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Assignment of the G* and G~ Raman bands of metallic and semiconducting carbon nanotubes
based on a common valence force field
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We propose a model for calculating the phonon frequencies of any (n,m) nanotube by considering explicitly
the curvature of the system and the effects of long-range interactions determined by 7 electrons. We show that
the electron-phonon coupling strength is directly related to the electronic structure of the nanotube and it is the
main interaction responsible for the different behavior shown in the Raman spectra by metallic and semicon-
ducting nanotubes. On the basis of the vibrational valence force field derived in this work we propose an
assignment of the G band. Moreover, based on symmetry-selection rules, we can state that the LO modes of
armchair nanotubes and the TO modes of zigzag nanotubes at I, are silent in the Raman spectra.
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I. INTRODUCTION

The interpretation of the Raman spectra of single-walled
carbon nanotubes (SWNT’s) presents still open questions. In
particular, the G band of SWNT samples exhibits a struc-
tured shape which depends on the peculiar electronic struc-
ture of the nanotube and is due to the symmetry-breaking
effects produced by the wrapping of the graphene sheet
around a cylindrical surface. It is known that the higher fre-
quency G* peak is practically independent of the nanotube
diameter (wj;=1591 cm™'), while the dispersion of the
lower-frequency G~ peak can be described according to the
empirical fit w;=wg—C/d;, with C being a different coeffi-
cient for metallic and semiconducting nanotubes (C,,> C,).!

In this work we propose a general model for computing
the phonon frequencies of any (n,m) nanotube based on a
suitably developed force field. The outcomes of the model
lead us to a unified interpretation of G-band behavior in the
Raman spectra of metallic and semiconducting SWNT’s.
Moreover, our model is able to predict the right linear dis-
persion of the radial breathing mode (RBM) with respect to
the inverse diameter of the nanotube.

Our approach does not rely on first-principles calculations
or zone folding of graphite, but merely extends the use of
empirical valence force field calculations from the domain of
polyconjugated polymers>? and graphite* to the domain of
nanotubes. This choice is based on our previous experience
in developing a semiempirical force field for graphite and
related molecular compounds.* On the other hand, it is well
known that for systems characterized by a network of cova-
lent bonds, a valence force field is built upon parameters
which are much closer to “chemical intuition” than any Car-
tesian force constants. For this reason these parameters are
straightforwardly transferable when one considers systems
characterized by a similar chemical structure. On the basis of
valence coordinates’ the dynamical problem is written as

(GF)L = »’L, (1)

where G and F are, respectively, the kinetic and dynamical
matrices which are defined following Wilson et al. 25 w is the
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vibrational frequency of a given mode, and L is the corre-
sponding eigenvector in terms of displacements along inter-
nal coordinates. We describe the internal coordinates of any
nanotube through the internal coordinates of the graphene
cell wrapped around the cylinder of radius R=|C,|/27 (de-
tails are found in Appendix A). These are a total of nine
internal degrees of freedom (three stretchings and six bend-
ings; see Fig. 1). The real curved structure of the whole
nanotube can be generated by applying a suitable roto-
traslation to this unit cell (see Appendix A). In this way we
can take into account the effect of the real geometrical struc-
ture of the nanotube on the phonon frequencies. The dynami-
cal problem is treated in terms of phonon coordinates built
on the basis of the few degrees of freedom of the minimal
structural unit. The advantage of this treatment lies, on the
one hand, in the fact that the phonon frequencies can be
obtained through the diagonalization of a small dynamical
matrix (i.e., a 9 X9 matrix). On the other hand, and even
more important, we obtain a formally identical problem for
any nanotube we would like to consider. While the effect of
a different curvature is described by the kinetic matrix G, the
differences among the dynamical couplings associated with
different electronic structures (namely, differences between
metallic and semiconducting nanotubes®) must be described
through a different F matrix. In particular, due to the Kohn
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FIG. 1. Definition of the valence coordinates for a generic (n,m)
nanotube.
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anomaly,®” we need a model which can distinguish a system
with long-range interactions (metallic) from a system with
shorter-range interactions (semiconducting). A simple model
which is known to treat accurately CC stretching interactions
in polyconjugated systems is based on Hiickel theory.??
Within the same frame, following the derivation introduced
by Coulson and Longuet-Higgins,3 ' Kakitani developed
expressions for the valence force constants involving CC
stretchings.!! The force field used in this work for nanotubes
is the one adapted to small Polycyclic Aromatic Hydrocarons
(PAH’s) by Ohno'? following Kakitani’s work. We have re-
cently shown that this force field is able to describe systems
with strong electron-phonon coupling (EPC).!* The Ohno
force field has been developed for planar molecules'? and
therefore extended to the graphene sheet.* For these cases the
vibrational problem can be exactly factorized into two inde-
pendent problems: namely, the in-plane and the out-of-plane
one. Thanks to this property Ohno’s force field does not con-
tain the definition of the out-of-plane degrees of freedom and
related force constants. This procedure does not affect at all
the calculation of frequencies associated with in-plane
modes, which can be indeed exactly described through this
approach. In the case of carbon nanotubes a straightforward
generalization of Ohno’s force field cannot be done since
separation (by symmetry) between in-plane and out-of-plane
modes is no longer possible. In spite of this we restrict our-
selves to those coordinates (bendings and stretchings) which
represent a complete set of vibrational coordinates for the
in-plane vibrational problem in the limiting case of a nano-
tube with infinite diameter (i.e., graphene). In other words, in
the present treatment we restrict ourselves to the force con-
stants defined in the original Ohno work; i.e., we do not
include any internal coordinate defining torsions around
carbon-carbon bonds. Nevertheless, thanks to ring redundan-
cies between valence coordinates in systems containing aro-
matic rings,'* the valence coordinates adopted in this work
form a complete basis set for the description of the whole
vibrational space of SWNT’s. On the other hand, the lack of
a definition of specific force constants for the torsional de-
grees of freedom is expected to cause poor results for the
low-frequency phonon branches. It is, however, important to
note that in the case of the radial breathing mode (RBM) at
I'y, which is the vibration responsible for the main Raman
band observed at low frequencies, the vibrational displace-
ments do not imply any angular (nor torsional) change, since
the nanotube merely expands or shrinks while keeping ex-
actly the same shape. For this reason the prediction of RBM
frequencies is not affected by the lack of torsional force con-
stants in our model. Moreover, the high-frequency G modes,
which are the center of the present discussion, are certainly
unaffected by couplings with torsional vibrations, because of
the large difference between their characteristic energies.

1I. DISCUSSION OF THE MODEL

The G matrix in Eq. (1) allows us to describe the Kinetic

energy 7 in internal coordinates, 2T=R'G™'R. It is ex-
pressed as follows:?
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G =BM BT, (2)

where M is the diagonal matrix of the atomic masses and B
is the transformation which relates the Cartesian coordinates
to the internal coordinates (R=BX). For periodic systems the

B matrix can we written in the following way:*!3

B(ala 02) = B()() + W(_ ¢1)B10ei01 + W((ﬁl)Bfoe_ial
+ W(= $2)Boie'” + W(¢h,)Byre 2. (3)

The auxiliary matrices By, B, etc., are defined in Appendix
A; O=a;-k—ie., k=(6,b;+6,b,)/(27m)—and W(¢) is a
suitable rotation matrix [see Eq. (A6) and Appendix A]. Ac-
cording to Eq. (3), B(6,,6,) defines the Bloch internal coor-
dinates on the basis of the Cartesian atomic displacements—
i.e., R(6;,60,)=B(6,,6,)X "0 For the details see Appendix
A. Note that the variables 6, and 6, simply represent the
phase differences of vibrational displacements between
nearest-neighboring cells along the a; or a, direction. It is
important to realize that the Wilson’s vectors entering the B
matrix are constructed by using the true curved geometry of
the nanotube (see Appendix A). This makes it possible to
account for curvature effects in dealing with the basic dy-
namical problem given by Eq. (1).

Since the allowed wave vectors in SWNT’s do satisfy
particular boundary conditions which are the direct conse-
quence of the symmetry of the system, we obtain the follow-
ing prescriptions for the phase differences (see Appendix B
and Ref. 16):

0= pn+ 76,

0, = dru + 78, (4)

where u €[0...,(N(n,m)—1)] is an integer!” and & assumes
values between —r and 7. The coefficients ¢, , and 7, are
known functions of the (n,m) indices of the nanotube con-
sidered (see Appendix A). The closed expressions (4) for 6,
and 6, account for the periodic boundary conditions of any
(n,m) nanotube. In the literature'® the same conditions are
usually expressed in terms of the k wave vector, the chiral
vector C,, and the translation vector T (see Appendix B):

k- Ch=27TM,

k-T=¢. (5)

The particular choice é€=0, we[0...,N—1], corresponds to
selecting phonons which do satisfy the condition q=0 within
the first Brillouin zone of the given nanotube. In this work
we indicate with ', (u=0,1,...) the collection of (6, 6,)
values at £=0 given by Eq. (4). These points correspond to
the potentially Raman active phonons.'”

A. Force field

The elements of the force constant matrix F for a periodic
system can be written employing the Bloch theorem as fol-
lows (i and j label a given internal coordinate, and n, and n,
denote the cell position in the lattice):'?
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FIG. 2. (Color online) De-
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Following Kakitani,'! the force constant Jfij relative to the
interaction between ith and jth CC stretching coordinates is B \?
given by f3=2 % ,  f3=3.6465,N/cm. 9)

B B \?
fl’j=<k0'+2ﬁpi 5l]+2 E Hij’

= i0,0’ .] Ejnl,nz’ (7)

where 3 is the resonance integral in the frame of Hiickel
theory, p; represents the bond order of the ith carbon-carbon
bond, and II; is the bond-bond polarizability (BBP). This
latter quantity expresses the change in the ith bond order
induced by a change in the hopping integral of the jth bond
or, equivalently, the second-order change of energy induced
by the change in the hopping integral relative to bonds ith
and jth.® Ohno’s force field makes use of Eq. (7), taking the
benzene molecule as reference system. By denoting with p,,
and II, the bond order and self-polarizability of the CC
bonds of benzene, Eq. (7) becomes

fi=Ffi+fo(pi=po) + f3(11; = 11,

fij=f3Hijv I #]. (8)

Explicit expressions for the constants f|, f>, and f3 can now

be obtained by substituting p;=p,, I1;;=I1, into Eq. (7). This
results in the following set of parameters:'?

*B 9B \2
Wp0+2 &—R I,
=ky+ fopo + f311y = 6.821 N/cm,

fi=ks+2

Ohno’s force field introduces eight semiempirical parameters
(f1.f2»---f3) which have been determined by a fitting pro-
cedure based on the experimental vibrational frequencies of
small polycyclic aromatic hydrocarbons.!> For defining the
subspace of the CC stretching coordinates just the three pa-
rameters (f},f,.f3) appearing in Eq. (9) are required. The
quantities p; and I1;; can be determined for each nanotube,
once and for all, after diagonalizing the Hiickel Hamiltonian
of the specific (n,m) nanotube considered (see Appendix C).
The quantities p; and II;; contain all the needed information
on the 7 electronic structure and on the topology of the
system considered. The effect of the Kohn anomaly recently
pointed out in graphite and carbon nanotubes®’ is fully in-
cluded in the polynomial decay of the force constants in real
space, ruled by the behavior of the BBP II;; [see Fig. 2 and
Eq. (7)]. From the analysis of Fig. 2 it is clear that the dy-
namical interactions in metallic nanotubes have a longer
range than in semiconducting nanotubes. According to Eq.
(9) one realizes that the f; parameter is directly related to the
electron phonon-coupling parameter d3/dR as it is defined in
the Hiickel frame.!? In particular, f5 is precisely the coeffi-
cient which turns the BBP into an off-diagonal CC stretching
force constant [see Eq. (8)]. As for the other five Ohno pa-
rameters they describe diagonal force constants of bending
coordinates and bending-stretching interactions which are
taken as short-range empirical terms. Among these five pa-
rameters, only two constants are needed for the present nano-
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tube force field: (i) fs=0.928 X 1078 N/rad which is the di-
agonal CCC bending constant and (ii) f7=0.430
X 10718 N'm/rad which represents the interaction between
nearest-neighbor CC stretching and CCC bending.

As in the case of graphite* we decide here to keep all the
empirical parameters fixed to the values proposed by Ohno.
This will result in an estimate of the vibrational frequencies
systematically lower by roughly 35 cm™'. With some effort
one could improve the choice of the parameters in order to fit
the experimental data on nanotubes. However, the agreement
(in terms of trends) that we obtain by using a force field
containing empirical parameters which were optimized for
rather different systems such as polycyclic aromatic hydro-
carbons is already surprisingly good. As already pointed out,
the physics of phonons in nanotubes is mainly due to the
bond orders p; and BBP II; and not to the particular choice
of the fi, f, and f; numerical parameters. As a consequence,
this force field will naturally distinguish metallic from semi-
conducting nanotubes since the bond orders and BBP’s are
extremely sensitive to the electronic structure of the nano-
tubes considered. This model will therefore provide valuable
information on the vibrational structure of nanotubes, with
particular emphasis on the G band and its dependence on the
electronic structure and diameter.

The general expressions for the the bond order p; and the
BBP II;; in terms of linear combination of atomic orbitals
(LCAO) coefficients C and orbital energies & were deter-
mined in the past by?

p)\p = 2 (C)\Ocpo + C::()Cpo) >

o

+ C}\eC:a)(CVOCZ'e + C;teczm)
+

£

C.C.
—-&

(C*()C 4
H)\p,VO' = E A s
0,e

o e

(10)

In Eq. (10) the labels Ap and vo indicate the pairs of 2p,
carbon atomic orbitals involved in two bonds i, and the sum
runs over occupied (o) and empty (e) molecular orbitals. The
bond orders and BBP for SWNT’s (Ref. 20) are expressed as
integrals over the Brillouin zone of the nanotube, similarly to

previous studies of systems with periodic boundary
conditions:>*
1 ks
" 2@N w Jom '

I L~ e[ ae
(0.0 () QaN)>?> <, ) § . 3 0.0V (nyny)"
y

(11)

The integrand functions ¢; are defined in Appendix C. The
functions 7r;; are known functions of u, u’ and &, §', through
0,, and 6], [see Eq. (4) and Appendix C]. The indexes u
and u' determine pairs of discrete lines in the reciprocal
lattice of graphite, the path of integration being parametri-
cally described by the variables ¢ and &'. The integration
path in the 6,-6, plane is given by Eq. (4), and it can be seen

PHYSICAL REVIEW B 74, 184306 (2006)

TABLE 1. List of the nanotubes studied in this work.

Armchair Zigzag Chiral

(6,6) 9,0) (6,3) (6,2) (5,2)
(7,7) (10,0) (8,4) 9.,3) (10,4)

(10,10) (15,0) (10,5) (12,4) (15,6)

(11,11) (16,0) (12,6)

(12,12) (18,0) (14,7)

(14,14) (20,0)

(17,17) (23,0)

(21,21) (24,0)

as a set of segments in the #,-6, plane whose slope and
lengths are functions of the coefficients ¢, , and 7, which
are in turn functions of (n,m) according to Eq. (A5). It is
clear that the functions r; are formally equal for any nano-
tube but the path of integration is different for each nano-
tube. In particular, for metallic nanotubes the path of integra-
tion will include the K (K’) points. We therefore have
introduced a treatment of vibrations which knows both the
real three-dimensional geometry of the nanotube through the
kinetic energy matrix G and the peculiar electronic structure
through p; and II;; and, by consequence, through the force
field F.

III. RESULTS

In this section we show the results obtained by using our
valence force field on different nanotubes. The nanotubes
investigated are listed in Table I. For all the nanotubes we
have computed the phonon dispersion curves. Typical results
are shown in Figs. 3 and 4. As already discussed in Sec. I the
phonon dispersion curves here presented are not accurate for
the low-frequency modes since the present force field does
not contain interactions associated with torsional degrees of
freedom. The phonon dispersions are given here to merely
show the efficacy of the method and its straightforward ap-
plicability to any nanotube. Moreover, by directly inspecting
the phonon dispersions in the G-band region (which is accu-
rately described in the present treatment) the behavior of the
Kohn anomaly can be more easily assessed.

We observe that all the phonon dispersions of the metallic
nanotubes reported in Figs. 3 and 4 show a marked Kohn
anomaly at I, as expected according to the literature.® We
observe also that the (9, 0) and (6, 3) nanotubes [Figs. 3(b)
and 4(b)] exhibit the Kohn anomaly not only at I, but also at
some I, with u# 0. For instance for the (9, 0) nanotube we
observe the Kohn anomaly at I'g and I'}, and for the (6, 3)
nanotube we observe the Kohn anomaly at I'(4 and I'»g. This
happens for all the (metallic) nanotubes for which the K
point of graphene corresponds to a given I', point. Since I',,
is defined by Egs. (4) with the condition £=0, the require-
ments I' =K, r M:K’ reduce to the following conditions:
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FIG. 3. Phonon dispersion curves of one semiconducting and
one metallic nanotube computed with the valence force field pro-
posed in the present work. (a) (10, 0) semiconducting zigzag and
(b) (9, 0) metallic zigzag.

2
Mmoh =+ 577+ 2mpy,

2
mehy =— §7T+ 27p,,

2
noh, = *7T+27Th1,

2
R +§’7T+27T]’lz, (12)

where Qm/3+27p,,-27/3+27p,) and (=27/3
+2h,,2mw/3+2mh,) are the coordinates of K and K’, re-
spectively (p,h are integer numbers). Recalling that the q
=0 selection rule traduces in selecting only the phonons
found at I',, we can immediately state that only the subset of
metallic nanotubes which satisfies the conditions given by
Egs. (12) can potentially exhibit in the Raman spectrum a
band associated with the K-point phonon (i.e., an intrinsic D
peak, not necessarily activated by disorder or confinement).
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FIG. 4. Phonon dispersion curves of two metallic nanotubes
computed with the valence force field proposed in the present work.
(a) (6, 6) armchair and (b) (6, 3) metallic chiral.

The calculations illustrated in Figs. 3 and 4 have been
carried out by using the same parameters proposed by
Ohno!? [see also Eq. (9) and points (i) and (ii) above]. We
neglect any f;; force constant relative to the jth bond located
in a (n;,n,) cell at distance larger than ~45 A (along the
nanotube axis) from the (0,0) cell (where the ith bond lies).
By following this procedure we effectively use a different
cutoff for the off-diagonal force constants f;; in metallic with
respect to semiconducting nanotubes. This is due to the dif-
ferent decay of the BBP’s in the two systems. For instance, at
the threshold distance Of 45 A the lowest Jfij force costants
are of the order of 10 N/cm for metallic nanotubes while
they fall to approximately 10~ N/cm for semiconducting
nanotubes (see bottom panel of Fig. 2). This is further evi-
dence that metallic nanotubes exhibit a stronger electron-
phonon coupling.®

By using our valence force field we have computed the
phonon frequencies at I'y (i.e., £&=0, u=0) for the different
nanotubes of Table I. By plotting the vibrational frequencies
against the diameter, we obtain the trend reported in Fig. 5.

The analysis of the eigenvectors allows us to determine
the character of the phonons associated with the calculated
frequencies. In particular, we follow here the usual definition
of the transversal (longitudinal) character of a phonon as
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FIG. 5. (Color online) Diam-
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modes in the Raman spectra of
achiral nanotubes.
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given by the orthogonal (parallel) direction of the nuclear
displacements with respect to the q wave vector. Since the q
wave vector is necessarily parallel to the nanotube axis, it is
indeed straightforward to judge whether a mode is transver-
sal or longitudinal by simply inspecting the direction of the
nuclear displacements with respect to the nanotube axis.
Based on the results of our calculations at I'), we therefore
assign (a) the G* branch to LO (axial) modes of semicon-
ducting nanotubes, (b) the G~ upper branch to TO (transver-
sal) modes of metallic and semiconducting nanotubes, and
(c) the G~ lower branch to LO modes of metallic nanotubes.

The simple sketch reported in Fig. 6 shows our interpre-

tation of the G-band dispersion in the Raman spectra of
SWNT’s. The G~ higher branch (central branch) is due to the
dispersion of TO modes of metallic and semiconducting
nanotubes. We observe that the TO modes of both metallic
and semiconducting nanotubes are sensible to the diameter
of the nanotube as expected based on a purely geometric
interpretation (see Fig. 5). Moreover, the dispersion with the
diameter of the TO modes frequencies is the same for metal-
lic and semiconducting nanotubes. In semiconducting nano-
tubes the G modes do not suffer a marked electron-phonon
coupling. As a consequence, we obtain a LO mode that is
practically not diameter dependent (see Fig. 5). Instead, the

LO, G*
1550 » :
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FIG. 6. (Color online) Sketch
of the G-band dispersion law with
nanotube diameter at I',. The ver-
tical arrows connect branches re-
lated to LO-TO splitting.

d; (nm)

25 3

184306-6



ASSIGNMENT OF THE G* AND G- RAMAN BANDS...

PHYSICAL REVIEW B 74, 184306 (2006)

1575
Ay 1
0 ¢ 2
© &m0 ®° %A¢ pa% A, ia mb
1550 & S Rt o
| | | | | | m ] ™1 n -
A A A A A
1525 A e ot ‘ = t i
Al = ; .
. FIG. 7. (Color online)

1500 . Phonons at I'y (i.e., u=1, £€=0):
diameter dependence of the G*

. and G~ peaks in the Raman spec-

R e S tra of nanotubes. Red symbols are
L for semiconducting nanotubes,
38 .

1450 blue symbols for metallic tubes.
Solid symbols are for LO modes;
open symbols are for TO modes.

1425 Triangles denote zigzag nano-
tubes; squares denote armchair

1400 and circles chiral nanotubes.

1375 |- =

0.5 0.75 1 1.25 15 178 2 2.25 25 2.75 3
d; (nm)

G~ LO band for metallic nanotubes is expected to show a
strong Kohn anomaly and a large electron-phonon coupling.®
In agreement with this finding we have LO modes which are
strongly diameter dependent (see Fig. 5). On the contrary, the
TO modes are fairly sensitive to the diameter and are not
affected by the Kohn anomaly. Thus, as far as the T'y; TO
phonons are concerned, all the nanotubes contribute with the
same dispersion law to the G~ upper branch (the central
branch of Figs. 5 and 6). On the other hand, the LO modes
are very sensitive to the EPC; therefore, two distinct
branches are found for metallic and semiconducting nano-
tubes:

(a) the G* branch to which semiconducting nanotubes
contribute and

(b) the G~ lower branch due to metallic nanotubes (strong
EPC).

Finally, it is important to point out that armchair and zig-
zag nanotubes have, respectively, LO and TO modes at I
which are symmetry forbidden in the Raman spectra (they
are of ungerade symmetry species). This result agrees with a
recent work.?! In Fig. 5 the black symbols indicate frequen-
cies of these symmetry-forbidden phonons.

The assignment so obtained partially agrees and partially
disagrees with previous works.!6-2223

(a) According to Ref. 1 the G* is due to longitudinal
modes of both semiconducting and metallic nanotubes; for
us, it is due to longitudinal modes of just the semiconducting
nanotubes.

(b) According to Ref. 1 the G~ upper branch corresponds
to transversal modes of semiconducting nanotubes; for us, it
corresponds to the transversal mode of both metallic and
semiconducting nanotubes.

(c) According to Ref. 1 the G~ lower branch is due to the
transversal modes of metallic nanotubes; for us, it is due to
the longitudinal mode of metallic nanotubes.

(d) According to Ref. 6 the transversal mode of metallic
nanotubes does not disperse because the model adopted in

Ref. 6 does not account for curvature effects; for us, it shows
a modest dispersion and it is associated with the G~ upper
branch (TOg,).

(e) According to Ref. 6 the G~ lower branch is the longi-
tudinal mode of metallic nanotubes and we agree on this
point. Note that Ref. 6 does not present any calculation for
semiconducting nanotubes.

According to point (a) of the above analysis we find only
frequencies of semiconducting nanotubes in the G* branch,
contrary to experiments' which show in the G* branch also
contributions from metallic nanotubes. A possible explana-
tion is that the phonons of metallic nanotubes experimentally
observed on the G* branch are not I') phonons. In particular,
inspection of the phonons at I'; point (see Fig. 7) clearly
shows the presence of metallic nanotubes on a nondispersive
branch which can be put in correspondence with the G* ex-
perimental data. This observation allows us to overcome the
apparent disagreement of our results for the I, phonons.

Let us now consider the G~ upper branch. At I'j we have
phonons of both metallic and semiconducting nanotubes on
this branch. According to experiments' the G~ upper branch
is mainly composed of phonons belonging to semiconducting
nanotubes and just a minority of phonons of metallic nano-
tubes is found here. This suggests that the intensity of TO
modes of metallic nanotubes is weak for phonons at I';. We
summarize in Fig. 8 the dispersion of the G modes at I'y and
I'; to ease the overall understanding of the data.

We may ask also if the other Raman-active vibrational
frequencies in our model do depend so strongly on the elec-
tronic structure as the G band. It is known that the RBM
frequency shows a linear dispersion with the nanotube diam-
eter, independently of the metallic and semiconducting na-
ture of the nanotube.?* In Fig. 9(a) we report the square roots
of the eigenvalues of the G matrix (V")\G) relative to radial
vibrational displacements of the nanotubes of Table 1. These
eigenvalues can be related to the frequencies of a hypotheti-
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cal dynamical problem where the force field is the identity
matrix. In this way only the effect of kinetic coupling is
taken into account. It is evident that even without the inclu-
sion of the true force constant matrix F in the dynamical
problem [Eq. (1)] we anyway recover the right linear disper-
sion versus the inverse diameter.”* In Fig. 9(b) the same dis-
persion is showed for the square roots of the eigenvalues of
the complete dynamical problem [Eq. (1)]. Since for both
Figs. 9(a) and 9(b) a similar linear dispersion is obtained,
one can conclude that the force field (which is different for
each nanotube) does not influence the linear dispersion of the
RBM frequencies versus the inverse diameter. Therefore the
observed linear change of the RBM frequency with respect
to the inverse diameter is due to a purely kinetic effect (i.e.,
it is related to the curvature of the nanotube and to the G
matrix alone). This allows to define for the case of the RBM
a universal effective force constant k,=4.57 N/cm for any
nanotube (wRBMz \*‘skeff)\G) .

IV. CONCLUSIONS

We have introduced a general model which allows to de-
scribe the vibrational dynamics of any (r,m) nanotube while
keeping reduced to a minimum the number of degrees of
freedom (three stretchings + six bendings). The proposed
valence force field can cope with the different electronic
structures of metallic and semiconducting nanotubes and
gives the expected Kohn anomaly behaviour® for metallic
nanotubes. In particular, this is due to the correct decay with
distance of the off-diagonal CC stretching force constants in
real space. Within this frame we propose an assignment of
the G band in the Raman spectra of SWNT’s. In particular,
considering phonons at I'y, we assign the G~ lower branch to
LO modes of metallic nanotubes and the G* branch to LO
modes of semiconducting nanotubes. The G~ upper branch is

assigned to TO modes of semiconducting and metallic nano-
tubes at I';. A computation of Raman cross sections is
needed to fully understand the reason why only a few metal-
lic nanotubes are experimentally found to contribute to the
G~ upper branch. Moreover, it is necessary to consider also
phonons at I'; in order to account for the experimentally
observed' contributions to the G* branch arising from metal-
lic nanotubes. It is also important to point out that the LO
modes of armchair nanotubes at I'y and the TO modes of
zigzag nanotubes at I'y are ungerade and thus are symmetry
forbidden in the Raman spectrum. Finally our valence force
field correctly accounts for the right dispersion of the RBM
with respect to the inverse diameter.
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APPENDIX A: THE CHIRAL GEOMETRY OF
NANOTUBES

The coordinates X, y of the carbon atoms belonging to
the (n,,n,) cell of a generic (n,m) nanotube can be obtained
by rototranslation of the coordinates X, of the (0,0) refer-
ence cell. The coordinates X, can be easily obtained by
taking the coordinates of the two carbons of the fundamental
cell of graphene and “wrapping” them around the cylinder of
radius R=|C,|/2 (see Fig. 10). The trasformation mapping
the coordinates of the reference cell of the nanotube into the
coordinates of the generic (n,,n,) cell is

X, = Wiy +ny)Xo 0+ (ny 71 +nym) T, (Al)

where W(a) stands for the rotation of the angle @ around the
Y axis (axis of the nanotube) and T is the fundamental trans-
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FIG. 9. Linear dispersion of the RBM mode versus the inverse
diameter of the nanotube: (a) square roots of the eigenvalues of the
G matrix and (b) RBM frequencies predicted solving the full dy-
namical problem, Eq. (1).

lation vector of the nanotube (see Fig. 10). The parameters
¢, and 7, in Eq. (Al) are related to the projections of the
fundamental vectors of graphene a; and a, along the funda-
mental vectors C;, and T of the nanotube. In particular,

a; -G,
Ci*

=27

a - Ch
G

¢2=27T

_al-T
TP

71

_aZ~T
TP

T (AZ)

where the vectors C, and T are given by
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Ch =na;+ma,,

T:tla] +t232, (AS)
and ¢, and t, are®
2m+n
tl = N
dg
2n+m
tz = - N
dg
dp=gcd(2n+m,2m+n). (A4)

In our calculations the carbon-carbon bond length a.. has
been fixed at the value of 1.421 A. By expanding the scalar
products in Egs. (A2), we obtain

6 =2 2n+m
e 77-2(112+nm+m2)’
b =2 2m+n
2T 7T2(n2+nm+m2)’
de
=52, 0y
2(n” +nm+m")
d
7= ok (AS)

- 2%+ nm+m?)’

These parameters allow us to generate the Cartesian coordi-
nates of the carbon atoms of the nanotube in three dimen-
sions according to Eq. (Al). In particular, the rotation matrix
W of Eq. (Al) is given by

cos¢p 0 —sing
W(p)=[ 0 1 0
sing 0 cos ¢

The coordinates X, of the two carbon atoms in the ro-
totranslational minimal cell of the nanotube are obtained by
trasforming the coordinates of the P point lying on the
graphene plane (x,y) into the coordinates of the point P’
lying on the surface of the cylinder of radius R=|C,|/2 (see
Fig. 10). This is accomplished by means of the following
equation:

(P'-=0)=(K-0) + pv,+ R(cos D&+ sin Dy), (A7)

(A6)

where @ and p are given by

@zzww, (Ag)
|Ch|
p=FP-0)-v,. (A9)

See Fig. 10 for the definition of the unit vectors &, #n, and v,.

This procedure allows us to trasform the planar coordi-
nates of the carbons on the graphene plane (x,y) (see Fig. 1)
into the fully three-dimensional coordinates needed to calcu-
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late the s} Wilson vectors which enter the definition of the B
matrix of Eq. (3). Before applying the trasformation (A1) to
generate the coordinates of the atoms of the whole nanotube
in the (X,Y,Z) Cartesian system shown in Fig. 10, it is nec-
essary to introduce a translation which brings the origin in
the K point of Fig. 10 and a rotation around the z=Z axis
which aligns the X and Y axes along the vectors C;, and T,

respectively:
cos| x——| —sin| x——
X6 X6

T
Wilx-—|=
(X 6) sin(x—g) COS(X—%) 0
0 0 1
(A10)

(x is the chiral angle which is called @ elsewhere?).

The B(6,, #,) matrix transforms the Cartesian coordinates
into internal coordinates; therefore, in our case it is a 9 X6
matrix. The five B matrices showing up on the right-hand
side of Eq. (3) are defined as follows:

FIG. 11. Atom numbering for carbons in cell (0,0) and nearest
neighbors.

PHYSICAL REVIEW B 74, 184306 (2006)

FIG. 10. (Color online) The
cylinder of radius R=|C,|/2m
used to construct the fully three-
dimensional geometry of the ge-

neric (n,m) nanotube starting
from the graphene plane.
By B, B, B, Bor
sftosfif0 0/ 0 00 00 0
s 010 00 sl 0 o0/lo0 o
s 00 0/0 0|0 00 sp
st 010 0] 0 s3t/ 0 O] 0 sy
s2 85210 00 0|0 0| 0 sy
s? 8330 000 s33 0 00 0
0 s |s2 0] 0 0 |s2l 0] 0 0
s2 s2/ 0 0/ 0 02 000 0
s‘l”é s‘z"é sg’é 00 0|0 0[]0 O
(A11)

The vectors sy are the so-called Wilson’s vectors® relative to
the ith atom and defining the Rth internal coordinate (see
Figs. 1 and 11). The Wilson’s vectors are known functions of
the Cartesian coordinates of the atoms involved in the defi-
nition of the internal coordinate considered.’

APPENDIX B: ELECTRONIC STRUCTURE OF
NANOTUBES WITHIN HUCKEL THEORY

The so-called zone-folding procedure?* introduced for de-
scribing the peculiar periodic boundary conditions of nano-
tubes can be easily derived by starting from the consideration
that the generic wave vector k=(27)7'(6,b, + 6,b,) must sat-
isfy the conditions given by Egs. (5). By expanding the sca-
lar products of Egs. (5) while keeping in mind the definition
of C;, and T [Eq. (A3)] one finds
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nb,+mb,=2mu,

t|01+t202:§. (Bl)

These coupled equations can be cast in the more convenient
form wich expresses ¢, and 6, as a function of the nanotube
quantum numbers £ and u. By solving Egs. (B1) in terms of
0, and 6, and by making use of relationships (A4) one gets

27(2n+m)u mdgé

- 2% +nm+m?) 20> +nm+m?)’

1

2m7(2m + n)

- 2(n® + nm + m?)

ndgé
- 2> +nm+m?)’ (B2)

2

By employing in Egs. (B2) the relations given by Egs. (A5)
one finally obtains Eqs. (4).

APPENDIX C: BOND ORDERS AND BOND-BOND
POLARIZABILITY INTEGRALS

The calculation of the quantities p; and II;; defined in Eq.
(11) is needed for the determination of the force field con-
stants f;; [see Egs. (8)]. This requires the evaluation of the
integrand functions ¢; and 77;; which can be obtained directly
from the knowledge of the LCAO coefficients C of the nano-
tube crystal orbitals and the orbital energies . These can be
expressed conveniently as follows (the orbital energies are
given in units of the hopping integral [, as customary in
Hiickel theory):

V2
1 617]/2
Ce = \’,_5 _ 6_”7/2 P
80=_|f(0)7 8€=|f(0)|' (Cl)

The orbital energies € and the quantity n=arg f are given
through the function f(@) which is defined as

£(6,,0,) =1+¢% 4+ ¢, (C2)

This form of the LCAO coefficients is the same obtained in
a Hiickel theory treatment of graphite (see, for instance, Ref.
4). The important difference here is that not all the k points
within the first Brillouin zone of graphene are allowed, but
just those satisfying the boundary conditions specific to
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nanotubes. This fact restricts the allowed values of the
phases 6, and 6, (and 6] and 65) to those given by Eq. (4).
By combining the LCAO coefficients and orbital energies
given by Egs. (C1) with the general expressions for the bond
orders and BBP’s [Eqgs. (10)] one can derive the explicit
expressions for the quantities appearing in Egs. (11). In par-
ticular, the integrand functions g; which allow one to com-
pute the bond orders of the three nonequivalent CC bonds in
the cell are given by

41 =CO0s 7,
q2=cos(n—6,),

g3 =cos(n—6,). (C3)

By introducing a suitable common prefactor g [similarly to 6
defined above, n represents the vector (ny,n,)],

1 ein-((i—o')
" 4lf(0)|+|f(0)]

needed to compute all the

8n(0.6') = (C4)

the integrand functions m;
& 10,0/ ()

necessary BBP’s are given by

11 = ga(0.0)[2 =) — ] e
Ty = gn(0,0)[2 — &7 000 _ il n 00 e e
T33=8n(0,0")[2 - el =000 _ o=ilmtn'=0=0)] 4 ¢
2= a(0,0)[1(1 = ) 4 (1 = T )] 4 e,
m13=gn(0, 0)[e'(1 — 7M7) 1 e7i%(1 — )] 1 coc,

3= 24(0, 0’)[ei(0§‘8{) _ im0 ~01=6) _ =ity ~05-6))

+e =] 1 cc. (C5)

The different behavior of metallic versus semiconducting
nanotubes (see Fig. 2) is related to the inclusion of the K and
K’ points (at the corner of the first Brillouin zone of
graphene) in the integration domain for metallic nanotubes
[see discussion relative to Eq. (11)]. In fact, the function
f(6,,6,) equals zero when it is evaluated in correspondence
with the K or K’ points. For metallic nanotubes this results
in a slower decrease of the function g,(@, 8") while increas-
ing the intercell indexes n. This directly affects the BBP I1;;
and causes the slower decay shown in Fig. 2.
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