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A concept of the pseudogap state in high-Tc layered cuprates on the basis of percolation theory is proposed.
Contrary to the self-consistent BCS critical temperature, which defines T*, the upper boundary of the
pseudogap state, the real critical temperature Tc is defined as the percolation threshold, where the infinite
cluster appears. This permits the exact formula for Tc to be obtained as a function of doping and its “domelike”
shape to be understood.
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The physics of the so-called “pseudogap state” remains
the last big problem of the theory of high-Tc layered cu-
prates. The main difficulty is its inhomogeneity, which does
not permit the application of regular theoretical approaches.
This inhomogeneity is well established experimentally, and
recently it proved to be independent of temperature.1 This
strengthens the concept that the pseudogap state is an irregu-
lar “patchwork” of finite superconducting and normal re-
gions, and the phase of the order parameter differs in differ-
ent superconducting “patches” �see Refs. 2 and 3�. The
independence of the density of states on temperature shows
that the origin of the “patchwork” is inhomogeneous doping.

Let us for definiteness consider Bi2Sr2CaCu2O8+�. The
doping is associated with increasing the oxygen concentra-
tion in the BiO layers located between the CuO2 planes. In
the previous works �see Ref. 4� we stressed the role of these
oxygen atoms not only for introducing holes in the CuO2
planes, but also for connecting the planes due to resonant
tunneling of holes.

The subsequent consideration will be based on the ideas
of percolation theory �see Ref. 5�. The simplest presentation
of that theory is the idea of clusters. In the problem under
consideration it is natural to assume that the “elementary
cluster” consists of two superconducting regions in two ad-
jacent CuO2 planes around one oxygen atom in the BiO
plane �we consider the complex of two close CuO2 planes as
one plane�. We will assume that the relevant oxygen atoms
are located randomly. This assumption can be violated by
ordering of these atoms, which can happen in the “chains” of
YBa2Cu3O7−� �see Ref. 6�. If our assumption is true, the
applicable version is the “random site” problem �Ref. 5, Sec.
18�. The increasing doping leads to the merger of elementary
clusters and formation of larger clusters, and eventually the
infinite cluster appears, which has a coherent phase of the
order parameter. The corresponding temperature is the real
Tc, and thus we get the phase diagram. This will be the topic
of the present paper. For this problem the phase fluctuations
in finite clusters are of no importance �their influence on
physical properties of the pseudogap state, including the
“Fermi arcs”, was analyzed in Ref. 3�.

In the previous work,2 we defined the phase diagram by
an interpolation between a “coherent state” and T*. The per-
colation approach permits an exact formula to be obtained.

The appearance of an infinite cluster is described by a
formula 5

�NV�c = B , �1�

where V is the volume of an “elementary cluster,” N its den-
sity, equal to the density of oxygen atoms in the BiO planes,
and B some dimensionless constant of order of unity. Al-
though B can in principle depend on the shape of the elemen-
tary cluster, it actually varies very little for different shapes
and depends only on the dimensionality �see Ref. 5�. For a
three-dimensional �3D� case it is around 2.8. According to
the preceding arguments, we can write

V = q�2d , �2�

where � is the planar coherence length, d the interplane dis-
tance, and q�1.

As it was described earlier �see Ref. 7�, the most impor-
tant regions in momentum space are the vicinities of the
extended saddle point singularities at the Fermi surface.
There the motion of holes is virtually one-dimensional and
therefore, the following formula for �, derived by Rice for
that case,8 may be applied:

� =
��0�2

mT
=

2v
�

T* − T

T*T
. �3�

In the work8 the Ginzburg–Landau free energy was used. We
inserted the coefficients from our work9 about the extended
saddle point model and used the idea �see Ref. 2� that the
self-consistent BCS theory, as well as its limiting case, the
GL theory, define not the real superconducting transition but
the crossover temperature T* from the pseudogap state to the
normal state. Strictly speaking, Eq. �3� applies only in the
vicinity of T*. However, it gives the correct order of magni-
tude also at low temperatures, since at the boundary, T�T*,
it must be correct by order of magnitude and at T�T* ��0�2
does not depend on temperature.

From Eqs. �1�–�3� we can get the real critical temperature
�v is the Fermi velocity�,

1
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−

1
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�
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, �4�

The limiting cases are

Tc = �1v�Nd, Tc � T* �5�
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T* − Tc � �2
T*2

v�Nd�1/2 , T* − Tc � T*, �6�

where �1 and �2 are constants of the order of 1.
From Eq. �5� it follows that at low doping Tc decreases

with decreasing doping. The Fermi velocity is equal to v
=�2� /m, where � is the chemical potential calculated from
the bottom of the band in the vicinity of the extended saddle
point singularity. According to Ref. 10, � is proportional to
the density of holes and the latter is proportional to N.
Hence, at small N Tc decreases proportionally to N.

In the opposite limit Tc approaches T*. This is due not
only to N1/2 in the denominator of Eq. �6� but mostly to the
rapid decrease of T* due to disorder �see Ref. 2�. According
to Ref. 11,

ln�T0
*

T*� = ��1

2
+

1

�T*	
� − ��1

2
� , �7�

where � is the di-gamma function, T0
* the value of T* for a

clean sample, and 	 is the scattering time. The limiting val-
ues of T* are

T* �	 T0
*
1 − �/�2T0

*	�� , ��T0
*	�−1 � 1

�2�6/��
	c
−1�	c

−1 − 	−1��1/2, �	c
−1 − 	−1� � 	c

−1 ,

�8�

where the critical value of the scattering probability is

	c
−1 = ��/4
�T0

*, �9�

�
=1.78�. The approach of Tc to T* happens much faster
than the decrease of T* and therefore may give the impres-
sion that these curves merge before T*=0, the more so, that
T* is not precisely defined.
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