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We present an alternative treatment to the quantum spherical spin model on �d�2�-dimensional hypercubic
lattices, focusing on the effects of quantum �g� and thermal �T� fluctuations, under a uniform magnetic field h,
on the correlation function, correlation length, entropy, specific heat, and energy gap in the excitation spectrum.
Explicit expressions for such quantities are provided close to the d�2 quantum �g=gc, T=0� and d�3 thermal
�T=Tc�g�� phase transitions in h=0, including the low-T quantum regimes near the quantum critical point. In
particular, the calculation of the correlation function and correlation length generalizes the results on the g
=0 classical spherical model. At T=0, the zero-field system is gapless at and below gc; however, a gap opens
in the quantum-disordered ground state, g�gc. Conversely, the null gap for T�Tc�g�0� becomes finite as
T→Tc�g�0�+; thus, quantum fluctuations suppress the critical prefactors of observables near Tc�g�0�, though
they are irrelevant to the universality class shared with the gapless classical spherical model. The results on the
entropy and specific heat in g�0 circumvent the drawback in classical spherical models concerning the third
law of thermodynamics, as T→0.
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I. INTRODUCTION

Since the seminal work by Berlin and Kac,1 it has been
widely accepted that classical spherical models2–4 have
played an important role in statistical mechanics due to the
opportunity they offer to rigorously study properties other-
wise uncommonly probed through exact calculations, such as
the critical behavior of observables close to thermal phase
transitions and finite-size scaling hypotheses, just to name a
few. The result by Stanley5 that the spherical condition maps
onto the limit of infinity spin dimensionality of the Heisen-
berg classical model has provided a way of contact between
the spherical model and realistic spin systems. Consequently,
over the last decades classical spherical models have been
largely applied to study a rich variety of systems, including
antiferromagnets6 with competing interactions7 and Lifshitz
points,8 critical phenomena involving long-range interac-
tions3,4,9 and topological considerations,10 phase separation,11

spin-charge effects in the context of the Hubbard model,12

finite-size systems,13 and disordered models,14 such as elec-
tronic systems with localized states,15 infinite-ranged spin
glasses,16 and random-field models.17

In spite of this, the early finding1–4 of the anomaly present
in classical spherical models regarding the third law of ther-
modynamics has provided a first indication that the suppres-
sion of quantum fluctuations can generally lead to unphysical
behavior in very low temperatures T. Actually, the more re-
cent emergence18,19 of quantum phase transitions at T=0 has
confirmed this scenario in regimes where the relevant fluc-
tuations are of quantum rather than thermal nature, starting
with the reformulation of the concept of hyperscale in T=0
transitions proposed by Hertz.20 Since then, the interest in
anomaly-free quantum spherical models21 has grown in con-
texts as diverse as spin glasses,22 thermodynamic proper-
ties,23,24 and quantum phase transitions in d-dimensional hy-
percubic lattices,25 including finite-size effects,26 random
field models,27 quantum Lifshitz points,28 systems with fer-

romagnetic coupling in transverse magnetic field,29 and fer-
rimagnetic chains with AB2 unit-cell topology.30

In this work we present an alternative treatment to the
quantum spherical spin model on �d�2�-dimensional hyper-
cubic lattices. We focus on the effects of quantum �g� and
thermal �T� fluctuations, under a uniform magnetic field h,
on the correlation function, correlation length, entropy, and
specific heat, described in detail close to both d�2 quantum
�g=gc, T=0� and d�3 thermal �T=Tc�g�� phase transitions
in h=0, including the zero-field low-T quantum regimes near
the quantum critical point. We consider a second-
quantization Hamiltonian in which quantum fluctuations are
introduced through a kinetic term on operators canonically
conjugated to the spin degrees of freedom, with strength con-
trolled by a tunable quantum parameter g, in a way similar to
that of Refs. 25 and 26. In the latter, the authors have
studied26 finite-size scaling properties in 1�d�3, with spe-
cial attention to the low-T zero-field susceptibility and equa-
tion of state of the infinite system in d=2; in the former, the
focus has been on the critical exponents near the quantum
and thermal transitions.25 Here we present explicit expres-
sions for the correlation function, correlation length, entropy,
and specific heat in a variety of possible critical paths around
the d�2 quantum and d�3 thermal phase transitions. In
particular, our results on the correlation function and corre-
lation length generalize the calculation for the g=0 classical
spherical model.31 Moreover, a detailed study of the energy
gap in the excitation spectrum in the mentioned regimes is
provided on the basis of its relevance to the universality class
of the transitions. Actually, in addition to the investigation on
critical exponents, we are also interested in the influence of
quantum fluctuations on the suppression of prefactors of
critical observables. The T→0 behavior of the entropy and
specific heat is also explicitly shown to obey the third law of
thermodynamics in g�0. In this sense, the low-T specific
heat and entropy behaviors of quantum spherical models
have been also investigated in Refs. 23 and 29. However, in
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the absence of canonically conjugated operators, the author
in Ref. 23 has considered a model with double-spin field at
each site and a couple of adjustable parameters to get rid of
the classical anomaly in low T; and in Ref. 29, by taking into
account such operators in the spherical constraint, a z=2 dy-
namical exponent has been obtained, in contrast with the
value z=1 reported in Refs. 25 and 26 and in the present
work.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and diagonalize it in a second-
quantization scheme to obtain the spectrum of eigenmodes.
By studying the spherical constraint and the chemical poten-
tial calculation in the Appendix, we identify the critical and
thermal phase transitions and confirm previous results on the
magnetization, zero-field susceptibility, and equation of state.
Sections III and IV are, respectively, devoted to the deriva-
tion of the correlation function, correlation length, and en-
ergy gap, and entropy and specific heat close to the quantum
and thermal transitions, in the regimes devised in the Appen-
dix. Finally, discussion and conclusions are presented in
Sec. V.

II. QUANTUM SPHERICAL SPIN MODEL

We consider the quantum spherical spin model on a hy-
percubic lattice in d�2:

H =
g

2�
R�

P
R�
2

−
J

2 �
�R� ,R�� �

SR�SR�
� − h�

R�
SR� + ��

R�
�S

R�
2

− 1/4� ,

�1�

where J�0 is the ferromagnetic coupling between S=1/2
spins at first-neighbor sites and h denotes a uniform magnetic
field in energy units, h��ef fH, in which �ef f is the effective
Bohr magneton. The chemical potential � ensures the mean
spherical constraint1,2

�
R�

�S
R�
2� =

N

4
, �2�

where N is the total number of spins �or sites located at R�

lattice positions� and �¯� denotes the standard quantum ther-
mal average. Notice that a continuous variation of the spin
average value is allowed, with no upper and lower bounds,
provided Eq. �2� is satisfied. We introduce quantum fluctua-
tions by assigning21 a canonically conjugated momentum PR�

to each spin degree of freedom, so that the following com-
mutation relations hold ��=1�: �SR� ,SR�

� �=0, �PR� , PR�
� �=0,

�SR� , PR�
� �= i�R� ,R�

� , where �R� ,R�
� is the Kronecker delta. The tun-

able quantum parameter g�0, in energy units, controls the
strength of the quantum fluctuations responsible for the spin
dynamics. Although this choice for the dynamics is not
unique, it is by far the most usual one, as can be inferred
from Refs. 21–29. The above features actually make the spin
fields in quantum spherical models more like unit quantum
rotors,18,32–34 than standard SU�2� spin operators usually
considered in Heisenberg models.

In order to diagonalize Eq. �1� in a second-quantization
scheme, we first introduce creation �a

R�
†� and annihilation �aR��

bosonic operators through SR� = �g /8��1/4�aR� +a
R�
†� and PR�

=−i�� /2g�1/4�aR� −a
R�
†�. By Fourier transforming a

R�
†

and aR� ,
Eq. �1� becomes

H = 	2g��
k�

1 −

Jk�

2�
�ak�

†ak� − 	2g��
k�

Jk�

4�
�a−k�ak� + a−k�

† ak�
†�

−	N

2

 g

2�
�1/4
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†�h + 	2g�

N

2
−

�N

4
, �3�

where Jk� =J�i=1
d cos�ki�, with k� in the first Brillouin zone, and

a0=ak�=0. Now, defining

�k�± =
1

2	2

1 −

Jk�

2�
�1/4�
1 +

1

	1 − Jk�/�2����ak� ± a−k��

± 
1 −
1

	1 − Jk�/�2����ak�
† ± a−k�

† � , �4�

�0 =
1

2

1 −

J0

2�
�1/4�
1 +

1
	1 − J0/�2��

�a0

+ 
1 −
1

	1 − J0/�2��
�a0

†
−	N

2
� g

2�� − dJ�1/4 h
	2g�� − dJ�

, �5�

Eq. �1� is diagonalized as follows:

H = �
k��0

	k���k�+
†

�k�+ + 1/2� + �
k��0

	k���k�−
†

�k�− + 1/2�

+ 	0��0
†�0 + 1/2� −

Nh2

4�� − dJ�
−

�N

4
, �6�

where

	k� = 	2g�� − Jk�� �7�

are the model eigenfrequencies. Since Jk� assumes its maxi-
mum value J0=dJ at k� =0, we notice that values ��dJ im-
plies in 	k� �0 for all k� modes. Conversely, values ��dJ are
not allowed and the special choice �=dJ causes the k� =0
eigenfrequency 	0 to vanish.

From Eqs. �6� and �7� the Helmholtz free energy is calcu-
lated �kB=1�:

F = T�
k�

ln�2 sinh�
	k�/2�� −
Nh2

4�� − dJ�
−

�N

4
. �8�

The spherical constraint, Eq. �2�, is derived through �F /��
=0:

�
k�

g

2	k�
coth�
	k�/2� +

Nh2

4�� − dJ�2 =
N

4
. �9�

In the Appendix we consider Eq. �9� in the continuous N�1
limit and obtain the solutions for ��g ,T ,h� near the d�2
quantum �g=gc, T=0� and d�3 thermal �T=Tc�g�� h=0
transitions. We mention that in Ref. 26 the authors have con-
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sidered a distinct approach to Eq. �9� in N�1 and d=2, near
the quantum critical point as T→0; when appropriate, com-
parison between the two approaches is provided.

III. CORRELATION FUNCTION, CORRELATION
LENGTH, AND GAP DISCUSSION

In this section the correlation function and correlation
length of the quantum spherical model in d�2 are provided,
generalizing the results to the classical spherical model.31

Although in Refs. 25 and 26 similar quantum spherical mod-
els have been investigated, no explicit expressions for the
correlation function, correlation length, and energy gap have
been reported in the variety of d�2 quantum and d�3 ther-
mal critical paths considered below. Indeed, whereas in Ref.
26 the authors have presented a detailed study of finite-size
scaling properties in 1�d�3, with special attention to the
low-T zero-field susceptibility and the equation of state of
the infinite system, in Ref. 25 the focus has been on the
critical exponents of the quantum and thermal transitions
through scaling arguments.

With the aid of the following two-operator quantum ther-
mal averages,

��r
†�s� =

�r,s

e
	r − 1
, ��r�s� = 0,

��r
†�s

†� = 0, ��r�s
†� =

�r,se

	r

e
	r − 1
, �10�

where ��r ,�s�= ��k�+ ,�k�− ,�0�, �r ,s�= �k� + ,k� − ,0� and 	r

=	k� �see Eqs. �4� and �5��, we obtain the spin-spin correla-
tion function as follows:

G�R� ,R�� � = �SR�SR�
� � − �SR���SR�

� �

=
1

N
�

k�

g

2	k�
coth�
	k�/2�cos�k� · �R� − R�� �� . �11�

By expanding coth�
	k� /2� in partial fractions, using the
identity y−1=�0

�dx exp�−yx�, y�0, and the Euler-Maclaurin
formula for N�1, we find

G�R� ,R�� � =
T

2
�

0

�

dx3�e−�2�2T2x�/g�e−�x�
i=1

d

Ini
�Jx� , �12�

where R� −R�� =�i=1
d niei

ˆ , ei
ˆ is the unit vector along direction i,

and Ini
�x� denotes the nith-order modified Bessel function of

the first kind.
We now analyze the correlation function and correlation

length in the regimes devised in the Appendix.

A. T=0 and T\0, g=gc, and g\gc, �\dJ

The ground state of the d�2 system evolves from the
fully saturated long-range-ordered ferromagnetism, with
magnetization M =1/2 �see the Appendix� if quantum fluc-
tuations are absent, to a M =0 critical state at the quantum
critical point, g=gc, due to strong quantum fluctuations. In-

deed, as �g=g /gc−1→0− quantum critical fluctuations
gradually dominate over the low-lying excitation modes,
suppressing the order towards a quantum disordered para-
magnetic state for g�gc. To evaluate G just above gc at T
=0, we use Eq. �A4�, Ini

�x�� I0�x�exp�−ni
2 /2x�, and the

asymptotic expression31,36 for I0�x� given by Eq. �A5�:

G�R� ,R�� � =
	g/J

2�2���d+1�/2
 1

r�
��d−1�/2

K�d−1�/2�r/��, d � 2,

�13�

where r2=�i=1
d ni

2, K��x� represents the �th-order modified
Bessel function of the second kind, Eq. �A9�, and �= �2��
−dJ� /J�−1/2 is the correlation length in h=0. In fact, by con-
sidering the asymptotic form for K��x�, Eq. �A9�, we obtain
as �g→0+, T=0,

G�R� ,R�� � �
	g/J

2��d−2�/2�2�r�d/2e−r/�; �14�

conversely, at g=gc, T=h=0, and using36 K��x�
��2/x������� /2�, x→0, ��0:

G�R� ,R�� � �
	gc/J�„�d − 1�/2…

4��d+1�/2
1

rd−1 . �15�

At T=0, Eq. �A13� implies in infinite � in the quantum-
ordered regime below gc in d�2. On the other hand, as �g
→0+, T=0, we consider Eqs. �A19�, �A21�, and �A22�, so
that

� � 
 gc

�3e2J
�1/2

�g
−1, d = 2, �16�

� �
1
	6
� ln����2e�/3�	J/gc�g�

���2e�/3�	J/gc�g
�1/2

, d = 3, �17�

and

� � 	− 2J	gcRg��dJ��g
−1/2, d � 4, �18�

are finite in the quantum disordered regime—i.e., g�gc. The
critical behavior ���g

−�, �g→0+, T=0, provides �=1 in d
=2 and �=1/2 in d�3. In d=3 the log dependence on �g
implies in log corrections to the leading power-law singular-
ity in � �log corrections also apply to other exponents of the
quantum transition at the associated upper critical dimension,
dc=3�.

At finite T and for any g the system does not display
long-range order in d=2. In particular, close to gc as T→0
and h=0, Eqs. �A14�, �A16�, and �A29� imply, in the renor-
malized classical, quantum-critical, and quantum-disordered
regimes,18,19,25,26

� �
	Jg

T
exp� �J	gc

2T�	gc + 	g�
��g�, d = 2, �19�

� �
	Jgc

T
, d = 2, �20�

and
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� �
	g�	g + 	gc�

�	Jgc

�g
−1, d = 2, �21�

as �g→0−, �g=0, and �g→0+, respectively. As T→0, notice
the exponential divergence in Eq. �19�, the quantum-critical
behavior ��T−�, with �=1 in Eq. �20�, and the indepen-
dence of � on T in Eq. �21�, up to exponentially small cor-
rections. These regimes are separated by crossover
lines18,19,33 T� ��g � / �	g /gc+1�, with crossover exponent �
=z�=1, where T���g�� �see Sec. III B below for the identi-
fication of the dynamical exponent z=1�.On the other hand,
in d�2, by writing19 ����g�−�f��T / ��g��� at nonzero T as
�g→0+, where f� is a scaling function, the low-T expansion,
f���T / ��g���x, cancels out the dependence on ��g� in the
quantum-critical regime, �g=0, if x=−� /�, implying in the
quantum-critical behavior ��T−1/z=T−1, T→0, for d�2.

It is also worth noticing that the appearance of a quantum-
critical regime in d=2 and a quantum-disordered paramag-
netic phase in d�2 are not allowed in quantized
ferromagnets.18,37 Indeed, in the present case the influence of
strong quantum fluctuations under a spherical constraint on
quantum-rotor-like spin fields and a dynamics driven by qua-
dratic conjugated momenta, are relevant ingredients to in-
duce these low-T regimes.

B. Finite T=Tc„g… and T\Tc„g…, �\dJ, and gap discussion

In this regime, the same procedure leads to G as in Eqs.
�14� and �15�, with the only replacements 	g /J→T /J and
d+z→d. In particular,19 G�r−�d+z+�−2� at g=gc, T=0, is re-
placed by G�r−�d+�−2� at T=Tc�g�, thus fixing20 z=1 and
�=0 �compare with Eq. �15�� at the quantum-critical transi-
tion and �=0 at the thermal-critical line. Conversely, by us-
ing Eq. �7� for k→0, the infrared states33 with 	k�

�	gJ��−2z+k2�1/2 are such that the scaling20,33 of the low-
lying quantum fluctuation modes, with k��−1 and
	��−z—i.e., k�w1/z—alternatively provides z=1.

Regarding the correlation length, Eq. �A32� implies in
infinite � in the ordered phase below Tc�g� in d�3. Further-
more, Eqs. �A33�–�A35� as �T=T /Tc�g�−1→0+ lead to

� �
Tc�g�
�3/2eJ

�T
−1, d = 3, �22�

� �
1

2	2
� ln„���4eJ�/�8Tc�g����T…

���4eJ�/�8Tc�g����T
�1/2

, d = 4, �23�

and

� � 	− JTc�g�R��dJ��T
−1/2, d � 5, �24�

from which ���T
−�, �T→0+, and �=1 in d=3 and �=1/2 in

d�4 �log corrections to the exponents are present at the
upper critical dimension of the thermal transition, dc=4�. We
note in Eqs. �22�–�24� the same critical behavior of the g
=0 classical spherical model,31 but with the prefactors sup-
pressed by quantum fluctuations controlled by g. Interest-
ingly, regarding the g=0 limit of Eqs. �22�–�24� the critical
amplitudes can be made identical to those of the classical

spherical model by performing the integral �A20� over
�����−dJ��−1 , � �, with the dimensionless factor �=4.77.
This indicates that, although not important to the overall
critical behavior close to the transition, the intermediate-x
regime in Eq. �A20� may actually contribute, to some extent,
to the prefactor of critical observables.

From Eq. �7� with k→0, we note that the ground state of
the d�2 system is separated from the low-lying excitation
modes by an energy gap ���2g��−dJ��1/2��−z. Using Eqs.
�A13�, �A19�, �A21�, and �A22�, we find that the system at
T=h=0 is gapless in the ordered phase, for g�gc, and at the
quantum-critical point, g=gc �see Fig. 1�a� in d=2�; how-
ever, the gap opens in the quantum-disordered ground state,
g�gc, so that ���g

z�, with �=1 in d=2 and �=1/2 in d
�4, and �� ��g / ln��const��g � ��1/2 in d=3. On the other

FIG. 1. Phase diagram of the quantum spherical model in h=0,
displaying the quantum parameter g vs temperature T, in energy
units. �a� d=2: an ordered gapless ground state �vertical dashed
line� is found for g�gc, where gc denotes the T=0 quantum critical
point; for g�gc strong quantum fluctuations lead to a quantum
disordered paramagnetic phase at T=0, with gap ���g=g /gc−1.
Low-T regimes and their respective gaps are also indicated: renor-
malized classical �RC�, quantum-critical �QC�, and quantum-
disordered �QD�, with boundaries at the dot-dashed crossover lines,
T���g�. �b� d=3: the critical line Tc�g�, sketched in the figure,
separates the gapless ordered �dashed region� and gapped disor-
dered phases; the dot-dashed crossover line marks the boundary
between the quantum-critical and quantum-disordered regimes. In
�a� and �b� the gapless classical spherical model maps onto the axis
g=0. �a and b are positive constants.�
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hand, in the absence of long-range order as T→0 in d=2,
Eqs. �A14�, �A16�, and �A29� lead to ��T exp�−�const
��g � /T��T, ��T, and ���g�T in the renormalized clas-
sical, quantum-critical, and quantum-disordered regimes, re-
spectively; we note in the latter two regions near the
quantum-critical point that the gap is not negligible com-
pared with thermal fluctuations, in contrast with the renor-
malized classical regime.

On the other hand, near the thermal transition at Tc�g�,
Eqs. �A32�–�A35� lead to a gapless spectrum in the ordered
phase, T�Tc�g�, and at T=Tc�g�, but to a gap in the disor-
dered regime �see Fig. 1�b� in d=3�: �� �	g�T�� as �T→0+

and g�0, with �=1 in d=3 and �=1/2 in d�5, and �
� �	g�T / ln�const��T��1/2 in d=4. In any case, the result
��T just above Tc�g� indicates that, compared with the
thermal energy at finite T→Tc�g�0�+, the presence of a
nonzero gap is not relevant to the critical behavior in this
region. Indeed, by setting g=0 in Eq. �7� we note that �=0
in the classical case, though the g�0 and g=0 models dis-
play the same thermal critical behavior. Actually, a gap �
�Tc�g�0� can be found as �→dJ only by approaching the
quantum-critical point, Tc�g�0�→0, in agreement with the
result in the quantum-critical regime.

IV. ENTROPY AND SPECIFIC HEAT

Entropy and specific heat are obtained using Eq. �8�,
S=−�F /�T and C=−T�2F /�T2.

We first consider the very-low-temperature regime T→0,
in which only low-lying modes with k→0 contribute signifi-
cantly to the system properties. In such a case,

	k� � 	2g�� − dJ��1 + J�� − dJ�−1k2/4� , �25�

provided ��dJ. Such condition is fulfilled as T→0, e.g., by
applying h�0, in the absence of long-range order. In the
continuous limit the use of the Euler-Maclaurin formula and
Eq. �25� allows us to write S and C as Gaussian integrals,
which as �→dJ give rise to

S

N
� Dd
�

T
�1−d/2

exp
−
�

T
� �26�

and

C

N
� Dd
�

T
�2−d/2

exp
−
�

T
� , �27�

where D= ���0−dJ� / ��J��1/2, �= �2g��0−dJ��1/2, and �0

���g ,T=0,h�0��dJ. In Eqs. �26� and �27� the T depen-
dence is a combination of the typical result of Einstein’s
model, T−2exp�−� /T�, and the spin-wave-like contribution
Td/2 which emerge from the low-k� behavior of the eigenfre-
quencies, Eq. �25�, with a finite energy gap �=� due to h
�0 and a magnon-like ferromagnetic dependence on k2.
Such kind of behavior has been also observed in the quantum
spherical model in ferrimagnetic AB2 chains,30 as well as in
anisotropic quantum ferromagnetic and antiferromagnetic
Heisenberg models in d=1.35

On the other hand, the zero-field system presents a van-
ishing gap as T→0 and g�gc �see Sec. III�. Therefore, Eq.

�25� cannot be applied to calculate S and C in this region via
Gaussian integrals. Instead, by substituting Eqs. �A14� and
�A16� in Eq. �7� and performing the integrals with a suitable
cutoff in the momentum space, the specific heat in the renor-
malized classical and quantum-critical regimes in h=0 reads,
respectively,

C

N
�

�d=2T2

Jg
exp� 2�J	gc

T�	g + 	gc�
�g, d = 2, �28�

where �g→0− and �d=2 is some finite integral with a
T-independent dominant term, and

C

N
�

�d=2
0 T2

Jgc
, d = 2, �29�

with �d=2
0 ��d=2��g=0�. In the quantum-critical region, C /T

�T−� provides �=−1, as T→0, g=gc. Indeed, the quantum-
critical behavior is derived through the scaling of the Helm-
holtz free energy,19 F���g�2−�fF�T / ��g���, at nonzero T as
�g→0+, with the use of the hyperscaling relation ��d+z�
=2−�, so that18,19,33 �=1−d /z.

Note from Eqs. �26�–�29� that the presence of quantum
fluctuations controlled by g actually fixes the well-known
drawback �diverging S and finite C as T→0� of classical
spherical models1,3,4 concerning the third law of thermody-
namics. Indeed, in the g=0 classical case all eigenmodes are
null in h=0 �see Eq. �7�� and anomalies arise. In this sense,
the low-T entropy and specific heat of quantum spherical
models have been also investigated in Refs. 23 and 29. In
spite of this, in the absence of canonically conjugated opera-
tors, the author in Ref. 23 has considered a model with
double spin field at each site and a couple of adjustable pa-
rameters so to get rid of the anomaly; in Ref. 29 the use of a
spherical constraint different from Eq. �2�, involving both SR�

and PR� , has led to a dynamical exponent z=2 and its conse-
quences to the critical behavior of observables �see, e.g., last
paragraph�.

Regarding the behavior of C near Tc�g�, we observe that
� is T independent in h=0 and T�Tc�g� �see Eq. �A32��.
Thus, the relevant term in C�T→Tc�g�+�−C�T→Tc�g�−� is
proportional to �� /�T evaluated as T→Tc�g�+, �→dJ.
From Eqs. �A33�–�A35�,

C�T → Tc�g�+� − C�T → Tc�g�−� � −
A�3e2J3

�Tc�g��3 �T, d = 3,

�30�

C�T → Tc�g�+� − C�T → Tc�g�−�

� −
4AJ

Tc�g�
��4eJ�/�8Tc�g��

ln���4eJ�/�8Tc�g���T�
, d = 4, �31�

and
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C�T → Tc
+�g�� − C�T → Tc�g�−� �

A

2�Tc�g��2R��dJ�
, d � 5,

�32�

with the proportionality constant A=�k��g
2 exp�
	k��� /
�exp�
	k��−1�2, T→Tc�g�+. As �T→0 a cusp in C can be
possibly found, so that, by writing C��T

−�, �T→0, we iden-
tify �=−1 in d=3; the log dependence on �T in d=4 also
results in a continuous maximum in C at Tc�g�, whereas �
=0 in d�5 indicates discontinuity at the transition. We note
that the classical spherical model in h=0 presents the same
critical behavior of Eqs. �30�–�32�; in particular, a cusp at Tc
also occurs in d=3, where1,3 C�T→Tc

+�−C�T→Tc
−�

=2NK2dzs /dK�−d� /dT→0, with K=J /8T in the S= ±1/2
case and zs=� /J.

V. DISCUSSION AND CONCLUSIONS

We have presented an alternative second-quantization
treatment to the quantum ferromagnetic spherical spin model
on d�2 hypercubic lattices, with focus on the effects of
quantum �g� and thermal �T� fluctuations, under a uniform
field h, on the correlation function, correlation length, en-
tropy, and specific heat, as well as on the energy gap in the
excitation spectrum. Here, explicit expressions for these
quantities have been provided in the variety of possible criti-
cal paths devised in the Appendix.

We have described the properties of the system near both
d�2 quantum �g=gc, T=0� and d�3 thermal �T=Tc�g��
phase transitions in h=0. In particular, the calculation of the
correlation function and correlation length generalizes the
result on the g=0 classical spherical model31 and leads to
exponents z=1 �dynamical� and �=0 in d�2, confirming
the mapping20,25,26 of the d-dimensional quantum onto the
�d+z�-thermal critical behaviors in d�dc, with the upper
critical dimension dc=3 �dc=4� in the quantum �thermal�
transition. It follows that the critical indexes obtained inde-
pendently were found to satisfy the scaling relations near the
quantum and thermal transitions, with �d=2−�, valid for the
thermal exponents, replaced by ��d+z�=2−� in the quantum
case.20 Above dc, as expected, the critical indexes are Gauss-
ian. Moreover, the relation ���2 has been also verified in
any regime considered.

At T=0 we have also noticed that below gc the ordered
system in h=0 is gapless, as well as at g=gc; however, a gap
in the excitation spectrum opens in the quantum-disordered
ground state, g�gc. As T→0, the gap is relevant regarding
quantum and thermal fluctuations in the quantum-disordered
and quantum-critical regimes. Conversely, as �T→0+, g�0,
a nonzero gap is present, although much smaller than the
thermal energy, but nullifies for T�Tc�g�0�. In this sense,
the gap present above Tc�g�0� is irrelevant to the universal-
ity class, since the gapless classical spherical model shares
the same exponents of the quantum model as �T→0+. In
spite of this, quantum fluctuations do suppress the critical
prefactors of observables near Tc�g�0�, as compared with
the g=0 ones.

At last, our calculation of the entropy and specific heat in

g�0 circumvents the drawback in classical spherical models
concerning the third law of thermodynamics, as T→0.
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APPENDIX: CHEMICAL POTENTIAL CALCULATION

The continuous limit of the spherical constraint, Eq. �9�, is
obtained by expanding coth�
	k� /2� and using the Euler-
Maclaurin formula �k�→N�i=1

d �−�
� dki / �2��, N�1:

T

2
R��� +

h2

4�� − dJ�2 =
1

4
, �A1�

with

R��� = �
0

�

dxe−�x� �
n=−�

�

qn2�I0�Jx��d, �A2�

where we identify the third Jacobi theta function36 3�q ,z�
=�n=−�

� qn2
e2niz, with z=0, q=exp�−2�2T2x /g�, and the

zeroth-order modified Bessel function of the first kind, I0�x�.
The convergence analysis of Eqs. �A1� and �A2� needs the
following asymptotic limits:36

I0�x� � 1 +
1

4
x2, x → 0; �A3�

3�q� � 3�q,z = 0� �	−
�

ln q
, q → 1−, x → 0;

�A4�

I0�x� �
ex

	2�x
, x → � ; �A5�

3�q� � 1 + 2q, q → 0, x → � . �A6�

We first consider the T=0 case. By substituting Eqs.
�A3�–�A6� into Eq. �A2�, no singularity appears in the x
→0 limit, but convergence as x→� and �=dJ exists only in
d�2. Since the choice �=dJ implies in a singular behavior
of F due to 	k�=0=0 �Eqs. �7� and �8��, it is possible to define
a critical quantum parameter gc at T=h=0 and �=dJ:

gc
−1/2 = 2�

0

�

dx
�e−JxI0�Jx��d

	2�x
, d � 2. �A7�

Similarly, the analysis at finite T shows convergence in
the x→�, �=dJ limit only if d�3, providing the critical
line �Tc�g� ,h=0�, with
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�Tc�g��−1 = 2�
0

�

dx3�e−2�2Tc
2x/g��e−JxI0�Jx��d, d � 3.

�A8�

Some of these critical values are shown in Table I. In par-
ticular, the value gc�T=0��0.6049J in d=2 compares quite
well with gc�T=0��0.6051J obtained by Chamati et al.26 for
the d=2 quantum spherical model, and Tc�g=0��0.9892J in
d=3 coincides with the value for the d=3 classical spherical
model.3 This analysis also shows that no long-range order
can be found for T�0 in d�2 and T�Tc�g� in d�3.

As T→0 in the vicinity of the quantum critical point, we
approach Eqs. �A1� and �A2� through a distinct strategy.
First, we apply the Jacobi identity �n=−�

� exp�−un2�
= �� /u�1/2�n=−�

� exp�−�2n2 /u� to Eq. �A2�; next, we intro-
duce I0�Jx�, in the limit given by Eq. �A5�, and the modified
Bessel function36 of the second kind and order �=1/2,

K��	4uv� =
1

2

u

v
��/2�

−�

� dx

x�+1e−vx−u/x

� 
 �

2	4uv
�1/2

e−	4uv, uv → � ; �A9�

after summing the whole series term by term in n, we obtain
in h=0, as T→0, �→dJ,


 T

2�J
�d/2�2�� − dJ�

g
�d−2�/4

�� + Lid/2����

=
1

4

1 −	 g

gc
�, d � 2, �A10�

where ��exp�−	2g��−dJ� /T� and Lis�z�=�m=1
� zm /ms is

the polylogarithm, or Jonquiére’s function.36 In d=2, consid-
ering Li1�z�=−ln�1−z� in Eq. �A10�, we find26

sinh�	g�� − dJ�/2
T

 �
1

2
exp� �J	gc

2T�	gc + 	g�
�g, d = 2,

�A11�

where �g=g /gc−1→0, T→0, �→dJ. In d�2 the low-T,
�g=0 quantum-critical behavior is studied through a suitable
scaling analysis �see Sec. III and below�.

In what follows we obtain solutions for ��g ,T ,h� in the
vicinity of the quantum �g=gc, T=h=0� and thermal �T
=Tc�g��0, h=0� phase transitions in d�2 and d�3, re-
spectively. We also calculate the magnetization M = �SR��

=h / �2��−dJ�� and zero-field susceptibility �= ��M /�h�h=0

in order to check with previously reported results.25,26

1. T=0 and T\0, g=gc, and g\gc, �\dJ

Just below gc at T=0, the integral TR��� /2 in Eq. �A1�,
with the use of Eq. �A4�, is dominated by its value at �
=dJ, so that we can write Eq. �A1� as

1

4
	 g

gc
+

h2

4�� − dJ�2 �
1

4
, �A12�

from which it follows, as �g→0−, that

� − dJ � 	2h�− �g�−1/2, d � 2. �A13�

The ground-state magnetization for g�gc in d�2 thus reads
M ��1−g /gc�1/2 / �2�1+ �g /gc�1/2�1/2�, where gc�gc�T=0�,
from which M ��−�g�
, �g→0−, with 
=1/2 in any d�2.
Moreover, Eq. �A13� implies in an infinite T=h=0 suscepti-
bility for g�gc.

On the other hand, in the regime T→0, �g→0−, h=0, Eq.
�A11� provides

� − dJ �
T2

2g
exp� �J	gc

T�	gc + 	g�
�g, d = 2, �A14�

and

� �
g

T2 exp�−
�J	gc

T�	gc + 	g�
�g, d = 2. �A15�

In such a case, precisely at g=gc we obtain, as T→0,

� − dJ �
T2

2gc
, d = 2, �A16�

and

� �
gc

T2 , d = 2. �A17�

Equations �A15� and �A17�, with T dependence typical of
the d=2 renormalized classical and quantum-critical re-
gimes,26,33 have been also found by Chamati et al.,26 with the
differences in the numerical factors only due to the S= ±1
spin variables used in that work. In d�2, by writing19 �
���g�−�f��T / ��g��� at nonzero T as �g→0+, where f� is the
corresponding scaling function, we find, from the exponents
identified in Eqs. �17�, �18�, �A27�, and �A28�, that the �
�T−2 quantum critical behavior also arises in d�2.

Just above gc at T=0, we follow the arguments by
Thompson4 to study the behavior of Rg���=TR��� /	g, using
Eq. �A4�, and its derivative Rg����=�Rg /��, as �→dJ. First,
we note that the same arguments above that guaranteed the
convergence of R��� at �=dJ in d�2 can be applied to
assure that Rg���� converges at �=dJ in d�3; the borderline
cases d=2 and d=3 should be considered carefully. In d
�3 we find, in h=0,

TABLE I. Numerical estimates for the critical parameters gc�T
=0� and Tc�g=0�, in h=0, as calculated from Eqs. �A7� and �A8�.

d gc�T=0� Tc�g=0�

2 0.6049J

3 1.2058J 0.9892J

4 1.7471J 1.6136J

5 2.2667J 2.1621J
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Rg��� − Rg�dJ� � Rg��dJ��� − dJ� , �A18�

which combined with the expression Rg���−Rg�dJ�
�−�g / �4	gc�, obtained from Eqs. �A1� and �A2� at T=h=0,
as �g→0+, �→dJ, leads to

� − dJ � −
1

4	gcRg��dJ�
�g, d � 4, �A19�

with Rg��dJ��0. In the cases d=2 and d=3 we first calculate
Rg���� from Eq. �A2� at T=h=0, so to obtain, with the aid of
Eq. �A4�,

Rg���� = − �
0

� dx
	2�

x1/2e−�x�I0�Jx��d. �A20�

From the expansions of I0�Jx� and the incomplete � function
we note that the integrand makes a nonsingular contribution
as x→0, �→dJ. On the other hand, the singular contribu-
tion as x→�, �→dJ can be evaluated by integrating by
parts the variable x over ���−dJ�−1 , � � and making use of
Eq. �A5�. The T=0, �g→0+ results read

� − dJ �
�3e2J2

2gc
�g

2, d = 2, �A21�

and

� − dJ � 3J
���2e�/3�	J/gc�g

ln����2e�/3�	J/gc�g�
, d = 3. �A22�

The T=0 equation of state as �g→0+ is obtained by ex-
pressing Rg���−Rg�dJ� as �→dJ from Eqs. �A1�, �A2�, and
�A4�, along with Eq. �A18� in d�4 and the singular contri-
bution of the integration by parts of Rg����=�Rg /��, Eq.
�A20�, in d=2 and d=3:

h �
64�3e2J2

gc
M�M2 + �g/8�2, d = 2, �A23�

h � 6J
��8�2e�/3�	J/gcM�M2 + �g/8�

ln���8�2e�/3�	J/gc�M2 + �g/8��
, d = 3,

�A24�

and

h � −
4

	gcRg��dJ�
M�M2 + �g/8�, d � 4. �A25�

Thus, the T=h=0 magnetization is null in the quantum-
disordered regime, g�gc. Precisely at g=gc, M �h1/�, h
→0, leads to �=5 in d=2 and �=3 in d�3, with the log
correction in d=3 related to the x−1 integrand of Eq. �A20� as
x→�, �→dJ. Now, from Eqs. �A19�, �A21�, and �A22�, we
find at T=0, �g→0+,

� �
gc

�3e2J2�g
−2, d = 2, �A26�

� �
1

6J

ln����2e�/3�	J/gc�g�

���2e�/3�	J/gc�g

, d = 3, �A27�

and

� � − 2	gcRg��dJ��g
−1, d � 4, �A28�

which are finite in the quantum-disordered phase. These re-
sults lead to ���g

−�, �g→0+, with �=1 in d�3. In d=2,
Eqs. �A23� and �A26� present the same form as obtained by
Chamati et al.26 near the quantum-critical point, but with
distinct amplitudes. However, by integrating Eq. �A20� over
�����−dJ��−1 , � �, we find that the amplitudes match for �
�14.43. This suggests that, similarly to the classical transi-
tion �see Sec. III�, by keeping only the x→� regime while
calculating R����, the correct critical behavior in the quan-
tum transition is achieved; the larger � value indicates that
the contribution of the intermediate x regime to the ampli-
tude of critical observables in the quantum phase transition
might be more important than in the classical one.

As T→0, g�gc, h=0, the analysis of Eq. �A11� leads to

� − dJ �
�2J2gc

2g�	g + 	gc�2
�g

2, d = 2, �A29�

and the correspondent quantum-disordered susceptibility,26,33

� �
g�	g + 	gc�2

�2J2gc
�g

−2, d = 2. �A30�

2. Finite T=Tc„g… and T\Tc„g…, �\dJ

As above, for T�Tc�g� the integral �A2� is dominated by
its value at �=dJ, so that

T

4Tc�g�
+

h2

4�� − dJ�2 �
1

4
, �A31�

giving rise to

� − dJ � h�− �T�−1/2, d � 3, �A32�

near the thermal transition, �T=T /Tc�g�−1→0−. In this re-
gime, M ��1−T /Tc�g��1/2 /2, d�3, which implies in M
��−�T�
, �T→0−, with 
=1/2 in any d�3. Furthermore,
Eq. �A32� leads to an infinite zero-field susceptibility for T
�Tc�g�.

For T�Tc�g�, similarly to case for g�gc, T=0, conver-
gence of R���� at �=dJ is assured in d�4. By using Eq.
�A18� with the expression R���−R�dJ��−�T / �2Tc�g��, ob-
tained from Eq. �A1� in h=0, as �T→0+, �→dJ, we find

� − dJ � −
1

2Tc�g�R��dJ�
�T, d � 5, �A33�

with R��dJ��0; also, the singular contribution of R���� as
x→� gives, in h=0, �T→0+,

� − dJ �
�3e2J3

2�Tc�g��2�T
2, d = 3, �A34�

and
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� − dJ � 4J
��J�4e�/�8Tc�g����T

ln„��Je�4e�/�8Tc�g����T…
, d = 4.

�A35�

To derive the equation of state as �T→0+, we express
R���−R�dJ� from Eq. �A1� and use Eq. �A18� in d�4 and
the singular contribution of R���� in d=3 and d=4:

h �
16�3e2J3

�Tc�g��2 M�M2 + �T/4�2, d = 3, �A36�

h � 8J
��128eJ�/��4Tc�g���M�M2 + �T/4�

ln„��128eJ�/��4Tc�g����M2 + �T/4�…
, d = 4,

�A37�

and

h � −
4

Tc�g�R��dJ�
M�M2 + �T/4�, d � 5, �A38�

so that the h=0 magnetization is null above Tc�g�. At T
=Tc�g� we define M �h1/�, h→0, with �=5 in d=3 and �
=3 in d�4.

The zero-field susceptibility is calculated from Eqs.
�A33�–�A35�:

� �
�Tc�g��2

�3e2J3 �T
−2, d = 3, �A39�

� �
1

8J

ln����4eJ�/�8Tc�g����T�
���4eJ�/�8Tc�g����T

, d = 4, �A40�

and

� � −
Tc�g�

R��dJ�
�T

−1, d � 5, �A41�

implying in ���T
−�, �T→0+, with �=2 in d=3 and �=1 in

d�4. The explicit presence of Tc�g� in Eqs. �A36�–�A41�
indicates that, under the influence of quantum fluctuations,
g�0, the critical prefactors are suppressed, as compared
with the g=0 ones. However, the thermal-critical behaviors
of the d-dimensional quantum and d-dimensional classical3

spherical models do belong to the same universality class,
since in this case quantum fluctuations should play only a
secondary role.

At last, it is worth noticing from the results of Sec. III and
this Appendix that the relation ���2 holds in all regimes
considered, thus extending to the quantum spherical case a
general relation previously known in the context of g=0
classical spherical models.31
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