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Stretched exponential relaxation of a quantity n versus time t according to n=n0 exp�−��*t��� is ubiquitous
in many research fields, where �* is a characteristic relaxation rate and the stretching exponent � is in the range
0���1. Here we consider systems in which stretched exponential relaxation arises from global relaxation of
a system containing independently exponentially relaxing species with a probability distribution P�� /�* ,�� of
relaxation rates �. We study the properties of P�� /�* ,�� and their dependence on �. Physical interpretations
of �* and �, derived from consideration of P�� /�* ,�� and its moments, are discussed.
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I. INTRODUCTION

The stretched exponential relaxation function describes
the time �t� dependence of a relaxing quantity n, according to

n = n0 exp�− ��*t��� , �1�

where n0�n�t=0�, �* is a characteristic relaxation rate, and
the stretching exponent � is in the range 0���1. This be-
havior has been observed for a wide variety of physical
quantities in many different systems and research areas.1

Log-linear and linear-log plots of the stretched exponential
function versus �*t, which are the two most common ways of
plotting the stretched exponential function, are shown in
Figs. 1�a� and 1�b�, respectively, for � values from 0.1 to 1 in
0.1 increments. All of the plots cross at a time t1/e=1/�* at
which the stretched exponential function has the value e−1

for all �. A pure exponential decay, corresponding to �=1,
plots as a straight line in Fig. 1�a�. As � decreases from
unity, more and more pronounced positive curvature is evi-
dent at small t. At small times, a Taylor series expansion of
Eq. �1� for �*t�1 gives

n

n0
�t → 0� � 1 − ��*t��. �2�

Thus the stretched exponential function with 0���1 is sin-
gular at t=0, with an infinitely negative slope there.

A natural and commonly used interpretation of an ob-
served stretched exponential relaxation is in terms of the glo-
bal relaxation of a system containing many independently
relaxing species, each of which decays exponentially in time
with a specific fixed relaxation rate �. Then one can write the
stretched exponential function as a sum of pure exponential
decays, with a particular probability distribution P of � val-
ues for a given value of �. In such a probability distribution,
one must normalize � to the characteristic relaxation rate �*

appearing in the stretched exponential function �1�. Hence
for such systems one can write the stretched exponential
function in Eq. �1� as

e−��*t��
= �

0

�

P�s,��e−s�*tds , �3�

where

s �
�

�* .

Since P�s ,�� is a probability density, one has
�0

�P�s ,��ds=1.
A stretched exponential form of the 7Li nuclear spin-

lattice relaxation following saturation was recently
observed2–4 in 7Li NMR experiments on the heavy-fermion5

compound LiV2O4 containing magnetic defects.4 In our at-
tempts to understand the origin of this nonexponential relax-
ation, we considered the above model of independently re-
laxing nuclear spins and found the published information on
P�s ,�� �e.g., Refs. 6–13� to be insufficient for our purposes,
particularly with regard to the systematic behaviors of P�s�

FIG. 1. Log-linear �a� and linear-log �b� plots of the stretched
exponential function in Eq. �1� versus �*t for � values from 0.1 to
1 in 0.1 increments.
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versus � and to the physical significances of the parameters
�* and � in the stretched exponential function �1�. Since in
the case of independently relaxing species the essential phys-
ics of the system resides in P�s ,�� rather than in the relax-
ation function �1� itself, we considered it important to further
study P�s ,��. Here we report the results, some of which
were briefly mentioned in Ref. 4.

II. RESULTS

A. Probability density

For �=1, the stretched exponential function �1� is a pure
exponential with relaxation rate �=�* and hence the prob-
ability density P�s ,1� in Eq. �3� is a Dirac � function at s
=1. For general �, from Eq. �3� one sees that P�s ,�� is the
inverse Laplace transform of the stretched exponential, given
by

P�s,�� =
1

2�i
�

−i�

i�

e−x�
esxdx . �4�

The change of variables u=−ix allows one to write P�s ,�� as
the Fourier transform

P�s,�� =
1

2�
�

−�

�

e−�iu��
eisudu . �5�

One can also express P�s ,�� as6,8,11

P�s,�� =
1

�
	
n=1

�
�− 1�n+1��n� + 1�

n!sn�+1 sin�n��� , �6�

where ��z� is the gamma �factorial� function. Using MATH-

EMATICA 4.0, we have obtained from Eqs. �5� and �6� closed
analytic solutions for P�s ,�� for many rational values of �.
The simplest expressions are obtained for �=1/3, 1 /2, and
2/3, for which solutions have also been given in Refs. 9 and
10. For �=1/3, we find the two alternative expressions

P
s,
1

3
� = 3z4Ai�z� =

1

3�s3/2K1/3
 2
�27s

� , �7�

where Ai�z� is the Airy function with z= �3s�−1/3 and Kn�x� is
the modified Bessel function of the second kind. For �
=1/2, we get

P
s,
1

2
� =

1
�4�s3

exp
−
1

4s
� , �8�

which is also listed in tables of Laplace transforms.14 For
�=2/3, we obtain

P
s,
2

3
� = 6z7/4 exp
−

2

27s2�Ai�z� −
1
�z

Ai��z�� , �9�

where z= �3s�−4/3.
In general, the analytic results for rational �=n /m values

are expressed by MATHEMATICA in terms of generalized hy-
pergeometric functions pFq�a ;b ;z�. For example, for �
=2/3, P�s ,�� can also be expressed as

P
s,
2

3
� =

1
�3�s7/3s2/3�
2

3
�1F1
5

6
,
2

3
,z�

+ �
4

3
�1F1
7

6
,
4

3
,z�� , �10�

with z=−4/ �27s2�. The expressions become progressively
longer as the integer denominator m increases. For example,
the expression for P�s ,�=4/5� contains four additive

pFq�a ;b ;z� terms with p=q=3 and z=−256/ �3125s4�, with
1/s1+n� multiplicative prefactors where n=1–4, respectively.

The probability density P�s ,�� in Eq. �3� is real by defi-
nition. By finding the real and imaginary parts of the integral
on the right side of Eq. �5�, one can explicitly show that the
imaginary part is identically zero. The real part, which is
P�s ,��, is found to be

P�s,�� =
1

�
�

0

�

e−u� cos���/2� cos�su − u� sin���/2��du .

�11�

This integral can be evaluated numerically for arbitrary �
using MATHEMATICA. Similar expressions were obtained in
Refs. 8 and 11.

The evolution of P�s ,�� versus s at fixed � for several
rational values of �, from our analytic results, is plotted in
Fig. 2�a� on linear scales and in Fig. 2�b� on semilog scales.
The same type of plots as in Fig. 2�a� were previously given
in Fig. 1 of Ref. 13, and related plots are given in Refs. 8 and
12. From Fig. 2�a�, ��1 causes the infinitely high and nar-
row Dirac �-function probability distribution for �=1 at s
=1 to broaden. P�s� becomes highly asymmetric, and the

FIG. 2. Linear �a� and semilog �b� plots of the probability den-
sity P�s ,�� for the relaxation rate in Eq. �3� versus normalized
relaxation rate s=� /�* for several rational values of �.
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peak in P�s� becomes finite and moves towards slower rates
which is compensated by a long tail to faster rates.

The value of s at which P�s ,�� is maximum for fixed �,
s�Pmax�, is plotted versus � on linear and semilog scales in
Figs. 3�a� and 3�b�, respectively. We find that s�Pmax� de-
creases with decreasing � and approaches zero exponentially
for �	0.5. A fit to the s�Pmax� versus � data in the range
1/8
�
1/2 yielded

s�Pmax� �
2.56

�0.6 exp
−
1.27

�1.31� . �12�

Plots of this expression are shown as the solid curves in Figs.
3�a� and 3�b�.

For small s, there is an exponential decrease in P�s ,��
with decreasing s that is given in the limit s→0 �i.e., below
the peak� by9,11

P�s → 0,�� =
a

s1+�/�2�1−��� exp
−
b

s�/�1−��� , �13�

where

a =
�1+�/�2�1−���

�2���1 − ��

and

b = �1 − ����/�1−��.

From Eq. �8� for �=1/2 one gets directly that a=1/�4� and
b=1/4, in agreement with these results. Thus the probability

distribution P�s ,�� contains an intrinsic low-s cutoff that
decreases with decreasing �. Note that the peak position of
P�s ,�� in Eq. �12� has the same form as the s→0 behavior
in Eq. �13�. We take the value of the low-s cutoff to be the
position of the peak in P�s ,�� that is plotted in Fig. 3 and
described by Eq. �12� for �	1/2.

In the opposite limit of large s�1, in Eq. �6� one retains
only the first term in the power series, giving

P�s → �,�� =
c

s1+� , �14�

where

c =
��� + 1�

�
sin���� . �15�

For 0���1, one has that ���+1��1.
The median smedian of the probability distribution P�s� has

not been discussed before in the literature to our knowledge.
It is defined to be the value of s for which it is equally likely
for s to be less than smedian as it is to be greater. It is calcu-
lated by solving the expression �0

smedianP�s ,��ds=1/2 for a
fixed value of �. The smedian is plotted versus � in Fig. 4�a�,
and an expanded plot of the data for 0.3
�
1 is shown in
Fig. 4�b�. One sees from Fig. 4 that with decreasing �, smedian
remains nearly equal to unity from �=1 down to about �
=0.5, below which smedian begins to increase dramatically. A
related quantity is the integral �0

1P�s ,��ds, which measures
the probability that s is less than or equal to unity. If the
median is at s=1, then the integral should equal 1 /2. The
integral is plotted versus � in Fig. 5. In the range 0.1
�

0.9, the integral is equal to 1/2 to within ±0.1. The reason

FIG. 3. Linear �a� and semilog �b� plots of the value s�Pmax� of
s at which the probability density P�s� in Eq. �3� �see Fig. 2� is
maximum, plotted versus the stretching exponent �. The solid curve
in �a� and �b� is an exponential fit to the data for �
0.5 as given in
Eq. �12�. The position of the peak can be taken to be the intrinsic
small-s cutoff to P�s� �see text�.

FIG. 4. �a� Median of the probability distribution P�s� versus �.
�b� Expanded plot of the data in �a� for 0.3
�
1. The lines are
guides to the eye.
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for the difference between the � dependences of the two
quantities is apparent from plots for �=1/8 and 7/8 in Fig.
6 of the probability that s is less than a value s0, given by the
integral �0

s0P�s ,��ds. One sees from the figure how it hap-
pens that for �=1/8, smedian�2�0

1P�s ,��ds, whereas for �
=7/8, smedian	2�0

1P�s ,��ds.

B. Moments of P„s ,�…

The moments of the probability distribution are defined
by �sn�ave=�0

�snP�s ,��ds. From Eq. �14�, the n=1 moment,
which is the average save= �� /�*�ave=�ave/�*, is infinite for
all � with 0���1. Hence the average relaxation rate �ave is
infinite. Indeed all positive moments such as also �s2�ave are
infinite. Very fast �infinite� relaxation rate components are
required to produce the infinitely negative slope for any �
�1 in the stretched exponential function �1� as t→0 as de-
scribed in Eq. �2� and seen in Fig. 1�a�. A cutoff to P�s ,�� at
large s is required to obtain a finite initial slope of n�t� in Eq.
�1� and finite averages �sn�ave. Every real system must have a
high-s cutoff to P�s ,��, but of course it will depend on the
system under consideration. We will return to this issue in
Sec. II D.

On the other hand, the n=−1 moment of P�s ,��, which is
the average �1/s�ave= ��* /��ave, is finite for 0��
1 and
increases monotonically and rapidly with decreasing �, di-
verging at �=0. In general, one has8


�*

�
�m�

ave
=

��m/��
���m�

, �16�

where m=−n. A semilog plot of ��* /��ave versus � for
0.01
�
1 is shown in Fig. 7.

C. Physical interpretations of �* and �

The parameter �* in the stretched exponential function �1�
is often referred to in the literature as some undefined “char-
acteristic relaxation rate” or as some undefined “average”
relaxation rate. As shown above, �* is neither the average of
� �which is infinite in the absence of a high-s cutoff to
P�s ,��� nor the inverse of the average of 1 /�. Evidently �*

is a characteristic property of P�s ,�� itself and not of its
moments. Indeed, from the above discussion and the data in
Fig. 5, we infer that the physical interpretation of �* is that �
is about equally likely to be less than �* as it is to be greater
�to within �±20%�. From Fig. 4, one sees that �* is within
about 10% of the median of P�s ,�� for 0.5
�
1. For �
�0.5, the median strongly increases due to the long high-s
tail to P�s ,��, but the integral in Fig. 5 continues to decrease
slowly with decreasing �.

The stretching exponent � is often cited as a measure of
the width s of the distribution P�s ,��. However, a statisti-
cal definition of the width such as the rms width s
=��s2�ave− �save�2 is undefined for P�s ,�� since as shown
above both of the averages in the square root are infinite in
the absence of a high-s cutoff to P�s ,��. Another possibility
is that � is a measure of the full width at half maximum
�s� FWHM� of P�s ,��. From Fig. 8�a�, the FWHM ini-
tially increases as � decreases below unity, but then de-
creases as � decreases further for �	0.65. Therefore, � is a
multivalued function of the FWHM, and hence correlation
with the FWHM is not a useful physical interpretation of �.
On a logarithmic s scale, the FWHM increases monotoni-
cally with decreasing � as shown in Fig. 8�b�, and appears to
diverge as �→0. Therefore � can be considered to be related
to the logarithmic FWHM of P�s�, but not to the FWHM
itself.

Therefore we seek a physical interpretation of � that is
not explicitly tied to the width of P�s ,�� versus s. We have
seen above that the position s�Pmax� of the peak in P�s ,��,
plotted in Fig. 3 versus �, decreases monotonically with de-
creasing � and that, below the peak, P�s ,�� decreases expo-
nentially as s decreases. As discussed above, this demon-
strates that P�s ,�� has a low-s cutoff that decreases
monotonically with decreasing �. Thus a useful physical in-
terpretation of � is that � is a measure of the intrinsic small-
relaxation-rate cutoff of P�s ,��. To our knowledge, this

FIG. 5. The integral �0
1P�s ,��ds versus �.

FIG. 6. Probability that s is less than the value s0, given by the
integral �0

s0P�s ,��ds, for �=1/8 and 7/8.

FIG. 7. Semilog plot of the average ��* /��ave versus the stretch-
ing exponent � according to Eq. �16� with m=1.
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identification and the above physical interpretation of �* here
and in Ref. 4 have not appeared elsewhere in the literature.

One can rewrite the stretched exponential function �1� as

n = n0 exp�− �t/�*��� , �17�

where the relaxation time of a particular relaxing species in
the system is �=1/� and the characteristic relaxation time of
the probability distribution is �*=1/�*, so � /�*=�* /�. From
the above results, one obtains, for example, that the plot of
��* /��ave versus � in Fig. 7 is the same as a plot of �ave/�*

versus �. From Fig. 7, the normalized average relaxation
time �ave/�* is well defined at each �, increases monotoni-
cally and rapidly as � decreases below unity, and diverges as
�→0. Thus an additional physical interpretation of � is that
1 /� is a measure of the average relaxation time of the relax-
ing species in the system relative to the parameter �*=1/�*.

D. Influences of a large-s cutoff to P„s ,�…

We have alluded above to the singular nature of the
stretched exponential function �1� at time t=0. Associated
with this singularity are infinite averages �sn�ave with positive
integer n for any fixed � with 0���1. Here we briefly
discuss the influences of a large-s cutoff scutoff to P�s ,�� on
save and on the relaxation function that can be computed from
the modified P�s ,� ,scutoff�. That relaxation function is no
longer a pure stretched exponential. By definition, then,

P�s,�,scutoff� = 0 for s � scutoff. �18�

For illustrative purposes, we consider the probability dis-
tribution for �=1/2 because of the simple form of P�s ,�
=1/2� in Eq. �8�. This � value is also commonly observed in

real systems, so the discussion here may have practical ap-
plications. The only influence of the cutoff on P�s ,��, be-
yond the cutoff condition �18�, is that P�s ,�� must be renor-
malized so that

�
0

scutoff

P�s,�,scutoff�ds = 1. �19�

Applying conditions �18� and �19� to P�s ,1 /2� in Eq. �8�
gives, for s
scutoff,

P�s,1/2,scutoff� =

exp
−
1

4s
�

�4�s3 erfc
 1

2�scutoff
� , �20�

where erfc�z� is the complementary error function.
The average of s is save=�0

scutoffsP�s ,� ,scutoff�ds, yielding
for �=1/2

save =

�scutoff exp
−
1

4scutoff
�

�� erfc
 1

2�scutoff
� . �21�

Linear and log-log plots of save versus scutoff are shown in
Figs. 9�a� and 9�b�, respectively. For scutoff�1, one can ap-
proximate Eq. �21� as

save =
1

�
−

1

2
+�scutoff

�
�scutoff � 1� .

FIG. 8. Full width at half maximum peak value �FWHM� versus
� of the probability distribution P�s� on a linear s scale �a� and of
P(log10�s�) on a logarithmic s scale �b�. See Figs. 2�a� and 2�b�,
respectively. The solid curves are guides to the eye.

FIG. 9. Linear �a� and log-log �b� plots of save=�ave/�* in Eq.
�21� versus the large-s cutoff scutoff to the probability distribution
P�s ,�=1/2 ,scutoff� in Eq. �20�.
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From Eq. �3�, one obtains the time dependence of the
relaxation of the quantity n�t� using

n�t�
n0

= �
0

�

P�s,��e−s�*tds �22�

or, with a cutoff present,

n�t�
n0

= �
0

scutoff

P�s,�,scutoff�e−s�*tds . �23�

Shown in Fig. 10�a� are plots of n /n0 versus t for �=1/2 and
for scutoff=100 and �, where P�s ,1 /2 ,scutoff� is given in Eq.
�20�. Expanded plots for �*t�1 are shown in Fig. 10�b�. If
there is no large-s cutoff, then save=� and the initial slope of
n /n0 versus t is −� for 0���1 as previously discussed.
However, the presence of the cutoff gives a finite save and an
initial linear decrease of n�t� /n0 versus time as seen in Fig.
10�b�. In that case, at sufficiently small t� �scutoff�

*�−1 one

can Taylor expand the exponential in Eq. �23� to get e−s�*t

�1−s�*t. Substituting this expression for the exponential
into Eq. �23� gives

n�t → 0�
n0

= 1 − save�
*t = 1 − �avet ,

where we have used save=�ave/�*. The initial slope of n /n0
versus t is then a true measure of the negative of the average
relaxation rate �ave in the system. Every real system must
have a large-s cutoff. Experimentally, an important resolu-
tion issue is being able to look at short enough times to be
confident that one is measuring the initial slope of the relax-

ation. The length of time that the initial linear relaxation is
retained increases as scutoff decreases.

III. SUMMARY

The ubiquitous stretched exponential relaxation function
�1� has been found to apply to the relaxation behavior of
many different systems. In this paper we have examined
some systematics of the probability distribution P�s ,��,
where s=� /�*, which apply in the particular case that the
stretched exponential function arises from the global sum of
exponential decays of independently relaxing species with
relaxation rates �.

The functional dependence of the peak position of P�s� on
� has been determined. This peak position decreases mono-
tonically with decreasing � and was characterized as a mea-
sure of the intrinsic low-s cutoff possessed by P�s�. We
therefore suggested that a physical interpretation of � is that
� is a measure of this intrinsic low-s cutoff. Additionally,
1 /� is a measure of the average relaxation time �not rate� of
the relaxing constituents of the system. These interpretations
contrast with a common one that � is a measure of the width
in s of P�s ,�� which was shown to be not quantitatively
useful.

We derived and discussed the � dependence of the me-
dian of P�s�. The positive moments of P�s�, which are the
averages �sn�ave, are infinite in the absence of a large-s cutoff
to P�s ,��, so �* is not related to any such average as often
assumed. We suggested instead that the fundamental physical
interpretation of �* is that � is about equally likely �to within
�±20%� to be less than �* as it is to be greater.

The influence of a large-s cutoff to P�s ,�� on save

=�ave/�* and on the time dependence of the relaxation was
investigated for the illustrative case of �=1/2. The cutoff
leads to a finite average relaxation rate that decreases as the
cutoff decreases. The cutoff also removes the infinite-slope
singularity in the stretched exponential relaxation at time t
=0 and replaces it with an initial linear time dependence, the
slope of which is the negative of the average relaxation rate
of the constituent relaxing species in the system.

We note that experimental time-dependent relaxation data
can often be fitted by a discrete sum of exponential relax-
ations, as well as by the stretched exponential function. Thus
experimental resolution is important for distinguishing be-
tween such similar types of fits. Ultimately, the justification
for using the stretched exponential function to fit relaxation
data, as opposed to some other function such as a discrete
sum of decaying exponentials, must reside in the physics of
the system under consideration.
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FIG. 10. �a� Comparison of the t-dependent stretched exponen-
tial relaxation with �=1/2 without a cutoff to the probability dis-
tribution and with a cutoff scutoff=100. �b� Expanded plot of the data
in �a� near t=0. Note the initial linear dependence of n on t with the
finite cutoff scutoff=100.
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