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Using a tight-binding molecular-dynamics method, we have calculated the formation energies, diffusivity,
and localized vibrational frequencies of self-interstitial atoms �SIA’s� in body-centered-cubic �bcc� transition
metals: vanadium, niobium, molybdenum, and tantalum. As a test of our methods, we compare to experiment
for the perfect bcc phonon spectra and we compare to previous ab initio SIA formation energies. In addition,
we present vibrational spectra calculated from molecular dynamics via the velocity autocorrelation method. For
all of the systems studied, we find that the localized vibration frequency of a SIA dumbbell pair is roughly
twice the frequency of the bcc phonon-density-of-states peak. We also find an Arrhenius temperature depen-
dence for SIA hopping, with frequency prefactors ranging between the cutoff of the ideal bcc lattice and the
highest frequencies of the SIA dumbbell. In all cases, we find that the energy barrier to SIA diffusion is
approximately 0.1 eV.
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I. INTRODUCTION

Traditionally, the self-interstitial atom �SIA� has been dif-
ficult to study experimentally, due to the high mobility1 and
low concentration of SIA’s, except in irradiated materials.2

This difficulty has propelled study by ab initio and semi-
empirical computational methods3 to explore the formation
energetics and diffusion modes of SIA’s and clusters of SIA’s
in many bcc transition metals: V,4–8 Fe,9–14 Nb,8 Mo,4,8,15–17

Ta,8,18 and W.8,19,20 These findings mostly confirm the stabil-
ity of SIA dumbbell configurations and predict SIA motion
along high-symmetry directions. In the present work, we will
expand on the most recent of these findings and reexamine
an earlier work,15,16 which suggested the possibility of local-
ized SIA vibrational modes, mostly decoupled from the
eigenmodes of the host lattice. We will show that such high-
frequency modes do, in fact, occur in many bcc systems and
that these modes likely explain previous calculations for en-
hanced high-frequency tails in phonon spectra due to
SIA’s.12,21 We find a high mobility of SIA’s in V and Mo,
which agrees with previous work,4,6 as well as in Nb and Ta,
suggesting that this is a generic feature of bcc transition met-
als. To do this we use the NRL tight-binding method,22–27 an
efficient electronic-structure method utilizing parameters fit
to first-principles data,28 in combination with molecular
dynamics.29,30

The calculations presented here compute, within a tight-
binding framework, the diffusivity of single SIA’s and their
quantitative effect on the vibrational density of states
�VDOS� in metals. While previous works have established
accurate methods for calculating static properties and some
migration energy pathways, as in Ref. 8, these same methods
are not practical for calculating hopping and molecular dy-
namics of SIA’s that are often addressed by less accurate
interatomic potential methods, as in Refs. 6 and 7. Here we
show that a tight-binding framework can address both the
static properties, by reproducing the stable SIA energies, and
also efficiently treat the hopping of SIA’s within molecular

dynamics. We also expand on previous works that mention
high-frequency tails in phonon spectra with clusters of
SIA’s.12 We calculate spectra for bcc transition metals with
and without SIA’s, and we identify the specific SIA modes
contributing to the identified peaks. We report a uniform
trend that SIA’s vibrate at roughly twice the frequency of
their perfect bcc VDOS peaks, and we also show that the
frequency prefactor for hopping lies above the frequency cut-
off of the ideal bcc lattice. For comparison with previous
expectations that low-frequency modes are mostly respon-
sible for the glide motion of SIA’s,12 we illustrate how the
fast dumbbell-axial vibrations, compared to the slow center-
of-mass motions, contribute to SIA hopping.

The paper is organized as follows. In Sec. II, we describe
the methods for tight-binding parametrization and for
molecular-dynamics �MD� simulation. We also present the
velocity autocorrelation method for calculating dynamical
properties. In Sec. III, we present results for both static prop-
erties �SIA formation energy and structure� and dynamical
properties �SIA diffusion rates and localized vibrational
modes�. We also discuss how SIA’s might affect vibrational
spectra in experimental systems under pressure—namely,
hexagonal iron.31 In Sec. IV we summarize these results,
followed by an Appendix on the phonon dispersion relations
obtained from our tight-binding parametrization, compared
to experiment, as a test of our methods.

II. METHODS

The SIA is one of two basic kinds of structural point
defects, the other being the atomic vacancy. When two atoms
try to share a single-crystal lattice site �see Fig. 1�, then
various types of split “dumbbell” configurations can occur.32

In bcc crystals, the metastable SIA configurations are distin-
guished by the high-symmetry directions of the vector s in
Fig. 1—namely, �100�, �110� and �111�. Of course, after re-
laxation of the structure, many of these configurations may
equally well be described by a so-called “crowdion”
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configuration,33 where three atoms try to share two lattice
sites or five share four, etc. In all cases, however, the ideal
�undefected� crystal can be partitioned into Wigner-Seitz
cells so that the location of a SIA is uniquely determined as
the Wigner-Seitz cell that contains an excess atom. Based on
this, an initial SIA structure can be generated, and as the MD
progresses, the SIA is continually tracked by counting the
number of atoms in each Wigner-Seitz cell. Thus, at every
time step, the vector s�t� is updated along with the SIA
dumbbell center of mass. In the following, we will outline
the computational procedures for performing this type of
SIA simulation and the methods for analyzing dynamical
properties.

A. Tight binding for self-interstitial atoms

Several empirical potential methods have been applied to
the SIA, notably the embedded-atom method34,35 �EAM, ap-
plied, e.g., in Ref. 36� and the Finnis-Sinclair potentials37

�FS potentials, applied, e.g., in Ref. 7�. While generally less
accurate than explicit electronic-structure methods, empirical
potential models do not break down at close atomic separa-
tions, which occur normally in the vicinity of a SIA. How-
ever, empirical potentials may be even less accurate at these
close separations. Similarly, at the high end of first-principles
accuracy density-functional theory38 �DFT� methods, such as
the linearized augmented plane-wave39,40 �LAPW� or
pseudopotential41 methods, come at a high computational
cost and are not suitable for long MD runs with a large
number of atoms. For a robust approach that is much faster
than DFT, combined with the accuracy of calculating elec-
tronic structure from first principles, we choose the NRL
tight-binding method22–27 �TB� in combination with molecu-
lar dynamics �TBMD�.29,30

The TB method gives accurate electronic structure for a
broad range of materials,24,25,42 including transition metals,23

and for dynamical properties at finite temperature.29 In this
work, we find that the TB method gives stable bcc structures
for all of the transition metals examined. Our TB parameters
are fit to high-accuracy LAPW results for both equilibrium

and reduced-lattice constant structures, so that we accurately
describe SIA formation energies. For all SIA static calcula-
tions, we use a �128�+1��-atom cell, with a 4�4�4
Monkhorst-Pack43 k-point sampling of the Brillouin zone,
and we relax ionic coordinates and volume to reduce
Hellman-Feynman forces to �20 meV/Å. The equilibrium
lattice constant was calculated here to be
2.93�3.27,3.12,3.30� Å, compared to the experimental
value44 of 3.02�3.30,3.15,3.31�Å for V �Nb, Mo, Ta�. These
comparisons reflect the well-known tendency of local-
density approximation38 �LDA� to underestimate lattice spac-
ings in many systems—e.g., as shown in Al and Ag using
two different electronic-structure methods.45

In cases where the TB parameters are poorly fit, the SIA
often becomes unstable to close separation. As a function of
decreasing separation, these unphysical results can occur just
before nonpositive-definite overlap integrals are returned.
This feedback from the simulation indicates which of the
parameters might produce unphysical interactions, unlike the
EAM or FS potentials that are a priori tolerant to any sepa-
ration. Details of our TB parametrization, convergence, and
tests versus experiment of the bcc VDOS are given in the
Appendix.

B. Molecular dynamics and velocity autocorrelation

For our MD simulation of the SIA, a large cell was re-
quired to relax the large lattice strain in the vicinity of the
defect. In previous studies,4 as few as 54�+1� atoms were
sufficient to converge SIA formation energies to ±0.1 eV.
For our MD simulation, we chose a repeated traditional bcc
unit cell �two-atom basis, repeated 4 times per direction�
containing 128 atoms, plus one SIA.

Since the tight-binding-calculated linear thermal expan-
sion coefficients are small,46 about 5�10−6 /K, we neglect
the contributions of thermal expansion and use the equilib-
rium lattice constants for all of our finite-temperature MD
simulations. This is justified for the bcc transition metals that
we study, because the lattice constants are not altered appre-
ciably except near the melting point in each system. As an
example, we expect a maximum of 1% linear expansion for
T�2000 K. For comparison, the experimental coefficients47

are 8�7,5 ,6��10−6 /K for V �Nb, Mo, Ta�, giving 1% ex-
pansion for temperatures between 1250 K and 2000 K.

To minimize the computational cost of long MD runs, the
� point only was used for Brillouin zone k-point sampling
during the MD simulations. Random velocities were chosen
to achieve the desired equilibrium temperature. In all sys-
tems, the MD were run for 16 384 time steps of �t=2.0 fs,
giving a total simulation time of 33 ps. The first 2000 time
steps were discarded for thermal equilibration, and the re-
maining steps were kept and used for analysis of dynamical
properties.

To analyze phonon and other dynamical properties, we
used the velocity-autocorrelation �VAC� method, as derived
in Ref. 48 and applied more recently to MD computed vibra-
tional spectra.49 The VAC method is essentially a time-
domain Fourier transform of velocity-related quantities—
namely, �i�vi�t� ·vi�0�� for obtaining the VDOS, using the

FIG. 1. �Color online� Self-interstitial atom �SIA� configurations
in a bcc traditional cell. Two atoms share the body center. The
vector s�t� describes the SIA bond, as a function of time t. The
dumbbell center of mass also varies with time.
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site velocities vi�t�, or �vk
��t�vk

��0�� for obtaining the disper-
sion relations, using the spatially Fourier transformed veloci-
ties vk

��t� with wave vector k and polarization �. For com-
parison of the VAC method to frozen phonon results and
experiment; see the Appendix.

For the special aspects of the vibration of the SIA, we can
take the bond-length and center-of-mass �COM� degrees-of-
freedom of a dumbbell, using the vi�t� for both atoms. Be-
cause the pair can point in all directions, we must carefully
consider which modes we are projecting out in our analysis.
In the case of a dumbbell pointing in an arbitrary direction,
but centered on a lattice site, the only guaranteed symmetry
will be the identity and an inversion point, giving Ag and Au
modes. With a harmonic approximation, the localized bond-
stretching modes will vibrate with Ag frequencies. Therefore
we will refer to the bond-stretching mode, as in a dimer
molecule, by the Ag designation. For higher-symmetry
dumbbell orientations, the Ag designation remains valid but
the eigenmodes may be different—e.g., as for the D4h, D2h,
and D3d symmetries of the �100�-, �110�-, and �111�-oriented
dumbbells, respectively.15,16 To avoid restricting ourselves to
any one symmetry, we will analyze the degrees of freedom
common to all dumbbell orientations, and we will Fourier
analyze the correlations �ṡ�t�ṡ�0�� and �vc.m.�t� ·vc.m.�0��,
where ṡ�t� is the time derivative of the dumbbell bond length,
in Fig. 1, and vc.m. is the COM velocity of a split-interstitial
pair.

III. SELF-INTERSTITIAL STATIC AND DYNAMIC
PROPERTIES

As a preliminary check on our methods, we first calcu-
lated the SIA formation energies �Ef, with ionic and volume

relaxations. The quantities �Ef were calculated for an
N-atom cell, plus one interstitial, as

�Ef = ESIA�N + 1� −
N + 1

N
Ebcc�N� , �1�

where ESIA and Ebcc are the defected and bulk formation
energies, respectively. The results for �Ef are listed in Table
I. Our �Ef are within 1 eV of the previous results for most
cases, except for Ta, for which we find the �Ef are 1.5–2 eV
below the previous calculations,8 and Fe, which we will dis-
cuss below. Also for V, the �100� energy is clearly low, com-
pared to the �111� energy. However, even for pseudo-
potentials,4 the �100�−�111� energy difference for V is only
one-third as large as that for Mo or Ta. A similarly small
�100�−�111� energy is found for Nb.8 The existence of a
nearly stable �100� configuration favors “traditional intersti-
tials” that we will discuss in the following section. Despite
the discrepancies in �100� energies, our �110�-�111� energy
differences are virtually identical to the previous calculations
for Nb, Mo, and Ta,4,8 and the relative orderings for all of our
nonmagnetic systems are consistent with the previous find-

TABLE I. Self-interstitial formation energies �Ef �in eV,
±0.1 eV�. We compare our current tight-binding �TB� results to ab
initio pseudopotential calculations �previous� for nonmagnetic cases
�Ref. 8� and for ferromagnetic Fe �Ref. 13�. The axial vector s, in
Fig. 1, is reported in units of the host lattice interatomic spacing.

s
TB
ŝ �Ef

Previous
�Ef

V 0.83 �100� 4.25 3.92

0.83 �110� 4.35 3.65

0.84 �111� 4.25 3.37

Nb 0.84 �100� 4.80 5.95

0.84 �110� 4.85 5.60

0.86 �111� 4.60 5.25

Mo 0.85 �100� 8.95 9.00

0.85 �110� 7.85 7.58

0.86 �111� 7.70 7.42

Ta 0.85 �100� 4.85 7.00

0.84 �110� 4.80 6.38

0.86 �111� 4.25 5.83

Fe 0.67 �100� 2.30 4.64

0.67 �110� 1.60 3.64

0.70 �111� 1.80 4.34

TABLE II. Self-interstitial hopping data at T�300 K, fit to
Arrhenius form �Eq. �2��. The prefactors �a are from Fig. 2, and the
dumbbell bond-frequencies �Ag

are from Fig. 4 �in THz�. The en-
ergy barriers for migration, �Em �in eV�, are compared to previous
pseudopotential calculated energy barriers for V �Ref. 4� and for
�54+1�-atom Ta �Ref. 18� and from experiment for Mo �Ref. 2�.

�a

TB
�Ag

�Em

Previous
�Em

V 14.0±2.5 18.3 0.10±0.10 0.01

Nb 8.1±1.0 11.8 0.08±0.01

Mo 10.1±1.5 14.7 0.08±0.01 0.05

Ta 6.9±1.0 8.2 0.09±0.01 0.60

FIG. 2. Arrhenius plot for self-interstitial hopping in bcc transi-
tion metals. The slope of each linear fit is �Em from Eq. �2�, in eV.
The intercept is a function of the Arrhenius prefactor—namely,
log��a /1 THz�.
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ings that �111� is the lowest-energy orientation.
As an additional comparison for a magnetic case, we

briefly mention here our preliminary results for ferromag-
netic Fe, also listed in Table I. Currently, our results for �Ef,
in Fe, lie more than 2 eV below the most recent ab initio
results,13 but we confirm that the �110�-oriented dumbbell
has the lowest energy, 0.2 eV below the �111� case, com-
pared to 0.7 eV from previous studies.11,13 Similarly, the
�100� dumbbell lies 0.5 eV above the �111� energy, compared
to 0.3 eV from the previous work. The reversed ordering of
the �111� and �110� cases, compared to the nonmagnetic
cases, is in agreement with previous ab initio predictions.11,13

A. Self-interstitial diffusion

Having checked the static values for �Ef, we now turn to
MD simulation to obtain the hopping rates for SIA migra-
tion. Following the procedure described in Ref. 6, we count
the rate �h of hopping events into neighboring Wigner-Seitz
cells, as a function of temperature. This procedure gives a
reasonable temperature dependence of the hopping fre-
quency for Mo and Ta. However, for V and Nb, we recognize
anomalously high count rates, for T�600 K, caused by
SIA’s occurring not as dumbbells, but rather in traditional

hole sites. As mentioned above, V and Nb have small energy
differences between the �100� and �111� dumbbells. This low
energy allows dumbbells to rotate easily into a �100� direc-
tion, sometimes with one atom centered on the octahedral
hole site. Since these hole sites lie between two cells, they
can register a number of false SIA hops and we subtract out
those counts. The resulting, corrected data are shown in Fig.
2 and exhibit a reasonable temperature dependence of the
hopping rate down to 300 K.

To estimate the “attempt frequencies” �a from our SIA
migration data, we fit the hopping rates �h in Fig. 2 to the
Arrhenius form50

�h = �ae−�Em/kBT �2�

at temperature kBT and with energy barrier �Em. The fitted
values for �a and �Em are listed in Table II. Above room
temperature, we find that all of our calculated �Em are less
than 0.1 eV. We also provide comparisons to previous direct
calculations of migration energy barriers.4,18 We note that the
hopping rates in Mo and V of 2–3 THz correspond to ex-
tremely short residence times of �1 ps spent in each
Wigner-Seitz cell.

The reliability of our calculated �Em should be deter-
mined from our SIA formation energies, in Table I. In par-
ticular the differences between the �111� and other orienta-
tions are correctly ordered in all of our cases, except for V
and Nb, which have an orientational degeneracy. For these
two metals, the pseudopotential calculations find smaller �Ef
differences than for Mo or Ta, but none of the previous
works find a degenerate �111� energy, as we have for V. Also
for Ta, the previous result18 for �Em is higher than our value
and this could be due to our underestimating the formation
energies. Clearly our method does not have the same ab
initio precision of the pseudopotential methods. We note,
however, that the previous result for Ta,18 which seems

FIG. 3. �Color online� Trajectories of self-interstitial dumbbell
bond Agmodes �a� and center of mass �b� at 400 K. Vertical lines
indicate hopping events.

FIG. 4. �Color online� Vibrational density of states �VDOS� for
bcc transition metals and self-interstitial atoms �SIA� at 400 K. The
orange �gray� solid line is the VDOS with SIA, while the thin black
line is the VDOS without SIA, and the tails are enhanced �128.
The dashed �dotted� lines are the localized Ag �resonant COM vi-
bration� modes of the split-dumbbell interstitial. The prefactors
from Table II are shown as cross bars.
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anomalously large compared to other bcc metals,4 used a
supercell half the size of ours, which could result in an in-
creased lattice strain. Finally, since much of our data for
SIA’s seem generic to the bcc transition metals, we point out
that our results are most reliable for Mo, whose TB accuracy
is similar to ab initio for all of the properties that we have
checked.23

At temperatures lower than those studied here, it is pre-
dicted that correlated hops dominate SIA motion—e.g., as
shown for V via MD6,7—and that correlated hops occur
mostly along the high-symmetry directions. We find no simi-
lar theoretical treatment for Nb, but there do exist early ex-
perimental reports of uncommonly high and long-range mi-
gration rates of Nb SIA’s at temperatures as low as
4.5 K.51–53 For this reason, we expect that our Arrhenius fits
are valid for T�300 K, but there may be a more compli-
cated behavior due to correlated SIA hopping at very low
temperatures.

While it is difficult to propose a single reason why SIA
migration is so rapid, there are several observations that we
can make based on our hopping data. We examined the
atomic motions of SIA dumbbell pairs, both preceding and

during migration events, as shown for temperatures of 400 K
in Fig. 3. In all cases, we find that the COM displacement
and the bond length are at �or near� their maxima, just prior
to most hopping events. Viewed in time, this motion appears
as an “inchworm” process, whereby the dumbbell gradually
pushes a leading atom towards the destination cell, via in-
creasing extension of the bond length, while in response the
lagging atom is pulled towards the cell center. This process
pushes the COM further towards the destination cell. Nota-
bly, the COM has a low-frequency component that appears to
be set primarily by the time between hops, as shown in Fig.
3�b� where the peaks and troughs of displacement are con-
sistent with the hopping rate. In contrast, the rapid bond-
length vibrations appear to be independent of the time be-
tween hops. Based on this, we initially hypothesized that the
frequencies of the bond dilation gave an “attempt frequency”
for SIA hopping. We will show, however, that the bond-
length frequencies are approximately 30% too large to give
the exact Arrhenius prefactors, even though the two frequen-
cies are roughly proportional for all of the transition metals
studied here.

FIG. 5. �Color online� Calculated phonon dispersions compared to experiment �Exp., solid symbols� for �a� V,55 �b� Nb,56 �c� Mo,57 and
�d� Ta.58 The calculations are based on the TB parametrization in Ref. 23. Thin �thick� solid lines give phonon dispersions for L �T� modes
calculated by the frozen phonon method; for Mo, in addition, results obtained from molecular dynamics by the velocity autocorrelation
method are shown �V-V, open symbols�.
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B. Self-interstitial vibrations

It is apparent that the vibrational modes of the SIA dumb-
bell are important for SIA migration, as shown, e.g., by the
time variation of the dumbbell bond length and COM in Fig.
3. We believe that the amplitudes of these vibrations respond
to the migration events and vice versa. To analyze the trajec-
tories calculated in our MD simulations, we show in Fig. 4
the calculated SIA vibrational spectra, along with the VDOS
with and without SIA’s. These spectra are obtained by Fou-
rier transforms of an approximately 30-ps window of time-
correlation functions, as described for the VAC method in
Sec. II B. Additionally, the VDOS are scaled up by a factor
of 128 in the tails to highlight the high-frequency SIA
modes. We note that all of these tails should be perfectly flat
for the perfect bcc metals, at high frequencies. However,
using the VAC method, there is a small, decaying noise that
is present even in the perfect bcc metal, arising from artifacts
due to the finite time window of the Fourier transform and
from anharmonicity. We note that this systematic, high-
frequency noise can be reduced by increasing the time-
sampling window or by filtering, but in the following we
care mainly about the increase in spectra at high frequencies
due to SIA’s, so we analyze the raw data.

Comparing the dumbbell bond vibrations in each system,
we see that the enhanced tail spectra due to SIA’s are located
at exactly the vibrational frequencies of the bond-stretching
Ag mode. Notably, the high-frequency Ag modes of V and Nb
are not as sharp, nor are they well defined, compared to Mo
and Ta. The broadening of the tail peaks in V and Nb is
likely due to the metastable �100� modes that were discussed
in the preceding section, which can cause interference be-
tween competing modes. Nonetheless, for all of our bcc tran-
sition metals, the largest tail peaks from the Ag mode consis-
tently occur at roughly twice the frequency of the VDOS
peak for the perfect bcc system.

In contrast to the bond-stretching modes, the COM modes
are lower in frequency and seem mostly spread out across the
central VDOS spectra of the host lattice. Center-of-mass
peaks lying just above and just below the host VDOS spectra
are the primary features generic to all of our bcc metals. In
particular, the high-frequency peaks just above the VDOS
are similar to the Arrhenius prefactors that were fit in the
preceding section �cross bars in Fig. 4�. For comparison to
the Ag modes at roughly 2� the frequency of the bcc phonon
density of states peak, the highest COM modes occur at
1.5�, and the corresponding Arrhenius prefactors also occur
at roughly 1.5�, that same peak.

We find that in all cases the Arrhenius prefactors fall
somewhat above the traditional cutoff frequencies of the host
bcc lattices. Comparing to the SIA vibrational modes, these
prefactors are approximately 70%–80% of the frequency of
the SIA Ag modes, shown in Fig. 4 and listed in Table II.
Since the presence of a SIA adds many new modes to the
high-frequency portion of the VDOS spectra, it is reasonable
that the Arrhenius prefactors are related to these new modes.
Of course all of the prefactors that we have calculated should
include other terms beyond the basic attempt frequency—
e.g., the vibrational entropy term exp��Svib /kB� and other
factors—but these calculations we leave for another commu-
nication.

One final, interesting application of our calculations is
suggested by the experimental phonon spectra of HCP Fe.31

In HCP Fe at high pressure, the published experimental data
show high-frequency noise and oscillations in the VDOS, at
the same frequency range where we expect such behavior to
occur due to a SIA or clusters of SIA’s. However, unpub-
lished experimental results following up on those measure-
ments show less noise and no evidence of a high-frequency
contribution.54 To investigate the possibility of forming SIA’s
at high pressures, we calculated the excess volumes intro-
duced by our SIA’s. We found that a range of 0.1–0.5 excess
atomic volumes were added by the SIA’s, compared, by defi-
nition, to an equal number of bcc atoms. This suggests that
any positive pressure should increase the free energy cost to
introduce a SIA; hence, our calculations agree more with the
recent, unpublished results finding no additional high-
frequency component.54 Based on this, we speculate that the
best ways to observe the SIA VDOS in experiment would be
under irradiation or under nonhydrostatic stress, which might
favor SIAs oriented along selected directions. We note that
all of our results are for individual SIA defects—i.e., ignor-
ing clusters of SIA’s—which are important for irradiated
materials.14 Our single SIA results are helpful for describing
the fast, one-dimensional glides that are important—e.g., in
the initial stages of irradiation, when only single SIA’s have
formed.

IV. CONCLUSIONS

We have calculated self-interstitial dynamical properties
from a tight-binding approximation of electronic structure.
We have tested our method against experiment for phonon
spectra and against previous ab initio results for self-
interstitial formation energies. We find good agreement for
the phonon spectra and for many self-interstitial formation
energies, and in all nonmagnetic cases, we find a preferential
alignment of self-interstitials along �111� directions; in con-
trast, we confirm the predicted �110� self-interstitial align-
ment in ferromagnetic Fe. By using a molecular-dynamics-
based method for calculating velocity autocorrelations, we
have identified the high-frequency vibrational modes for
self-interstitials in bcc metals. These vibrations appear to be
generic to the transition metals studied and occur up to twice
the frequencies of the peaks of the perfect bcc phonon den-
sities of states. For a quantitative comparison of self-
interstitial mobilities for different systems, we have per-
formed Arrhenius fits to high-temperature interstitial
migration data. We find that interstitial hopping is mostly
Arrhenius down to 300 K with energy barriers for diffusion
on the order of 0.1 eV. Also the Arrhenius prefactors are
centered at approximately 1.5� the frequency of the phonon
densities-of-states peak. Since the frequency prefactors lie
above the bcc cutoff, we suggest that there is a contribution
from the high-frequency interstitial vibrations to the migra-
tion kinetics. Our results also imply a potentially useful
method for identifying self-interstitials—namely, from spec-
troscopic measurement of localized interstitial vibrational
modes, a phenomenon that is perhaps important in Fe under
applied stress31 and in other bcc transition metals.
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APPENDIX: TEST OF TIGHT-BINDING
PARAMETRIZATION

Previous TB parametrization for V, Nb, Mo, and Ta is
discussed in Ref. 23. For the cases of Ta and Mo, our original
parametrization was stable for all SIA structures and gave a
favorable comparison to experiment for the phonon disper-
sion, as shown in Figs. 5�c� and 5�d�.55–58 These results were
calculated here by the frozen-phonon method, as discussed,
e.g., in Refs. 22 and 23, and by the velocity-autocorrelation
method, as discussed in the text and in Ref. 49. The velocity-
autocorrelation method overestimates some phonon
frequencies—e.g., at the H point for Mo in Fig. 5�c�, which
is a result of long-range interactions and finite-size effects, as
noted previously.59 For the cases of V and Nb,60 our original
parametrization was unstable to close separation and re-
quired the inclusion in the fit of additional reduced-lattice-
constant structures to fully describe the SIA interaction. Re-
sults based on current parameters for V and Nb are shown in
Figs. 5�a� and 5�b�.

The new parameter fits28 were performed using a database
of LAPW calculations, with Hedin-Lundqvist61 parametriza-
tion of the LDA.38 In addition, energies at close separation
were included, down to 60% of the equilibrium neighbor
spacing, as occurs naturally for the SIA during MD runs.
Structures included in the fits were bcc, fcc, and simple cu-
bic. For static SIA formation energies, a Monkhorst-Pack k
mesh43 with four k points per direction was used for all sys-
tems, based on our convergence studies for Nb �Fig. 6�. No
experimental data were used to determine the parameters of
our TB model.
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