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We suggest that additional depression of the phonon conductivity � at its peak value due to plastic defor-
mation of close-packed structures might well be caused by phonon scattering by stacking faults and the
dislocation cores. These two scattering processes would give rise to respectively �2 and �3 dependent relax-
ation rates in the full relaxation rate �F

−1 resulted by various phonon-scattering processes. We achieve an
excellent theoretical fit for the experimental results of phonon conductivity � in plastically deformed LiF and
Ge. The number of stacking faults/cm Ns and the radius of the core size of dislocations are strikingly within
reasonable limits. Further, the computed value of Ns obtained in deformed Ge is an order less than in case of
LiF for nearly the same dislocation density. This result is also theoretically expected as Ge is less close packed
than LiF.
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I. INTRODUCTION

It is observed that the depression of phonon conductivity
� due to plastic deformation of crystals occurs not only at
very low temperatures but to some extent extends up to tem-
peratures beyond its peak value.1–3 The problem is supposed
to be challenging because the theory of most probable addi-
tional phonon-dislocation interaction in such systems is un-
able to account for this depression in �.1–4

Phonons may be scattered by dislocations5,6 due to their
�i� static strain field, �ii� dynamic nature, and �iii� cores. As
regards scattering of phonons due to static strain field of
dislocations the theory of Klemens6,7 and others8 usually
falls at least an order smaller than demanded by the experi-
mental data. Ohashi’s9 theory yielded better results but it was
sharply criticized by Granato.10 Granato10 and his
co-workers4 developed the theory for the phonon scattering
by dynamic pinned as well as unpinned dislocations while
Ninomiya,11 adopting a different approach, solved the same
problem for the case of unpinned dislocations only. Based on
these theories of processes �i� and �ii�, many workers ana-
lyzed the phonon-conductivity data of plastically deformed
samples of Ge,2 Cu-Al alloys,12 and LiF.1,4 From this litera-
ture it may be concluded that neither �i� nor �ii� can singly
explain the above-mentioned depression of � quantitatively
even at low temperatures ��8 K�. Roth and Anderson3 and
others13–15 showed that the combination of the processes �i�
and �ii� gives rise to a much better explanation of the experi-
mental data also. It was almost settled that although the dy-
namic nature of this scattering process dominates over the
static one, its strength still falls short by a factor of 2 at least
in the case of LiF.1,4

Amidst the controversy to settle down the nature of pho-
non scattering by dislocations, which is most effective at low
temperatures ��8 K�, the process �iii�, i.e., phonon scatter-
ing by dislocation cores, was totally ignored. According to
Berman5 and Klemens6 its strength becomes significant
when the phonon frequency is of the order of Debye fre-
quency and hence may not be ignored at higher temperatures
�T�8 K�. In fact few workers1,2,14 have extended the pho-

non conductivity data of deformed samples beyond its peak
value and few attempts2,14,15 have been made to explain it.
Whereas Sato and Sumino2 imagined the presence of a large
number of vacancy clusters to explain this depression, Ku-
mar et al.15 used the interference between phonon-point de-
fect and phonon-dislocation scattering for the same. In the
following sections we disagree with these authors and show
that the hitherto neglected phonon scattering by stacking
faults as well as dislocation cores might well be the main
cause behind the depression of phonon conductivity at its
peak value. A discussion over another ignored process pho-
non scattering by grain boundaries is also presented in Sec.
III.

II. THEORY

To explain � of deformed Ge, Sato and Sumino2 imagined
presence of large number of vacancy clusters introduced dur-
ing compression, which is not logical. They themselves agree
that presence of the required high density of vacancies in
deformed Ge is very doubtful because the samples were first
annealed at T=600 °C before they were compressed. Even
by taking a large number of vacancy clusters they could not
explain their experimental data of plastically deformed Ge
above 10 K; their theory overestimates � much near the peak
��20 K�, i.e., still higher concentration of vacancies will
have to be assumed in their effort. Kaburaki et al.14 added a
relaxation rate ��2 without clearly describing the cause of
its origin and obtained quite a good fit with experimental
data. Kumar et al.15 associated �2 term with the interference
between the point defect and the phonon dislocation �static
strain� scattering. Kumar et al. made a drastic assumption
that all the isotopic point defects are completely overlapping
with dislocations. This assumption would automatically give
rise to a much enhanced value of the interference term. We
have shown16 through a simpler case of elastic phonon-mass
defect and phonon-electron scattering that if the two impu-
rity centers are not overlapping, the interference term would
be vanishingly small. Therefore we tend to disagree with
these ideas and associate this �2 dependent term with the
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phonon scattering by stacking faults ignored by all previous
workers. We propose that the total relaxation rate �def

−1 due to
additional scattering processes in plastically deformed crys-
tals should be given as

�def
−1 = �sf

−1 + �dc
−1 + �ds

−1 + �dd
−1, �1�

where dd, ds, dc, and sf, respectively, stand for the scattering
due to the dynamic nature, static strain field, dislocations
cores, and stacking faults. In close-packed structures like LiF
and Ge the splitting of mobile dislocations into partial dislo-
cations and their reunion continuously takes place. Thus we
expect a substantial number of partial dislocations, leaving a
connecting sheet across which the sequence of close-packed
structure is disturbed which is called stacking faults.6 To in-
vestigate the role of phonon scattering by stacking faults in
phonon conductivity of plastically deformed crystals we
make use of the corresponding relaxation rate �sf

−1 introduced
by Klemens.6 Considering only the specular reflection of
phonons at stacking faults Klemens6 found that

�sf
−1 = 0.7

a2

v
�2�2Ns = Dsf�

2, �2�

where the stacking faults strength Dsf=0.7a2

v �2Ns, � being
the Grunessien’s constant, Ns is the number of stacking faults
per cm, a is the lattice parameter, � is the angular frequency,
and v is the phonon velocity. Earlier this scattering was ig-
nored probably because generally all workers concentrated
on the low-temperature region where �2 dependence of the
relaxation rate would not give rise to T2 to T3.5 dependence
of the phonon conductivity. The choice of the last two terms
in Eq. �1� has already been justified by Roth and Anderson,3

Klemens,6 and Kumar et al.15 The expression of �ds
−1 due to

Klemens6 has found support on the basis of experimental
work by Anderson17 and its almost unanimously accepted
form is given by

�ds
−1 = Ndb2�2��23/2

37/2� = Dds� , �3�

where the static dislocation strength Dds=Ndb2�2� 23/2

37/2 �, Nd is
the number of dislocations per unit area, and b is the Burger
vector. If the dislocations are arranged at random, �ds

−1 is re-
duced by a factor �0.55. In the case of �dd

−1 instead of going
for the complicated expression introduced by Ninomiya11

and later somewhat simplified by Suzuki and Suzuki1 and
Klemens,7 we opt for a simpler expression,

�dd
−1 =

Ddd

�
, �4�

which is an approximate expression for phonon scattering by
unpinned dislocation,11 here Ddd is the strength of dynamic
dislocation. The above choice can be justified on the basis of
the work of Kneezel and Granato.4 They have shown that
even in the case of phonon scattering by pinned dislocations,
the fundamental frequency �1 of these vibrating pinned dis-
locations is so small that the resonance effect in � vs T data
is visible at T�0.07–0.1 K in LiF. Since our data start from
T=2 K, the dominant heat carriers have frequency ��1 at

which the expression of �dd
−1 can easily be approximated to

Eq. �4� in both cases of phonon scattering by fluttering un-
pinned or vibrating pinned dislocations.1,4

The second term in Eq. �1� is due to the phonon scattering
by dislocation cores. The expression of �dc

−1 can be
written5,6,18 as

�dc
−1 = Nd

r4�3

vp
2 = Ddc�

3, �5�

where dislocation core strength Ddc=Nd
r4

vp
2 , r is the radius of

dislocation core, and vp is the phonon phase velocity. It is �3

dependent and therefore neglected by other workers due to
the same reason for which scattering by stacking faults was
dropped. Klemens6 and Berman5 have shown that around
��1013/ sec, the magnitude of this process would be of the
order of �ds

−1. So it would be desirable to investigate its role in
the depression of the phonon conductivity at T�20 K where
the phonons with ��1013/ sec may not be ignored in the
total heat transport.

III. RESULTS AND DISCUSSION

The calculation of the phonon conductivity of plastically
deformed samples of LiF and Ge are performed on the basis
of our earlier model19 in which the correction term has also
been included. The relevant formula is summarized in the
Appendix. During the computation process it was noticed
that together with 1/�, �, �2, and �4 dependent terms in �F

−1

it was essential to include the extra �3 dependent term to
produce the experimental data from T=2 to 50 K. The origin
of 1 /�, �, and �4 dependent terms are already discussed
after Eq. �1�. A survey of the literature revealed that the �3

dependent term may qualitatively be associated with the
Rayleigh type of phonon scattering by dislocation cores.
Also, following our discussion in theory Sec. II we prefer to
associate the �2 dependent term with phonon scattering by
stacking faults. Both of these interpretations will be justified
later in this section.

TABLE I. Calculated values of strength parameters of different
dislocation scattering used in the calculation of Figs. 1 and 2 for
LiF. The estimated value of Dds by Klemens �Ref. 6� formula is
given in the brackets.

Sample B
Dislocation density

=1.3	108 cm−2

Sample C
Dislocation density

=3.5	108 cm−2

Ddd �dynamic�

 1.22	108 sec−1 K

Ddd �dynamic�

 1.65	108 sec−1 K

Dds �static�

4.5	104 sec−1 K−1

�8.46	103 sec−1 K−1� �Ref. 6�

Dds �static�

6.75	105 sec−1 K−1

�2.27	104 sec−1 K−1��Ref. 6�
Dsf �stacking faults�


8.95	103 sec−1 K−2
Dsf �stacking faults�


3.2	104 sec−1 K−2

Ddc �core�

1.27	101 sec−1 K−3

Ddc �core�

1.40	101 sec−1 K−3
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The value of parameters used by us in Eq. �1� are given
in Tables I and II. Figures 1–4 show that the parameters
used give an excellent agreement between the theoretical
and experimental values1,2 of phonon conductivity of
plastically deformed LiF as well as Ge up to T=50 K and
T=30 K, respectively. In Table III the values of phonon-
point defect scattering parameter A1�=Avs

3� in relaxation rate

�pt
−1�=Ax4T4� �Ref. 19� used in the present work for the

samples of LiF �7Li%95.4� and Ge are compared with its
values in Refs. 2 and 20. Its value for LiF is nearly twice the
value used by Berman and Brock.20 This difference is chiefly
due to the reason that in our work we have disregarded the
presumption of the existence of large dislocation density in
LiF samples as done in Ref. 20. In the case of Ge our value
of A1 is slightly lower than the value used by Sato and
Sumino.2 This small difference is caused due to the inclusion
of phonon dispersion effects on A1 which has been discussed
in our earlier work19 in detail.

Since any reliable assessment of Ddd, Dds, Dsf, or Ddc may
be made only if phonon-point scattering strength is known
we ignore the analysis of the phonon conductivity of an-
nealed samples in Ref. 1 in the present work. In annealed
samples the number of point defects are expected to be dif-
ferent from the undeformed samples. Thus while in the case
of unannealed deformed samples phonon-point defect scat-
tering strength may be chosen to be the same as in unde-
formed samples and therefore assumed to be known, the
same cannot be applied to the case of annealed samples.
Table II shows that our adjusted value of Dds for Ge is very
close to its theoretically estimated value by Klemens6

when the dislocations are randomly inclined. This result
is very encouraging because together with this the value of
the dislocation-core size obtained from the �3 dependent

TABLE II. Calculated values of strength parameters of different
dislocation scattering used in the calculation of Figs. 3 and 4 for Ge.
The estimated value of Dds by Klemens �Ref. 6� formula is given in
the brackets.

Sample B
Dislocation density

=2.8	108 cm−2

Sample C
Dislocation density

=2.2	109 cm−2

Ddd �dynamic�

 5.8	106 sec−1 K

Ddd �dynamic�

 2.5	107 sec−1 K

Dds �static�
1.0	104 sec−1 K
�1.55	104 sec−1 K� �Ref. 6�

Dds �static�

9.9	104 sec−1 K

�1.22	105 sec−1 K� �Ref. 6�
Dsf �stacking faults�


6.2	103 sec−1 K−2
Dsf �stacking faults�


1.6	104 sec−1 K−2

Ddc �core�
3.4	102 sec−1 K−3 Ddc �core�

1.02	103 sec−1 K−3

FIG. 1. Solid lines show the calculated value of � and symbol
�o� are the experimental points �Ref. 1� for LiF. A is the undeformed
and B is the deformed sample. Numbers 1, 2, 3, and 4 represent,
respectively, the calculated value of � when only dislocation core,
static dislocation, dynamic dislocation and stacking faults are
present individually.

FIG. 2. Solid lines show the calculated value of � and symbol
�o� are the experimental points �Ref. 1� for LiF. A is the undeformed
and C is the deformed sample. Numbers 1, 2, 3, and 4 represent,
respectively, the calculated value of � when only dislocation core,
static dislocation, dynamic dislocation, and stacking faults are
present individually.
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term in �dc
−1 is also very near the Burger vector in Ge �see

Table IV�. Moreover, if the �2 dependent term is associated
with the phonon scattering by stacking faults, the value of
Ns��10/cm� evaluated from the adjusted value of Dsf �Eq.
�2�� also seems to be well within the reasonable limits.

In the case of LiF, however, while the values of the core
size and the number of stacking faults �see Table IV� are still
within the acceptable limits, the value of Dds is almost an
order higher than its theoretical value obtained from
Klemens’6 formula �see Table I�. The values of Ddd are still
expected to be nearly two times larger than their theoretical
estimate1,4,11 though they should be better than required
in Refs. 1 and 4 due to the inclusion of other scattering
processes in our work. There seem to be two possibilities
for the discrepancies in Ddd as well as Dds. Either �i� the
number of pinned dislocations in the interior of deformed
LiF is an order larger than their direct observations in Refs. 1
and 4 or �ii� the phonon scattering by grain boundaries is also
effective.

According to Klemens, preposition �ii� would give rise to
� independent terms in �F

−1 if the dislocations are sessile but
yield a �2 dependent term if either �a� dislocations form an
array or �b� other kinds of impurities move into the disloca-
tion lines which is true only for the annealed sample in the
present context. Roth and Anderson21 as well as Klemens,7

however, show that the �2 dependent term due to process �a�

is negligible compared to the � independent terms unless �
is of the order of Debye frequency. Consequently that the
process �b� would be negligible in front of �a� at low tem-
peratures ��2 K� is insignificant as compared to phonon-
point defect scattering at higher temperatures ��5 K�. Roth
and Anderson21 further show that although process �a� ��
independent� is compatible with experimental data of alkali
halides qualitatively but its magnitude is too small to give
any confirmed evidence for the contribution of this kind of
phonon scattering towards �. Hence we prefer to ignore pho-
non scattering by grain boundaries in our calculations.

The preposition �i� mentioned earlier seems to be more
reasonable because due to jogging of line dislocations the

TABLE III. Calculated values of point defect parameters
A1�=Avs

3� written in x�=�� /kT� space for samples LiF �7Li% 95.4�
and normal Ge and their comparative values with Refs. 20 and 2,
respectively. Here vs is the average phonon velocity, Lc is the Ca-
simir length.

A1 �calculated� A1 of Refs. 2 and 20 Lc

LiF 5.17	1016

cm3 sec−4K−4
2.51	1016 cm3

sec−4 K−4 �Ref. 20�
0.96 cm

Ge 4.75	1017 cm3

sec−4 K−4
5.22	1017 cm3

sec−4 K−4 �Ref. 2�
0.365 cm

FIG. 3. Solid lines show the calculated value of � and symbol
�o� are the experimental points �Ref. 2� for Ge. A is the undeformed
and B is the deformed sample. Numbers 1, 2, 3, and 4 represent,
respectively, the calculated value of � when only dislocation core,
static dislocation, dynamic dislocation, and stacking faults are
present individually.

FIG. 4. Solid lines show the calculated value of � and symbol
�o� are the experimental points �Ref. 2� for Ge. A is the undeformed
and C is the deformed sample. Numbers 1, 2, 3, and 4 represent,
respectively, the calculated value of � when only dislocation core,
static dislocation, dynamic dislocation, and stacking faults are
present individually.
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density of pinned dislocations in the interior of the crystal
may be much larger than one expected. Moreover, with in-
creasing stress, their density should increase at a faster rate
but that of the unpinned dislocations at a slower rate than the
number of dislocations directly observed through the surface.
From Tables I and II it can be judged that in the present work
the estimated changes in Ddd and Dds with stress are consis-
tent with this behavior. Incidentally, Ddd should be strongly
governed by the number of unpinned and Dds by pinned
dislocations.3

Since in Refs. 1 and 2 there are no experimental data of
number of stacking faults in their samples, we are not in a
position to give any experimental evidence for the estimated
number of stacking faults in the present theoretical analysis
reported in Table IV. But this seems reasonable for the given
dislocation densities. The obtained smaller value of Ns in Ge
as compared to LiF for almost the same dislocation density is
also according to the expectations because of the smaller
number of partial dislocations in Ge due to its less close-
packed structure �lower coordination number� than LiF. As
can be seen from Figs. 1 and 2 for LiF that the depression of
conductivity is maximum due to the stacking fault and is
minimum due to the dislocation core near the peak. But Figs.
3 and 4 for Ge show that the depression due to scattering by
dislocation cores dominates over stacking faults near the
peak. This might be due to the larger value of the Burger
vector in Ge than LiF.

From the above discussion it may be concluded that the
�2 dependent term needed to explain the phonon conductiv-
ity data of plastically deformed LiF and Ge should be asso-
ciated with phonon scattering by stacking faults and not by
assumed point-defect vacancy clusters2 or grain bound-
aries21,22 or interference effects between various scattering
processes.15,22 It is also concluded that scattering by disloca-
tion cores should not be altogether ignored as it does affect

the heat flux due to high-frequency phonons, and hence helps
explain the phonon conductivity depression at its peak.
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APPENDIX: OUR TREATMENT OF THERMAL
CONDUCTIVITY INTEGRAL � (REF. 19)

For convenience we reproduce here briefly the algebraic
formula used in our numerical work. Consider phonons of
wave vector q, polarization 
�
=L for longitudinal, 
=T for
transverse�, angular frequency �q
, group velocity vg
, and
phase velocity vp
. Our aim is to account for the effect of
dispersion in point defect relaxation rate �pt

−1��q
�, boundary
relaxation rate �b

−1, and also in total phonon conductivity in-
tegral � ��=�D+�c, �D being the Debye term and �c the
correction term�. For this purpose we divide � into smaller
domains labeled as �nm� in which the phonon group veloci-
ties are nearly constants. Then we can write

� = 	



	
n

��D
�nm� + �c
�nm�� , �A1�

�D
�nm� = GT3b


xn

xm

vg
�x�vp

−2�x��F
�x,nm�J�x�dx ,

�A2�

�c
�nm� = GT3b
��

xn

xm

vp

−3�x��N


−1 �x,nm��F
�x,nm�J�x�dx .

�A3�

Here b
 is the weight factor for different polarizations 
, ��
is the correction factor, and

m = n + 1, G = k4/2�2�3, x = � �/kT, J�x� = x4ex/�ex − 1�2.

�A4�

The full relaxation rate �F

−1 is given by

�F

−1 = �b


−1 + �pt

−1 + �N


−1 + �U

−1 + �def

−1 , �A5�

where the successive terms on the right-hand side are the
contributions due to boundary, point defect, normal pro-
cesses, unklapp processes, and plastic deformation, respec-
tively. In order to explain the experimental data for unde-
formed crystals �sample A of Figs. 1–4 for LiF and Ge� we
set �def

−1 =0. For full details see Ref. 19.
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