonant terms in �1,2��� and
�3��� are calculated in the order of g2 and g0, respectively.
We would like to stress that calculation of �3��� in higher
orders demands taking into account in Eq. �22� for �Pmn

+− �x
+� ,x� not only the most singular diagrams in each order of
g2. Their analysis is a cumbersome task that is out of the
scope of the present paper. Thus we restrict ourselves in this
paper by calculation of resonant terms in the dynamical sus-
ceptibility in the order of g0 and discard the resonant terms in
�1��� and �2��� that are of the order of g2. Notice that one
can keep these terms while calculating static susceptibility
because �3�0�=0 and the problem of the cumbersome analy-
sis of the higher order diagrams does not arise.38
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