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We investigate the low-spin to high-spin transition of cobalt in LaCoO3. The underlying physics of the
transition is related to the large totally symmetric relaxation of ligands accompanying the electron conversion
from the t2g to the eg orbitals of Co3+. The electron distribution function, the electronic entropy, the heat
capacity, the susceptibility, and the expansion coefficient are determined using a two-level microscopic model.
The gradual low-spin to high-spin transition of Co3+ with temperature is calculated, and the results are in good
qualitative agreement with known experimental data. In order to explain the observations it is not necessary to
invoke an intermediate-spin state.
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I. INTRODUCTION

In certain octahedral transition metal compounds, d4, d5,
d6, and d7 configurations can possess two different electronic
ground states depending on the temperature. The
temperature-induced switching between these two states oc-
curs in crystals with a ligand field strong enough for the
Hund’s rule determining the ground term to be violated.1

Among these compounds, Co oxides have been the subject
of a number of investigations. The temperature-induced tran-
sition can be a gradual function of temperature, but in some
cases, it is a very steep function so that the magnetization,
magnetic susceptibility, heat capacity, volume, etc., change
even discontinuously.

In LaCoO3 two broad transitions in the magnetic suscep-
tibility were observed: around 20 K�T1�100 K and
400 K�T2�700 K. There are extensive experimental and
theoretical investigations of Co oxides �see Refs. 2–11�. In
LaCoO3 the Co3+ ion in each CoO6 octahedron is in its t2g

6 eg
0

configuration. This is the ground state with spin S=0—i.e.,
the low-spin �LS� configuration. The classic interpretation of
the transition at T1 is explained as the appearance of the t2g

4 eg
2

configuration �S=2�—i.e., high-spin �HS� state. Later, a dif-
ferent explanation of the T1 transition was proposed invoking
the configuration t2g

5 eg
1 with S=1—i.e., intermediate-spin �IS�

state. In spite of numerous investigations, the microscopic
nature of transitions from the LS state to the excited state is
still the subject of debate.

In a recent high-resolution x-ray spectroscopy study
Vankó et al.2 using a theoretical analysis based on the charge
transfer multiplet model concluded that the first thermal tran-
sition is best described by a transition to an orbitally nonde-
generate IS state. Another investigation of resonant x-ray ab-
sorption in a high-quality LaCoO3 crystal by Medarde et al.3

attributes the low-temperature transition to the existence of a
“covalent” IS state. In both papers are shortly reviewed a
number of different experiments which include investiga-
tions of the thermal expansion, heat capacity, etc. These in-
vestigations were interpreted in terms of LS-IS or LS-HS
transitions. However, recent electron spin resonance mea-
surements by Noguchi et al.4 and the results of calculations
by Ropka and Radwanski5 support a classical scenario
LS-HS electron conversion for the transition.

In this work, we consider the Co3+ complex and we in-
vestigate the influence of the breathing type distortion of
ligands, the oxygen ions. Such a distortion accompanies the
thermal excitation of d electrons from the t2g to eg orbital.
The derived electron occupancy of excited states differs re-
markably from the Boltzmann occupancy for the same pro-
cess. We calculate the electronic entropy of the transition,
susceptibility, heat capacity, bond length change, and thermal
expansion coefficient using only four adjustable parameters
which have clear physical meaning. Our calculations are
consistent with the LS-HS scenario of phase transitions.

II. TEMPERATURE-INDUCED VOLUME CHANGE

The small energy interval between two electronic configu-
rations may be comparable with the thermal energy of nuclei.
In such a case the adiabatic approximation may be violated
and the nucleus motion cannot be reduced to simple vibra-
tions in the average field of the electrons. The conventional
Tanabe-Sugano diagram1 shows that the ion with d6 configu-
ration changes its ground state 5T2g� 1A1g for a specific
value of the ratio between the crystal field parameter Dq and
the Racah parameter B. The mechanism for the low-spin to
high-spin transition is related to the change of electronic con-
figuration t2g

6 e0→ t2g
4 e2. Such a transition is accompanied by

a degeneracy increase and, hence, by an entropy increase. In
the frame of the adiabatic approximation, the interatomic dis-
tance is related to the electronic configuration. As it is quite
difficult to estimate the absolute bond length, we shall only
estimate the change in bond length caused by the promotion
of electrons from the t2g orbital into the e orbital.

In an octahedral field, the potential acting on an ion is of
the form V�Oh�=V�R�=D�x4+y4+z4− 3

5r4�, where D is de-
pendent upon the model chosen.1 In the frame of the model
used here D�1/R�, where R is the distance between the
central atom and its ligands. The exponent � would be equal
to 5 in a classical charge electrostatic model while in the
superposition model12 its value can be smaller. Since
V�Oh�=V�R� is a function of the interatomic distance, one
can make a first-order expansion of V�R� in terms of the
breathing-mode coordinate Q around d-shell equilibrium:
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V�Q� = V�R� + � �V

�Q
�

0
Q . �1�

��V /�Q�0 can be calculated in the frame of the formalism
developed by Van Vleck.13 One finds14,15

V�Q� = V�R��1 −
�Q
�6R

� . �2�

The average value of the energy of a d electron is expressed
in terms of Dq.1 Usually Dq is considered as a fitting param-
eter for a comparison with the experimental data. One gets
the electronic energies of one electron in the t2 orbital,

Et2
= − 4Dq�1 −

�Q
�6R

� , �3�

and one electron in the e orbital,

Ee = 6Dq�1 −
�Q
�6R

� . �4�

Thus, one sees that the electronic energies can be ex-
pressed as a function of only Dq before distortion and the
totally symmetric distortion Q. Since our purpose is to give a
simple explanation of the volume change accompanying the
low-spin to high-spin transition, we included only the breath-
ing distortion. The non-totally-symmetric distortions do not
involve any increase of volume in the first approximation;
they have been omitted.

The wave function of the low-spin term can be approxi-

mated by a single Slater determinant �1A1 ,Sz=0�= ���̄��̄��̄�
and the one of the high-spin state by �5T2 ,Sz=2�= �����̄uv�
�Ref. 1�. The energy of each spin state is obtained by taking
the average of V�Q� over the Slater determinant.14 The en-
ergy of each term can be supplemented by the elastic energy
kQ2 /2, where k is the force constant. One obtains

E5T2g
�Q� = − 5B − 8C + 20Dq −

�Q
�6R

20Dq +
1

2
kQ2 �5�

and

E1A1g
=

1

2
kQ2, �6�

where the energy origin is taken at E1A1g
and B and C are the

Racah parameters. Seeking the energy minimum of E5T2g
�Q�

with respect to Q one finds the value of corresponding dis-
tortion:

	R = �6O0 = �6�Q�5T2g� − Q�1A1g�	 =
�20Dq

kR
. �7�

The energy difference between the 5T2g and 1A1g terms at
Q=0 is given by

E = E�5T2g� − E�1A1g� = − 5B − 8C + 20Dq , �8�

while the energy difference between the same terms at equi-
librium minima is lowered by


 =
25

2
k� �4Dq

�6kR
� . �9�

The energy 
 is similar to the Jahn-Teller energy when one
consider non-totally-symmetric distortion of orbitally degen-
erate term. Further, we consider the energy 
 as an adjustable
parameter and we assume that 
 includes some portion of the
Jahn-Teller energy. Equation �7� shows that the promotion of
two d electrons from the t2 orbital into the e orbital leads to
an increase of the interatomic distances 	R between the co-
balt ion and its ligands. In the thermally driven low-spin to
high-spin transition the electrons are excited gradually.
Hence, this equation should include a multiplier n which is
the fraction of excited electrons as a function of temperature.
The fraction n will be derived in the next section.

III. LOW-SPIN TO HIGH-SPIN THERMAL TRANSITION

The two-level semiempirical model which includes the
ground and first excited crystal terms accounts for gross as-
pects of the thermal transition. The free energies of the 1A1g
and 5T2g crystal field states in terms of coordinate Q can be
written as follows �see Eqs. �5� and �6�	:

f 1A1
=

1

2
kQ2,

f 5T2
= E − aQ +

1

2
kQ2 − kBT ln g , �10�

where a=�20Dq /�6R is the electron-lattice coupling con-
stant and g=15 is the total degeneracy of the 5T2g term.
Using Eqs. �10�, the statistical sum Z for the system consist-
ing of 1A1g and 5T2g states is written as

Z = exp�−
f 1A1g

kBT
� + exp�−

f 5T2g

kBT
�

= exp�−
kQ2

2kBT
�
1 + g exp�−

E − aQ

kBT
�� . �11�

At temperature 0 K, the Co3+ ion is in the ground state and
Q=0. At higher temperatures the excited state with the mini-
mum at Q=Q0=a /k is admixed to the ground state. There-
fore the equilibrium coordinate is in the range 0�Q�Q0.
The equilibrium displacement Q for a given temperature T
can be found by minimizing the free energy F which, for
separate metal ions, is given as

F = − kBT ln Z =
1

2
kQ2 − kBT ln
1 + g exp�−

E − aQ

kBT
�� .

�12�

We define high-spin distribution function n as the dimension-
less coordinate n=Q /Q0. At the deformation coordinate Q0
the electron energy gain in the state 5T2 is 
=a2 /2k
=kQ0

2 /2. Noting that a /k=Q0 and a=2
 /Q0 the last equation
can be rewritten as
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F = 
n2 − kBT ln
1 + g exp�−
E − 2
n

kBT
�� . �13�

The condition ��F /�n�=0 gives the self-consistent equation
for the high-spin fraction n:

n =
1

1

g
exp�E − 2
n

kBT
� + 1

. �14�

The electron occupancy of the excited term can be also ob-
tained in an equivalent way as

n =

exp�−
f 5T2

kBT
�

Z
=

1

1

g
exp�E − 2


Q

Q0

kBT
 + 1

. �15�

If 
=0, i.e., the energy separation between terms is E and n
is the Boltzmann occupancy. n→1 corresponds to the high-
temperature limit �well below the melting point of the mate-
rial�. n→0 indicates the low-temperature limit—i.e., the
�t2g�6eg

0 electron configuration.
The dependence of the transition-metal—ligand distance

vs temperature is now given as

	R�T� = n
�20Dq
�6kR

. �16�

At the critical temperature TC the low-spin and high-spin
fractions are at equilibrium—i.e., n=1−n=1/2. Using this
condition, it follows from Eq. �14� that

TC =
E − 


kB ln g
. �17�

Using expression �14� for the fraction n we derive in the next
section the formula for the calculation of such functions as
the heat capacity and magnetization at the crossover of the
electron transition.

IV. ENTROPY, HEAT CAPACITY, SUSCEPTIBILITY,
AND THERMAL EXPANSION

Now, we are going to calculate the entropy and heat ca-
pacity due to the phase transition. The corresponding entropy
S is given by a standard thermodynamic equation: namely,
S=−��F /�T�. A straightforward derivation using Eq. �13�
gives

S = − kB�− n ln g + n ln n + �1 − n�ln�1 − n�	 . �18�

The electronic heat capacity is given by

CV = T
�S

�T
. �19�

Using Eq. �19�, it can be written as

CV = �E − 2
n�
dn

dT
, �20�

where

dn

dT
=

n�1 − n��E − 2
n�
T�kBT − 2
n�1 − n�	

. �21�

An applied magnetic field B affects the various d-electron
states. For our purpose it is enough to take the Zeeman in-
teraction as HZ=�Mge�SB�. The free energy F is modified,
and the magnetic moment M =−��F /�B�T is obtained by di-
rect calculations.14 If one neglects the very weak dependence
of n with B, one gets

M = nge�SBS�ge�SB

kBT
� , �22�

where BS�x� is the Brillouin function of order S.
At low field, using the first-order expansion of the Bril-

louin function, the mean magnetic moment can be written as

M = n�ge��2S�S + 1�B
3kBT

, �23�

and therefore, the magnetic susceptibility is

 = NAn�ge��2S�S + 1�
3kBT

, �24�

where NA is the number of Co3+ ions per unit volume. The
linear expansion coefficient is defined as

� =
1

R

d	R

dT
. �25�

Inserting 	R from Eq. �16� one obtains

� =
�20Dq

kR2

dn

dT
. �26�

V. PRESSURE DEPENDENCE OF TC

Generally, the volume change 	V of crystal is given as
the derivative of the free energy over pressure P:

	V = � �F

�P
�

T
= − kBT

� ln Z

�P
= n� �E

�P
− n

�


�P
� . �27�

The total volume is V=V0+	V, where V0 is the volume at
T=0 K. The variation of volume with temperature is given
as

dV

dT
= � �E

�P
− 2n

�


�P
� dn

dT
. �28�

The linear thermal expansion coefficient ��T� can be ex-
pressed as

��T� =
1

3V

dV

dT
=

1

3V
� �E

�P
− 2n

�


�P
� dn

dT
. �29�

Now, we find the relationship between the expansion co-
efficient �, the heat capacity CV, and the pressure derivative
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of TC. Combining Eqs. �20� and �29� one finds

3��T�V�T�
CV�T�

=

�tR

�P
− 2n

�


�P

tR − 2
n
. �30�

The last relationship is valid for any temperature in particular
for T=TC. At the critical temperature n=1/2 and the last
equation gives the relationship between values of the expan-
sion coefficient ��TC� and the heat capacity CV�TC�. On the
other hand, from Eq. �17� one obtains

dTC

dP

TC
=

d ln TC

dP
=

�E

�P
−

�


�P

E − 

. �31�

The right-hand side of Eq. �30� at TC �with n=1/2� is equal
to the right-hand side of Eq. �31�. Therefore, finally one gets

dTC

dP
=

TC

CV�TC�
3��TC�V�TC� . �32�

The last equation expresses the pressure dependence of
dTC /dP in terms of the expansion coefficient and the specific
heat. It is known as the Ehrenfest equation. The pressure
dependence of TC will be discussed and estimated in the next
section.

VI. RESULTS AND DISCUSSION

The numerous experimental data show that in LaCoO3 is
observed electron conversion at two temperature T1 and T2.
Hence, one should use a model with two set of levels within
the term 5T2g. The calculations of electron states with an
account of the spin-orbit interaction performed in Ref. 5
clearly show three group of states with degeneracy 3, 5, and
7. The factor of spectroscopic splitting g� =3.35 and g�

=3.55 found for the lowest state with degeneracy 3 is in very
good agreement with observation.4 We assume that the elec-
tron conversion at the temperature range T1 is associated
with a transition to the lowest state and at temperature T2
with a transition to the first excited state with degeneracy 5.
Since the interval between the critical temperature in the T1
and T2 range is large, it is possible to make the model cal-
culations for each interval separately. We expect that the
transition to the highest state with degeneracy 7 is at higher
temperature and is unobservable. This assumption is realistic
because the Jahn-Teller coupling to the trigonal mode in the
5T2g term is weak. Neither eg orbitals are split �when filled
by two electrons with parallel spins� nor t2g orbitals �when
filled with three electrons with spin up and one electron with
spin down�. That means that the T2g term is mainly split by
the spin-orbit interaction. Then the observed electron conver-
sion at T1 and T2 can be considered as the transition to the
first and second levels. We interpret that on average some
portion of two electrons is thermally promoted to the lowest
level at T1 and the other portion of two electrons is promoted
at T2. The ground state is 1A1g at T=0 K. With a temperature
increase the excited state is a mixture of two electron con-
figurations l2g

6 eg
0 and l2g

4 eg
2—i.e., 1A1g and 5T2g. We note that

in the 5T2g term �at T=0 K� two electrons stay at one-
electron orbitals e which are much more strongly influenced
by a covalent expansion than the lowest t2g orbitals due to
the high value Dq of the crystal field. The transition which
involves two electrons is energetically favorable as com-
pared with the transition where one electron is promoted to
the eg orbital while the other five stay on t2g. The Tanabe-
Sugano diagrams show that the term 3T1 with configuration
t2g
5 eg

1 is higher in energy in a considered range of Dq /B than
the term 5T2g. The term 3T1 will be shifted up even more if
one takes into account a different expansion of t2g and eg
orbitals, which is ignored in the Tanabe-Sugano diagrams.
Even, if the transition to the IS state is supported by first
principles calculations, one should take into account that
these calculation ignore directly the gross aspect of two-
electron Coulomb repulsion in the unfilled d electron shell.
Further, we shall use the two-level model where each level is
accounted for with a proper weight.

Our model includes two free parameters E and 
. We shall
apply the corresponding formula twice at temperature T1 and
T2. Therefore we need two sets of values E1, 
1 and E2, 
2.
We note that the critical temperature �17� is directly related
to our parameters. To model the transition at T1�50 K we
take E1=106.9 cm−1, 
1=56.0 cm−1 and degeneracy g1=3.
For the transition at T2�500 K we take E2=1254.2 cm−1,

2=660.0 cm−1, and g2=5. The E1 and E2 correspond to dif-
ferent energies of excited levels with respect to the ground
LS state. According to Eq. �8�, E1 and E2 are function of B,
C, and Dq. 
1 and 
2 depend mainly on the strength of the
breathing-mode distortion within an assumed “partial” elec-
tron configuration of two eg electrons. The energy E2 is
shifted from the energy E1 by the value following from the
spin-orbit interaction.5

Figure 1 shows the variation of entropy for each tempera-
ture range. The entropy for the transition around T1 was mul-
tiplied by the weighting factor 4 /16 while that around T2 by
the factor 6 /16 �the same weighting factors are used to draw
the other figures�. The entropy at T2 is larger than at T1 due

FIG. 1. Electron entropy vs temperature �drawn using
Eqs. �14� and �18�	. 1: E1=106.9 cm−1, 
1=56.0 cm−1, and g1=3.
2: E2=1254.2 cm−1, 
2=660.0 cm−1, and g2=5. The same param-
eter set is used to draw Figs. 2–4.
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to the larger orbital degeneracy. We note that this is only the
electronic entropy and a comparable contribution can give
the vibrational entropy. The electronic heat is shown in Fig.
2. Experimentally it is observed together with the lattice spe-
cific heat. The peak around T2 is large, and in Fig. 1 of Ref.
11 it is shown as a broad heat capacity hump. The peak
around T1 is discussed there only using model consider-
ations. The peak at T2 is higher than that of T1 not only due
to the large orbital degeneracy at T2 but also due to the larger
lattice vibration heat capacity in this temperature range. This
means that at T2 the vibrational entropy is much larger than
at T1. The magnetic susceptibility is given in Fig. 3. It is in
full agreement with the observation presented in Fig. 1 of
Ref. 9. The peak at T2 is much smaller than at T1 �opposite
situation to that for the specific heat�. The reason for this is
that spin substates at higher temperature are occupied more
homogenously than spin substates of the lowest level at tem-
perature T1. Finally, in Fig. 4 the electronic expansion coef-
ficient is presented �the parameters used are given below,

when estimating 	R�. The calculation reproduces the obser-
vation around temperature T1 shown in Fig. 2 of Ref. 9
which includes also the expansion due to lattice vibrations.
The reason why the peak at T2 is larger than that at T1 is the
same as in the case of the heat capacity. The increase 	R of
the interatomic distance Co–O is obtained from Eq. �16�.
Assuming the classical case of the crystal field with �=5, we
take R=2 Å, Dq=1000 cm−1, and n�0.8. One needs to
know the force constant k of the metal-ligand bond in the
octahedron surrounding the Co3+ ion. The metal ion partici-
pates only in the vibrational mode of symmetry T2g. The
ligands participate in the T2g as well as in the breathing-
mode distortion and some others. The force constant of the
T2g mode is comparable to that of the A1g mode. For its
estimation, the force constant of the T2g mode is taken as
k=�2M where ��300 cm−1 is the average vibrational fre-
quency of the mode and M its reduced mass; we approximate
this reduced mass by the Co ion mass. Taking the corre-
sponding weighting coefficients one finds 	R=0.04 Å for
temperature T1 and 	R=0.08 Å for T2. These values can be
compared with the increase of the ionic radius of the Co3+ in
HS state �0.61 Å� as compared with the LS state
�0.545 Å�.10,16

In LaCoO3 the low-spin phase of cobalt coexists with the
high-spin phase. The adiabatic approximation breaks around
the temperatures T1 and T2 because the electrons are strongly
coupled to the vibrations of atoms. This results in a shift of
the equilibrium displacement coordinates. Therefore the low-
spin state to high-spin state ratio depends on temperature as
well as on pressure. Using the calculated values of ��TC� and
CV�TC� it follows from Eq. �32� that dTC /dP is positive and
slightly larger at T2 than at T1. Because the crystal volume in
the low-spin state is smaller than in the high-spin state of
cobalt, the pressure increase will favor the low-spin phase.
This means that at elevated hydrostatic pressure the phase
transition will occur at higher temperatures than at ambient
pressure. At this point we mention a possible isotope shift of
the critical temperature. The substitution of 16O by 18O de-
creases the Co–O bond length by 0.0005 Å. This directly

FIG. 2. Molar electron specific heat vs temperature �according
to Eq. �20�	. 1: low-temperature range electron transition. 2: high-
temperature transition.

FIG. 3. Molar susceptibility  vs temperature �according to Eq.
�24�	. 1: low-temperature range electron transition. 2: high-
temperature transition.

FIG. 4. Electronic expansion coefficient � vs temperature �ac-
cording to Eq. �26�	. 1: low-temperature range electron transition. 2:
high-temperature transition.
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influences the strength of the crystal field, and it causes an
isotope dependence of TC. However, the pressure of 0.1 GPa
causes this order bond length change and, hence, the isotope
substitution effect may be undetectable. It is very difficult to
calculate the pressure dependence of TC. Formula �17� con-
tains the energy 
 which changes with the bond length as
1/R6 and the energy E which contains the contribution Dq
which varies as 1 /R5 and B and C which varies more slowly
due to the covalent effect. In our estimation we assumed that
the energy varies as 1 /R5 and we used the scaling factor

R0 /R= �PB0� /B0+1��1/3B0�� following from the Murnaghan
equation of state. Taking the bulk modulus B0=150 GPa and
the default value of its pressure derivative, B0�=4.0, and the

previous values of E1, 
1, E2, and 
2 we obtained the graph
shown in Fig. 5. Asai et al.10 investigated the pressure de-
pendence of the 100-K spin-state transition through magne-
tization measurements. Our rough estimation is in accor-
dance with their measurements. However, above 0.5 GPa
they observed a nonlinear dependence of E1 on pressure �in
their notation the energy gap between LS and IS states�.

In conclusion, in this paper, we have shown that a model
involving the coupling of the electronic states to totally sym-
metric distortions describes the main features of the low-spin
to high-spin transition. In this model the energy of the upper
electronic state depends indirectly on temperature by means
of the term 
n. Therefore the derived electron distribution
function n can describe the first-order and second-order
phase transitions depending on the parameters used, i.e., the
distribution is a very steep or gradual function of tempera-
ture. This function possesses larger flexibility than the Bolt-
zmann distribution function with excitation energy indepen-
dent of temperature. Within one model we approximately
reproduced the observed susceptibility, electronic specific
heat, and expansion coefficient as well as the bond length
increase for temperature T1 and T2. The pressure dependence
of the critical temperature is also accounted for qualitatively.
We explain it within the scenario of a LS to HS transition.
There is no need to use the IS state to explain the experimen-
tal data.
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