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The real part of the complex electric permittivity at low frequencies and at several biasing fields �between 0
and 5�105 V/m� has been measured in ferroelectric crystals �CH3NH3�5Bi2Cl11 �MAPCB� and
�CH3NH3�5Bi2Br11 �MAPBB� in the temperature range covering the temperature of the ferroelectric phase
transitions. Comparative measurements for the known triglycine sulphate �NH2CH2COOH�3H2SO4 crystal
have been used as a test of the validity and of possible errors in the determination of the ferroelectric equation
of state by the method applied. The estimates of the critical parameters TC, �, and � then have been evaluated
for MAPCB and MAPBB on the basis of the Widom-Griffiths scaling hypothesis. Complementary pyroelectric
measurements of the spontaneous polarization providing the critical exponent � are in accordance with the
parameters obtained.
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I. INTRODUCTION

Measurement of the electric susceptibility in a biasing
constant field is sometimes called nonlinear dielectric effect
�NDE�.1,2 It is a convenient method of studying ferroelectric
phase transitions, especially those of second order. The ap-
plication of the biasing electric field then allows one to scan
the region of the critical point in a two-dimensional
temperature-field space. Generally, the temperature depen-
dence of the electric susceptibility measured in this way has
the form of an asymmetric bell-like curve with a maximum
which shifts towards higher temperatures with increasing bi-
asing field. Far below and far above the phase transition
region the curves tend to constant values corresponding to
the low- and high-temperature limit susceptibilities, respec-
tively. Consequently, such curves are concave—i.e., have
negative second derivative close to the maximum—and
convex—i.e., have positive second derivative in the low- and
high-temperature limits. Thus, there are at least two points of
vanishing second derivative on every such curve, one below
�or to the left to� and one above �or to the right to� the
maximum. The points are called inflection points. It has been
shown by the present authors3,4 that for materials obeying the
scaling-invariant equation of state there are in fact from one
to three inflection points below the maximum depending on
the values of the critical exponents � and �. In particular
there is always an inflection point exactly at the critical tem-
perature for the classical �mean-field� exponents �=1 and
�= 1

2 .
What precedes the susceptibility is meant to be the static

one. In practice, however, only ac data are available in most
cases. Then, the low-frequency limit—i.e., that far below the
normal dielectric absorption peak—of the real part of the
complex electric susceptibility can be taken into account.
Rigorously it is impossible to come too closely to the critical
point because the dielectric absorption peak moves towards
zero frequency when the critical point is approached. The
effect is known as critical slowing down, which corresponds

to the relaxation time going to infinity. As a consequence,
any experimental frequency becomes too large to be consid-
ered as the static limit. Moreover, the thermal conductivity
tends to zero at the critical point so that the time needed to
attain the thermal equilibrium after supplying a portion of
heat to the system becomes infinite. Therefore, any experi-
mental rate of changes of temperature is too rapid close
enough to the critical point. No physical quantity measured
in such conditions then corresponds to the thermal equilib-
rium. Related to the zero of thermal conductivity is also the
phenomenon of passing from isothermal to adiabatic
susceptibility.5

The use of a biasing field, which drives the system out of
the critical point, allows one to evade all the described ef-
fects of the critical slowing down. Staying at a distance from
the critical point in the temperature-field plane makes the
dielectric absorption peak always lie at a finite frequency.
Then, the low-frequency limit of the real susceptibility is, at
least in principle, always possible to attain. The present pa-
per deals with such a low-frequency electric susceptibility.
We use the frequency independence of the real part of the
susceptibility as a test of staying at the low-frequency limit
because this corresponds to the practically vertical part of the
Cole-Cole plot.6 As described in Sec. III and in Refs. 7–13
the analysis of the data obtained in the NDE allows one to
determine, through so-called scaling invariants, all the pa-
rameters of the equation of state compatible with the scaling
hypothesis. Such an analysis has been done for the known
ferroelectrics TGS, TGSe, GPI, and DMAGaS.7,8,11

In the present work the scaling equations of state are
established for the �CH3NH3�5Bi2Cl11 �MAPCB� and
�CH3NH3�5Bi2Br11 �MAPBB� crystals. These are relatively
new materials belonging to the familiy of halogenoanti-
monates �III� and halogenobismuthates �III� �Ref. 14� or imi-
dazolium tetrafluoroborate �Ref. 15�. Particularly interesting
are the recently synthesised methylammonium salts MAPCB
�Ref. 16� and MAPBB �Ref. 17�. Both of them show qua-
sirigid anionic sublattices and orientationally disordered cat-
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ions undergoing a more or less definitive ordering at the
paraelectric-ferroelectric phase transition. The anionic sub-
lattice of both MAPCB and MAPBB is built of bioctahedral
units �Bi2Cl11

5−�. MAPCB is ferroelectric below 308 K,18

whereas MAPBB below 311 K.17 The transitions in both
crystals
are of the “order-disorder” type. In the crystal lattice
of MAPCB �at room-temperature–ferroelectric-phase–
orthorhombic, space group Pca21� three types of organic cat-
ions �CH3NH3

+� are found.19 The phase transition is related
to the ordering of one type of the methylammonium cations,
which are placed in centrosymmetric sites in the high-
temperature phase. It is assumed that the same situation con-
cerns the MAPBB crystal. In Fig. 1 we present the phase
diagram for MAPCB and MAPBB with space groups of the
particular phases.

Section II presents the details of experiments and Sec. III
the rudiments of the analysis with the use of the scaling
invariants. The equations of state are given in Sec. IV and
verified with the pyroelectric data of the temperature depen-
dence of the spontaneous polarization. The resulting equa-
tions of state involve critical exponents close but signifi-
cantly different from the classical ones in some analogy to
the existing data for the uniaxial ferroelectrics triglycine sul-
phate �TGS� and triglycine selenate �TGSe�. They are also
different from the universality classes following from the
renormalization group theory. The physical reasons for that
are discussed in Sec. V.

II. EXPERIMENTAL DETAILS

Crystals of �CH3NH3�5Bi2Cl11 and �CH3NH3�5Bi2Br11

were prepared as described earlier.17 The single crystals of
MAPCB and MAPBB were cut perpendicular to the polar c
axis. The dimensions of the sample were of order of 5�3
�1 mm3. The plates were silver painted. No anomaly on the
frequency dependence of electric conductivity has been ob-
served between 200 Hz and 1 MHz, indicating that effects of
contacts in the dielectric response can be neglected. The
thickness of the samples, d �usually close to 1 mm�, was
used for calculation of electric field intensity E=U /d, where
U corresponds to voltage applied. The thickness of the

samples is given in corresponding captions of figures. The
paraelectric-ferroelectric phase transition is related to the
transformation from centrosymmetric to noncentrosymetric
group within orthorhombic system �Pcab→Pca21�. Single
crystals of MAPCB and MAPBB are not monodomain, and
ferroelectric domains structure appears below TC. The crys-
tals are not the proper ferroelastics in the vicinity of the
ferroelectric phase transition; however, a spontaneous strain
appears there as a secondary order parameter �see Sec. IV B�.

The complex dielectric susceptibility �*=��− i�� was
measured with the Agilent 4284A Precision LCR meter at the
frequency of 200 Hz and in the temperature range TC
−10 K�T�TC+10 K, where TC is a critical temperature of
the ferroelectric crystal. The temperature was changed at a
rate 0.02 K/min. We applied the external biasing field from
the range between 0 and 5�105 V/m. Between the LCR
meter and a chamber with a sample the external dc voltage
bias protection circuit was used as separation. The overall
error in estimation of the real part of the complex electric
susceptibility was about 5%.

The MAPCB and MAPBB crystals are usually small since
they are difficult to grow. A polarizing microscope was used
for preliminary selection of crystals free of visible growth
defects. Another criterion of the choice of good crystals for
the NDE measurements was the shape of the �= f�T� depen-
dence. Only those samples were chosen for which the maxi-
mum value of the static susceptibility at the zero biasing field
was stronger than 2000 and 18 000 for MAPCB and
MAPBB, respectively. One more criterion was the lack of
inflection points right to the maximum at E=0, which are
usually observed for imperfect crystals. Such additional in-
flection points are usually observed at zero-biasing field
when a controlled amount of Bi atoms are substituted by Sb
ones.20 The NDE results obtained for the crystals selected as
described above were reproducible from sample to sample,
and the location of the maximum as well as inflection points
at a given electric field was stable within 0.2 K.

The pyroelectric current was measured by a KEITHLEY
617 electrometer with temperature rate 0.5 K/min. Before
measurements the single crystals were poled on cooling be-
low the paraelectric-ferroelectric phase transition using volt-
age equal to 200 V and then short circuited for half an hour.
Application of the larger voltage did not affect the spontane-

FIG. 1. Phase diagram for MAPCB and
MAPBB
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ous polarization value. Moreover, the use of negative voltage
−U resulted in reversal of the spontaneous polarization with-
out changing its absolute value.

The dilatometric measurements were performed by a ther-
momechanical analyzer Perkin Elmer TMA-7 in the tem-
perature range 140–300 K. The dimensions of the samples
were of the order of 5�3�1 mm3. The temperature scan-
ning rate was equal to 4 K/min.

III. THEORY: ELECTRIC SUSCEPTIBILITY AT A
NONZERO BIASING FIELD

The properties of a ferroelectric material can be described
by an auxiliary thermodynamical potential �free energy�
F�P ,E ,T�, where the polarization P is treated as a variable,
whereas the temperature T and the field E as external param-
eters. The ferroelectric equation of state then is expressed by
the condition �F

�P =0 of the minimum of the free energy F
with respect to the polarization P. While in Landau-type
theories the free energy F is a polynomial in the variable P,
the scaling hypothesis with nonclassical critical exponents
implies the following nonanalytical form

F�P,E,T� =
1

2
C2�P2 +

1

� + 1
C�+1�P��+1 − EP , �1�

where

� = sgn�T − TC��T − TC��. �2�

The corresponding equation of state then reads

E = C2�P + C�+1�P�� �3�

and is compatible with the Widom-Griffiths scaling
hypothesis.21,22 The inverse of the isothermal equilibrium
susceptibility,

�T
−1 = � �E

�P
�

T
= C2� + �C�+1�P��−1, �4�

then is predicted to show critical behavior at E=0,

�T,E=0
−1 =

�E

�P
= 	±�T − TC��, �5�

where the critical amplitudes are 	+=C2 for T
TC and 	−
= ��−1�C2 for T�TC. Using Eqs. �3� and �4� one can deduce
the temperature dependence of the static equilibrium suscep-
tibility �T,E at a given value of the biasing field E. The actual
shape of the corresponding curve depends crucially on the
values of the critical exponents � and �. Generally, a maxi-
mum and a number of inflection points are expected3 on the
temperature dependence of susceptibility �T,E at a given
value of the biasing field E.

All the experiments also indicate an inflection point at a
temperature Tinfl inferior of the maximum at the position
which is very weakly dependent on the biasing field. The
explicit form of Eqs. �3� and �4� reveals, however, that in fact
one deals here with a number of close inflection points
and/or cusp singularities which merge into a single inflection
point for certain particular values of the critical exponents �
and �.3

It has been shown by Westwański and Fugiel23 that some
ratios independent of the electric field E and of the coeffi-
cients C2 and C�+1 can be built on the basis of the scaling
hypothesis. These ratios are called scaling invariants. They
correspond to the temperature of the maximum of the sus-
ceptibility or to the temperatures of the inflection points but
with different biasing fields E. We have used the invariants to
determine the critical exponents � and � in the equation of
state. The scaling invariants used in the present work are the
following. The invariant Q is defined in Ref. 23 as

Q =
���max,E = 0�
���max,E � 0�

, �6�

where �max=Tmax−TC corresponds to the reduced tempera-
ture at which the susceptibility exhibits maximum for the
given value of the biasing field E. The invariant Q depends
on the critical exponent � only:7,24

Q =
� − 1

� − 2
. �7�

The invariant 	 is also independent of E, C2 and C�+1 are
also invariant defined as3

	 =
���infl,E = 0�
���infl,E � 0�

, �8�

where �infl=Tinfl−TC corresponds to the reduced temperature
of an inflection point of the static susceptibility measured as
a function of temperature at a biasing field E parallel to the
ferroelectric axis. The explicit form of the invariant 	 for the
equation of state given by Eq. �3� and for the unique inflec-
tion point right to the maximum �iprm� is

	 = 1 − � +
�� + 1��� − 1�3

�iprm��,��
, �9�

where �iprm�� ,�� is a known but complicated function,
which depends only on the critical exponents � and �. An
explicit form of �iprm�� ,�� is given by Gałązka et al.3

In contrast to the previous invariants the following invari-
ant � does not depend on the actual values of the suscepti-
bility but only on the location of the maximum and of the
inflection point with respect to the critical temperature:

� =
�max

�infl
. �10�

The explicit formula for the invariant � is

� = � �� + 1��� − 2��� − 1��2/��−1

���,�����,���−1/� �1/�

, �11�

where ��� ,�� and �� ,�� are known functions given by
Gałązka et al.3 Knowledge of TC is not needed to determine
the invariants Q and 	 but is necessary to establish the value
of the invariant � from the experimental data.
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IV. RESULTS AND DISCUSSION

A. Determination of the critical parameters for MAPCB and
MAPBB from an ac NDE experiment

The real part of the complex electric susceptibility is a
good approximation of the static equilibrium susceptibility �
if the frequency is sufficiently low. A signature of the ad-
equacy of this approximation is that the real part �� does not
depend on frequency in the range used in experiment. A
frequency below 1 kHz is appropriate for most of ferroelec-
trics; however, for some crystals a dispersion of susceptibil-
ity is observed at even lower frequencies.25 The dielectric
absorption and dispersion for MAPCB and MAPBB are ob-
served for frequencies higher than 1 MHz,26,27 so that the
permittivity measured at the frequency �200 Hz� may be le-
gitimately treated as static.

The temperature dependence of the real part of the com-
plex susceptibility at several external electric field intensities
and its temperature derivative for MAPCB and MAPBB is
presented in Figs. 2 and 3. The electric field intensity was
evaluated for each curve as E=U /d. A shift of the maximum
of susceptibility with increasing biasing fields is well visible
in figures. The main difference compared with TGS is that
the absolute value of the permittivity is by a factor of 20
weaker. This makes the influence of the noises more pro-
nounced. Of course the noises have more effect on the de-
rivative curves. Nevertheless, each derivative curve shows
clearly a maximum and a minimum. The maximum corre-
sponds to the inflection point below the maximum of the
susceptibility. One can easily see that the position of the
maximum is indeed almost very weakly dependent on the
biasing field that is witness to the proximity of the critical
indices to the classical ones. The location of the minimum on
the derivative curve indicates an inflection point to the right
of the maximum �in what follows the subscript iprm will be
dropped for brevity�. As one can note, the temperature of this

inflection point clearly increases with increasing electric field
E. In principle one could make use of the field dependence of
the high-temperature inflection point to estimate directly the
critical temperature and the critical exponents. We do not
apply this method here as the one using the scaling invariants
is more accurate. Nevertheless, it is interesting to know the
errors arising with the present accuracy of the data. Thus, the
relative error in the critical exponents � and � determined
from the shift of the maximum is about 6%, whereas the
absolute error in Tiprm amounts about 0.2 K.

Supposing that the measured electric susceptibility �expt,E
is at most shifted by a constant value with respect to the
static isothermal electric susceptibility �T of the material un-
der discussion,5 we are entitled to assume that the power-law
relation Tmax=TC+�maxE

1/� is valid. The estimation of the
critical index 1/� has been done from the log-log plots given
in Fig. 4. The power law is well verified, giving the values of
1 /�=0.76 for MAPCB and for MAPBB 1/�=0.72. For the
classical values of the critical exponents �=1, �=3, the
value of 1 /�= �−1

�� equals 0.66. The estimated values of 1 /�

FIG. 2. The temperature dependence of susceptibility �left� and
the temperature derivatives �right� of the susceptibility for MAPCB
measured at a frequency of 200 Hz at different biasing voltages
�thickness of the sample d=0.75 mm�.

FIG. 3. The temperature dependence of susceptibility �left� and
the temperature derivatives of the susceptibility �right� for MAPBB
measured at a frequency of 200 Hz �thickness of the sample d
=1.3 mm�.

FIG. 4. Log-log plots of the reduced temperature of the maxi-
mum of the susceptibilty, T−TC, versus biasing field E giving an
estimation of 1/� for MAPCB �left figure� and MAPBB �right
figure�.
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may indicate a nonclassical behavior of the crystals studied.
We have estimated the values of the critical exponents �

and � on the basis of a numerical analysis of the invariants
Q, 	, and �. As a reference system to test the method and
estimate possible errors we have selected triglycine sulphate
�TGS� crystals. This is a well-known uniaxial ferroelectric
thoroughly investigated by numerous authors.7 The results
�see Table I� indicated that the exponents obtained with the
methods applied in this paper were reliable.

Figure 5 shows the dependence of the invariant Q, 	, and
� on the electric field value for MAPBB. Within the limits
of experimental error, the value of the invariants Q, 	 and �,
are constant and independent of the field E. The experimen-
tal values of these invariants have been obtained as the mean
value for all the fields used. The estimated values of � and �
are collected in Table I. Their nonclassical values indicate in
our opinion the nonclassical behavior of the crystals studied.
Calculated values of 1 /� using the estimated values of � and
� are equal to 0.76 and 0.72 for MAPCB and MAPBB, re-
spectively, and are with acceptable errors consistent with
those obtained from the shift of the maximum with the bias-
ing field.

B. Spontaneous polarization measurements

In order to verify the validity of the critical exponents
obtained in the ac NDE we have performed measurement of
the spontaneous polarization for the MAPCB and MAPBB
crystals and fit the parameters to the experimental data. The
experiment was carried out in the following way. First the
samples were poled while cooling from above the
paraelectric-ferroelectric phase transition temperature; the dc
electric field was equal to +200 kV/m. The pyroelectric cur-

rent Ipyro was then measured on heating of the crystal. The
spontaneous polarization �PS was calculated from the fol-
lowing equation:

�PS =
	 Ipyrodt

S
, �12�

where S is the area of the sample. The polarization in the
paraelectric phase was assumed to be zero. The spontaneous
polarization PS as a function of temperature for MAPCB and
MAPBB is shown in Fig. 6. The PS values are equal to about
0.7�10−2 C/m2 at 297 K and 2.7�10−2 C/m2 at 286 K for
MAPCB and MAPBB, respectively. The solid line corre-
sponds to the fit calculated for the parameters of the equation
of state �Eq. �3��, C2, C�+1, and �. The well-known Widom
equality �=���−1� resulting from the scaling equation of
state allows us to compare the values of � with those ob-
tained on the basis of the invariants analysis. As a matter of
fact only the ratio C�+1 /C2 may be estimated in this way.
This ratio is equal to 3.85 and 3.91 for MAPCB and
MAPBB, respectively. The estimated values of the critical
exponents for MAPCB �=0.401 and for MAPBB �=0.408
are in good accordance with those obtained on the basis of

FIG. 5. Values of invariant and mean values Q, 	, and � versus
voltage for MAPBB.

FIG. 6. The spontaneous po-
larization PS as a function of tem-
perature �a� for MAPBB and �b�
for MAPCB at the heating rate
1 K/min.

TABLE I. The critical parameters for TGS, MAPCB, and
MAPBB.

TC �K� � � 1/� Q � 	

TGS 322.21 0.998 3.14 0.67 1.709 0.585 1.182

MAPCB 307.65 0.985 3.47 0.76 1.680 0.584 1.142

MAPBB 311.52 0.989 3.40 0.72 1.711 0.564 1.167
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the invariants analysis �0.399 for MAPCB and 0.412 for
MAPBB�. However, it should be noted that for MAPBB the
shape of the spontaneous polarization curve is well repro-
duced by theory only in the temperature range close to TC for
T−TC
−5 K. Attempts to fit the critical parameters in a
wider temperature range give unreasonable values. It is in-
teresting that for MAPCB the shape of the curve of the tem-
perature dependence of PS is correctly reproduced by this
theory in a wider temperature range.

The ferroelectric phase transition in MAPCB and
MAPBB is accompanied by a deformation of the crystal �im-
proper ferroelastic�. The corresponding strain coupled with
the order parameter involves a shortening in the direction of
the polar axis and a dilatation in the other directions so that
the total volume is not affected. This “pancake” strain, de-
noted here by �, increases with increasing polarization, as
being a secondary order parameter. The volume change,
which amounts to the thermal expansion, does not show any
anomaly at the phase transition. In order to take into account
the pancake strain two new terms should be added to the free
energy represented by Eq. �1�:

F� =
1

2
c�2 + f��P���+1�/2, �13�

where c is an elastic constant and f a coupling coefficient.
The condition of minimum with respect to � requires that

� = −
f

c
�P���+1�/2, �14�

which equality, when inserted into the new terms, brings the
total free energy to the form of Eq. �13�,

F� =
1

2
C2�P2 +

1

� + 1
C̃�+1�P��+1, �15�

with only the coefficient C�+1 renormalized:

C̃�+1 = C�+1 −
� + 1

2

f2

c
. �16�

The free energy, Eq. �1�, then corresponds to a stressed crys-
tal, where no strain is allowed, whereas Eq. �15� describes a
nonloaded crystal. It is clear that the critical exponents are
equal in both cases. To verify the validity of the theory Eq.
�14� should be checked experimentally. Figure 7 presents the
temperature dependence of the relative shortening of the po-
lar axis—i.e., a quantity proportional to the pancake strain �.
A base line corresponding to a trend independent of the
phase transformation has been subtracted. A power law then
has been fitted to the dependence of the strain � on the re-
duced temperature �: ���A. The fitted value of the exponent
A=2.22 agrees very well with the ��+1� /2=2.24, which is
witness to the consistency of our results with the scaling
equation of state.

V. CONCLUSIONS

Nonclassical and nonuniversal critical exponents �, �,
and � satisfying the scaling relation are found for the
uniaxial ferroelectrics MAPBB and MAPCB on the basis of
the low-frequency electric susceptibility measured in a con-
stant biasing electric field �see Table I�. Scaling invariants
have been used to analyze the data. The values of the invari-
ants have turned out to be constant within experimental error
as is required by the scaling hypothesis. To test the quality of
our data and the adequacy of our theoretical analysis we have
applied the same procedures to the known ferroelectric trig-
lycine sulfate �NH2CH2COOH�3H2SO4, TGS, and have ob-
tained the results consistent with the values published
earlier.7,24 Thus, the alkylammonim salts MAPCB and
MAPBB fall into the same category as TGS and TGSe where
the scaling equation of state �Eq. �3�� gives a more satisfac-
tory description than the classical Landau theory. A common
feature of these materials is that the critical exponents in-
volved in the equation of state are neither classical nor cor-
responding to a universality class known from the renormal-

FIG. 7. Temperature dependence of the spontaneous polarization PS and linear dilation �l / l along the polar axis in MAPCB �right�. The
dependence of �l / l versus PS and the curve fitted to the power law �=− f

c �P���+1�/2 �left�.
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ization group theory. A large temperature range in which our
description is adequate indicates that our results do not con-
cern the closest vicinity of the critical point as required by
the Ginzburg criterion. Therefore, we deal here with phe-
nomena different or occurring in addition to the critical be-
havior. A crossover or even a series of crossovers resulting in
some effective critical exponents28 seems to be the most
plausible explanation of our observations. A microscopic
theory explaining the values obtained for the given materials
in the well-defined experiment is still to be done. The critical
exponent � obtained in this work for the MAPCB crystal
provides the ratio of the Curie constants C− /C+=2.47 which
is still too low in comparison with experimental value �3.85

�Ref. 16�� obtained for this material at the zero-bias field. We
have just constructed an equation of state also compatible
with the scaling hypothesis but different from Eq. �3�. This
equation can make the ratio of the Curie constants dependent
on some other parameters than only the critical exponents.
Work is in progress to check the validity of this equation of
state for the ensemble of data for the materials under study.
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