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We previously introduced �T. Cren et al., Europhys. Lett. 52, 203 �2000�� an energy-dependant gap function,
��E�, that fits the unusual shape of the quasiparticle �QP� spectrum for both BiSrCaCuO and YBaCuO. A
simple anti-resonance in ��E� accounts for the pronounced QP peaks in the density of states, at an energy �p,
and the dip feature at a higher energy, Edip. Here we go a step further, our gap function is consistent with the
�T , p� phase diagram, where p is the carrier density. For large QP energies �E��p�, the total spectral gap is
��E���p+��, where �� is tied to the condensation energy. From the available data, a simple p dependance
of �p and �� is found, in particular, ���p��2.3kBTc�p�. These two distinct energy scales of the superconduct-
ing state are interpreted by comparing to the normal and pseudogap states. The various forms of the QP density
of states, as well as the spectral function A�k ,E�, are discussed.
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INTRODUCTION

A striking feature of the conventional superconducting
�SC� state is the small number of parameters needed for its
description. With the knowledge of the BCS quasiparticle
spectrum, Ek=��k

2+�k�T�2, revealing a gap �k�T� at the
Fermi level ��k=0�, the Hamiltonian is basically known and
the magnetic, thermodynamic, and transport properties can
be derived.1 The gap �k�T�, which vanishes at Tc, is related
to the pairing interaction Vk,k� via the BCS self-consistency
relation, giving the ratio 2��0� /kBTc=3.52, in the weak-
coupling isotropic case. It is thus a scalar order parameter of
the transition, a fact that has been verified to a high
precision.2–4

In the case of high-Tc, the probing of the QP spectrum has
not led to a solution. Still, a wealth of information on the
magnetic field, temperature, and doping dependence of the
SC state has been obtained.5,6 The QP spectral function, as
probed using photoemission �ARPES� or the density of states
�DOS� as obtained by scanning tunneling spectroscopy
�STS�, reveal additional singularities that are at odds with a
simple BCS d-wave spectrum.7–13 In the DOS �Fig. 1, curve
1�, the QP peaks �P� are very pronounced and are followed
by a dip feature �D� at higher energy �at E=Edip�. Although
the origin is still debated, there is some strong-coupling ef-
fect on the quasiparticles: a self-energy is implied.14–18 A
mean-field approach is insufficient in the context of corre-
lated electrons,19,20 coupled spin-charge degrees of
freedom,21–23 phase fluctuations,24–26 or a competing
order.27–30 Thus, the SC state can no longer depend on one
parameter.

The main question addressed in this work is can the QP
spectrum still be described in simple terms �e.g., in an ex-
tended BCS way� and if so, how does it reflect the order
parameter. To answer, the details of the quasiparticle DOS
must be understood. As we showed in Ref. 11 the particular
shape of the measured spectrum, illustrated by curve 1 in

Fig. 1, cannot be obtained from a BCS mean-field gap, giv-
ing curve 3. However, our resonant gap function ��E�, de-
scribed further in Sec. I, nicely fits the variety of spectra
published since.12,13,31–40 Despite a number of analyses of the
QP spectra, taking into account the coupling to a collective
mode,17,22,31,32,41–44 the effect of van Hove singularities or
the particle-hole asymmetry,33,45–47 the effects of disorder or
phase fluctuations,18,21 the spectrum 1 is difficult to derive.

The physical parameters of a self-energy, or equivalent
gap function, have yet to be connected to the phase diagram.
Important leads on the spectral function �or DOS�, as a func-
tion of doping and temperature, have been obtained using
ARPES and tunneling. First, a well-defined QP peak at the
position �p �our notation� develops in the SC state and is of
d-wave symmetry:48–52 �k��p �cos kx−cos ky�, yielding the
characteristic V shape in curves 1–3. However, the ratio
2�p /kBTc widely departs from the BCS value; �p decreases
roughly linearly with p, with a large negative slope, from
underdoped to overdoped sides of the phase diagram.6,9,49 As

FIG. 1. �Color online� Curve 1: Quasiparticle DOS as observed
by tunneling showing pronounced peaks at E= ±�p followed by
dips. Curve 2: Pseudogap-type spectrum observed in the vortex
core, or for T�Tc. Curve 3: Extended BCS �d wave� DOS, but with
a larger gap. All three are generated by our gap function, Eq. �10�.
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is well established, Tc�p� is dome shaped with a maximum at
p0� .16, where Tc�95 K, for Bi2Sr2CaCu2O8+� �BSCCO�.
Thus, the position of the QP peak �at E=�p� is not the energy
scale of the global SC order parameter.

The QP spectrum has been probed as a function of rising
temperature.9,49–54 Above Tc, instead of revealing the normal
state with a metallic DOS, the spectrum displays a pro-
nounced but peakless gap of width 2�PG at the Fermi level.
This pseudogap �see curve 2� disappears at the higher tem-
perature T* and has possibly the same angular dependence as
�k, of the SC state. Moreover, �p and �PG have approxi-
mately the same magnitude.49,53,54 One finds that �p
�3kBT*; thus T*�p� follows the identical trend as �p in the
phase diagram. The challenge is to understand three contigu-
ous phases �superconducting, pseudogap, and normal�. How-
ever, the T*�p� curve on the overdoped side, where the data
are rare, is the subject of hot debate,6,20,26,30 in particular,
whether or not it crosses the Tc�p� dome. The T* inferred
from NMR Knight shift, resistivity and specific-heat mea-
surements may correspond to still a higher temperature, such
as the onset of antiferromagnetic fluctuations, distinct from
the vanishing of �PG as observed by ARPES.55

The origin of the pseudogap �PG� is a key question about
high-Tc and still highly controversial. Theories fall into two
qualitative categories: �PG is either a precursor to, or com-
petes with, the SC state.56 The first24,26,56 is immediately
compelling due to the phase diagram: below T* incoherent
pairs are formed �thus the pseudogap� and condense at Tc. It
also follows many aspects of the SC state �low carrier den-
sity, strong coupling energy, small coherence length, sensi-
tivity to disorder, etc.� and is theoretically tractable.24,56–58 In
the second category, the competing order �charge- or spin-
density wave, Varma currents, RVB, etc.19,27–29� sends T*

down, possibly across the Tc dome, to a quantum critical
point above which a new phase is formed. Deciding between
these two categories would be a significant advance.

Conductance mapping using STS has provided valuable
information. The “normal” state found within the vortex
core12,59 reveals a pseudogap analogous to the one found just
above Tc.

54 The local vanishing of the SC order parameter in
a vortex core is due to the phase singularity; but contrary to
the conventional case, the pseudogap persists. We found a
quasi-identical pseudogap, in zero magnetic field, caused by
weak disorder.60 In both cases, �p and �PG have about the
same magnitude.12,39,59–61 Thus, an important constraint on
the SC gap function is its smooth transition to the peakless
pseudogap when phase coherence is lost: curve 1→ curve 2
�Fig. 1�.

Nozières and Pistolesi62 have described a superconducting
state when a precursor gap, such as �PG, is initially present.
However, their model implies that the SC gap must be larger
than the precursor gap. Thus, given curve 2 for the
pseudogap, curve 3 is expected in the superconducting state,
not curve 1. Moreover, the high spectral weight of the QP
peaks �curve 1� leads to an apparent paradox: electronic
states seem to move toward the Fermi level in the transition
to the SC state.63 Any complex self-energy or gap function
must give the correct energy change for the pseudogap to SC
transition.

The situation becomes complex in the case of strong dis-
order: local STS mapping has revealed pseudogap and SC

gap variations at the surface of BSCCO.34,35,40,61 Clearly, in
this case, there are changes of both SC amplitude and
phase.21,57,64–66 In Pb-substituted BSCCO the disorder causes
“superconducting” islands to form,61 where the intensity of
the spectral fine structure correlates with the degree of long-
range order. Recent theoretical work by Atkinson21 and ex-
perimental STS by Fang et al.40 corroborate this conclusion.
Even if the inhomogeneity is not an intrinsic property,6,37,67

the cuprate SC state is sensitive to local perturbations,64–66

and the attenuation of the spectral fine structure is a clear
sign. Then, several parameters are needed for the interpreta-
tion of the tunneling DOS.

In this paper, we analyze the QP spectrum, Ek, as inferred
from the sharpest tunneling DOS of BSCCO. The detailed
DOS shape �pronounced QP peaks, followed by dips at
higher energy� is due to a single resonance in our energy-
dependant gap function �Sec. I�. Such a resonance in the QP
spectrum is possibly the coupling to a collective
mode15,17,31,32,41–43 of the same origin as the resonance seen
using inelastic neutron scattering68 and that scales with Tc:
��5.3kBTc. Zasadzinsky et al. studied the dip position as a
function of doping using strong-coupling theory,13 and sug-
gested that the dip energy is also related to Tc. Since the
origin of the resonant gap function �or QP self-energy� is still
debated, our aim is to show how the basic parameters depend
on the carrier density p. In Sec. II, we find that one of the
energy terms, ��, is compatible with an order parameter; it is
proportional to kBTc�p�. The predicted shape of the QP den-
sity of states is then studied as a function of p. We treat the
transition to the PG state �Sec. II�, and the role of the two
distinct energy scales �Sec. III�. Finally, the QP spectral func-
tion and self-energy are discussed �Sec. IV�.

I. SUPERCONDUCTING GAP FUNCTION

Here the quasiparticle DOS, having the essential charac-
teristics of the observed STS conductance spectra, is derived.
In Fig. 2, we show such a spectrum obtained on BSCCO,
near optimally doped, from our group �Fig. 2�a��, which is
compared to �Fig. 2�b��, a spectrum from Pan et al.12 One
can again see the pronounced QP peaks, the steep slope on
the outer side of each peak, followed by the dip feature pre-
viously described. In this section, we focus on these main
aspects of the DOS; the questions of the background slope
�as in Fig. 2�b��, the Fermi surface anisotropy, the particle-
hole asymmetry, and the van Hove singularity have already
been given extensive treatment.33,46,47,69,70 The detailed fits
of Fig. 2 �solid lines� give the key parameters of our SC gap
function, without such considerations.

A. Expression for the QP-DOS

Consider the spectral function, as measured by
ARPES,7,8,49–53,63 in the two-dimensional model with k�
= �k ,	� the wave vector in the ab plane

A�k,E� =
1



Im G�k,E� , �1�

where G�k ,E� is the single-particle Green’s function. The
superconducting DOS is then17,71

SACKS et al. PHYSICAL REVIEW B 74, 174517 �2006�

174517-2



Ns�E� = 	
k

A�k,E� ,

which is measured in the tunneling experiment. Converting
sums to integrals in the usual way,

Ns�E� =
Nn�0�

2




0

2


d	

−�

�

d�k A�k,E� , �2�

where �k and Nn�0� are the normal excitation spectrum and
Fermi-level DOS, respectively. This expression ignores the
effect of the Fermi surface anisotropy.46,69 In the case of an
ideal quasiparticle with zero lifetime broadening, and disper-
sion Ek=��k

2+�k
2, the propagator is3,71

G�k,E� =
uk

2

E − Ek + i0− +
vk

2

E + Ek + i0−

with uk, vk the usual coherence factors. Then, A�k ,E� is just
A�k ,E�=uk

2��E−Ek�+vk
2��E+Ek�, where each term corre-

sponds to a quasiparticle added �E�0� or removed �E0�,
respectively.

For example, with fixed E�0, the integral in �2� picks up
two poles at ±�k of amplitude uk

2�−�k� and uk
2�+�k�. As is well

known,3,71 the coherence factors disappear in the symmetric
case, since uk

2�−�k�+uk
2�+�k�=1. We shall henceforth ignore

them and consider for both tunneling and ARPES that the
values ±�k are equivalent. Using Eq. �2�, the expected result
is obtained

Ns�E� = Nn�0�
1

2




0

2


d	� ��k

�Ek
�

Ek=E
. �3�

It is then convenient to define the partial �one-dimensional�
DOS at the angle 	

Ns�E� = 

0

2


ns�E,	�d	 , �4�

and, in the extended BCS d-wave model,69,72 the partial DOS
is

ns�E,	� =
Nn�0�

2


E

�E2 − �p
2 cos2�2	�

. �5�

Expressions �4� and �5� can be used to generate the curve 3
in Fig. 1, which, as we have stressed, fails to match the
strong spectral weight of the QP peaks and the dip features,
obvious in the experiments �Fig. 2�.

In the general case, beyond the mean-field approach, one
must evaluate

ns�E,	� =
Nn�0�

2


 d�k A�k,E� �6�

assuming a suitable model for A�k ,E�.14,17,18,22,32,42 Our ap-
proach is to consider that strong coupling modifies the
electron-electron interaction, but without the retarding effects
that would occur in the case of phonon-mediated pairing.11

Thus, we write �k→�k�Ek�, and the new dispersion law is

Ek = ��k
2 + �k�Ek�2 + i� , �7�

where we add �, the lifetime broadening introduced by
Dynes.73 Assuming particle-hole symmetry, we use

A�k,E� =
1



Im

1

E − Ek + i0− . �8�

Performing the complex integration in �6�, we obtain for the
partial DOS

ns�E,	� =
Nn�0�

2

Re

E − i� − �k�E�
��k�E�

�E
��E − i��2 − �k�E�2

�9�

Here �k, evaluated at the pole �Ek=E�, is a function of 	.
For a constant gap �k=�p, we get back Dynes’s formula for
the BCS DOS with the lifetime broadening. In the general
case, �9� is the basic equation for the quasiparticle DOS in
our approach, once integrated over 	. It contains a new term
in the numerator, −�k��k /�E, which is responsible, as al-
ready shown in Ref. 11, for the distinct modification of the
DOS seen in Fig. 2. It can be used to match the tunneling
data of Refs. 9–13, 34–40, 60, 61, 69, and 70.

FIG. 2. �Color online� Dotted lines: local STS conductance
spectra. Solid lines: fits using the model �9� and �10�. �a� Symme-
trized spectrum from Ref. 11, with background removed. Here,
�p=31.5 and Edip=64 are fixed; the two free parameters are ��

=18.5 and E0=50, all in millielectron volts. Also, E0=�0, �=��,
and A=2, as seen in Fig. 3. The broadening values are �=0.08�p

and �=0.1. �b� Spectrum from Pan et al. �Ref. 12�. The gap function
�10� is used, but the parameters �p�p� and ���p� are from the
p-dependent fit to the data �Fig. 4�a��. The best fit is for p=.175,
with the background slope added. All parameters are nearly identi-
cal with �a� except E0=1.06�0 and �=.03�p.
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B. Superconducting gap function

We now consider the particular gap function appropriate
for fitting the data �solid lines in Fig. 2�. For the supercon-
ducting state, we have made a slight change in notation with
respect to Ref. 11. Assuming �k�E�=cos�2	���E�, the gap
function along the antinodal direction is now written

��E� = �p + �� �1 − g�E�� , �10�

where �p and �� are constant parameters and g�E� is a
simple Lorentzian

g�E� = A
�2

�E − E0�2 + �2 , �11�

having the standard parameters. Thus, the second term in
�10� is an antiresonance �a local decrease in the pair poten-
tial�. It provokes an additional peak, and dip, in the DOS
near the two possible extrema of dg�E� /dE �indicated by
dots in upper panel, Fig. 3�. Note that the asymptote of the
gap function for E��p is ��E���p+���0.

Consider the problem of fitting the DOS in some system-
atic way: there are a priori five parameters �the role of � will
be discussed subsequently�. We commence with the data of

Fig. 2�a�, where the spectrum is symmetrized and the back-
ground removed. From our previous work,11 the resonance
energy must lie between the QP peaks and the dip position;
an estimate is E0���p+Edip� /2. This condition ensures that
the QP peaks are reinforced, where the extremum of −d� /dE
is positive, and gives the dip at a higher energy, where
−d� /dE is a negative extremum �see Fig. 3�.

Since �p is defined as the QP peak position, easily esti-
mated from the data, we have the further condition that:
���p�=�p, also illustrated in Fig. 3. Using �10� and �11�, this
gives g��p�=1, or:

A = 1 +
�E0 − �p�2

�2 �12�

as a constraint on the parameters. A second constraint is
found by writing the dip position, Edip, using the analytical
expression of the DOS. Considering the extremum of
�d� /dE leads to the good approximation: Edip�E0+ .73�.
Therefore, taking Edip and �p to be known, the fit to the
spectrum of Fig. 2�a� can be done by the variation of only
two free parameters: E0 and ��. Their final values determine
the precise concavity in the DOS, between the QP peak en-
ergy and Edip, which is a priori unknown.

For the fit of spectrum 2a, using �p=31.5 and Edip=64,
we obtain the values E0=50, and ��=18.5, all in millielec-
tron volts. The problem is thus simplified by the following
outcome: E0=�p+��=�0, with �=�� and A=2. This result
remains valid to describe the DOS for a wide range of carrier
density, as in Sec. II.

The corresponding function ��E� is depicted in the upper
panel of Fig. 3, with the partial DOS along 	=0 for direct
comparison �lower panel�. One can see that ��E� has a mini-
mum at E0=�0, where its value is �p−��, then it increases
toward the asymptotic value �p+��, when E�Edip. Note
that the total amplitude of the resonance, 2��, is identical to
its width. In short, we obtain

�0 − �p = E0 − �p = � = ��

and propose that these relations should scale when the carrier
density p varies �Sec. II�. The dip position, near to �p
+2��, is more precisely

Edip � �0 + 0.73�� � �p + 1.73��

so that the peak-dip separation is Edip−�p���. The latter
parameter thus plays a fundamental role in our model.

C. Broadening parameters

Two broadening parameters in the final fits of Fig. 2 are
used. First, the i� introduced by Dynes to treat a finite qua-
siparticle lifetime artificially displaces the pole in the spec-
tral function �8� off the real axis. It is equivalent to a Lorent-
zian broadening of the DOS, of full width �2�, affecting the
states at all energies. Consequently, in the lower panel of Fig.
3, virtual states lie within the gap of the partial DOS �for
E�p�. As we discuss in a recent paper,74 several factors
can contribute to � both intrinsic �inelastic scattering, many-
body effects, etc.� and extrinsic �high-frequency noise, etc.�

FIG. 3. �Color online� Characteristics of the SC gap function
and their link to the DOS along the antinodal direction �	=0�. Up-
per panel: Real part of ��E� from the fit of spectrum Fig. 2�a�. Note
the antiresonant shape, with the minimum at the energy E0=�0,
while both amplitude and width are 2��. The intersection point,
along ��E�=E, gives the QP peak at �p. For large energies, the
pairing interaction, is ��E���0=�p+��. Lower panel: Partial
DOS showing a sharp QP peak �P�, followed by the dip �D� at the
higher energy Edip. The derivative of the gap function, as in Eq. �9�,
reinforces the quasiparticle peak �negative extremum� and causes
the dip feature �positive extremum�.
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In Fig. 2, the � value was adjusted to fit the zero-bias con-
ductance.

The QP peaks, as calculated using �10�, are initially
higher than those of Fig. 2. Since � is fixed, a second broad-
ening parameter is introduced: we replace �p by a complex
number with a small imaginary part, �p→�p�1− i��. This
has a major effect on the QP peaks, but a small one on the
remaining spectrum. Intuitively, the imaginary part repre-
sents a smearing of the value of �p, such as in the case of
gap anisotropy74 or Doppler shifts due to supercurrents.75

Although this ansatz is used to model the pseudogap in Sec.
II, it has a negligible influence on the fit parameters deduced
here.

II. CONNECTION TO THE PHASE DIAGRAM

The fit to the BSCCO spectrum �Fig. 2�a�� leads to the
simple result that the width, amplitude, and position of the
antiresonance are all simply related to the quantity ��; as-
suming �p to be known. The QP spectrum therefore depends
on only two energy scales. This section is devoted to their
possible link to the phase diagram; we infer how the param-
eters of the SC gap function change with the carrier density.

A. Doping dependance of the energies

The foregoing also suggests that �� must have a new
meaning. Consider the asymptotic value of ��E� for large E:
��E���p+��=�0 for E�Edip �Fig. 3�. ��E� is then con-
stant up to some higher cutoff energy, as in BCS theory.
Along the antinodal direction: Ek� ���k

2+�0
2, and �0 is thus

interpreted as the total spectral gap in the SC state, while the
QP peak remains at the smaller energy �p. The pseudogap in
the vortex core,12,39,59 where phase coherence is lost, takes
on a value �PG��p and, aside from the thermal broadening,
the same holds for the pseudogap just above Tc.

49,53,54

We now suggest that �� is tied to the condensation en-
ergy. The energy �per pair� of the SC state is then �−��,
with respect to the PG state, but it is �−�0 with respect to
the normal state. As will be discussed in Sec. III, the inte-
gration over energy states, involving the full �k�Ek�, is nec-
essary to obtain the precise energy changes.

We can thus set ��=C kBTc, where C is to be determined.
From the fit of Fig. 2�a�, using Tc�90 K and ��

=18.5 meV, gives C�2.4.
With this result, one could use scaling arguments to infer

the behavior of the parameters as a function of p. However,
in view of the dispersion of the tunneling and ARPES data,
using a single spectrum and one value of Tc is restrictive. We
take a different approach by first plotting in Fig. 4�a� a larger
set of data of the QP peak position �p. Assuming that the
critical temperature Tc�p� is known,6 one can deduce the lin-
ear behavior of �p�p� by a quadratic fit.9 The data are from
the SIS �SC-vacuum-SC� break junction,9,13,31,32 which
probes the electronic structure deep in the sample; SIN tun-
neling data, as well as ARPES data, are included.8,49,53 The
dip position �Edip�, as seen in many different tunneling
experiments,9–13,32,36,37,69 is also plotted in Fig. 4�a�. The
points evidently follow a continuous curve throughout the

phase diagram. We propose to find this curve via a best qua-
dratic fit using the gap function, which fixes all the param-
eters.

The two energy terms are thus �p�p� and ���p�
=CkBTc�p�, where the best value of C is to be determined. In
order to calculate Edip, we could use the previous condition
E0=�0, which led to Edip��p+1.73��. However, the spec-
trum Fig. 2�b� from Pan et al., cannot be precisely fit with
the resonance energy exactly at �0. This is the essential dif-
ference between the two spectra �Figs. 2�a� and 2�b��; the
latter dip position is slightly at a higher energy.

From our study of YBaCuO in Ref. 11, we noted the
resonance energy can be larger than �0. We thus write E0
=��0, in the general case, and determine the value of � at
the same time as C. All other parameters retain their previous
meaning. The expression for the dip energy is then

FIG. 4. �Color online� Doping dependence of the two basic pa-
rameters of the gap function, �p�p� and ���p�, their sum, �0�p�,
and the dip position Edip. �a� �p�p� line: Linear fit to the QP peak
positions taken from ARPES data,8,49,53 SIS/SIN tunneling,9,13,31,32

and STM.10–12,36,37,69 Edip line: Best quadratic fit to the dip position,
as estimated from STM data10–12,36,37,69 and SIS tunneling.9,13,32

The solution of the fit gives ���p�=2.3kBTc�p� and E0=1.06�0�p�.
�b� Analogous diagram to �a� but with parameters normalized to the
gap energy �p; simple linear laws are obtained, Eqs. �14�–�16�. The
principal energy scale of the SC state, and determining the DOS
fine structure, is ���p�. No evidence for a critical point is seen for
0.05 p0.25.
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Edip = ��0 + 0.73���0 − �p� �13�

having used A=2 and �=E0−�p. Setting �p�p� and ���p�
=CkBTc�p� in �13� and fitting the data of Fig. 4�a� yields:
C=2.3, �=1.06, and the continuous curve Edip�p�. The two
values differ by �5% from the single-point estimate and,
considering the uncertainty in the data, the earlier observa-
tion in Ref. 11 that E0��0 is maintained. More significantly,
we find that ���p�=2.3kBTc�p� is consistent throughout the
phase diagram, from underdoped to overdoped sides.

In Fig. 4�a�, the total spectral gap �0�p� and the amplitude
���p� are plotted as a function of p. One observes that ���p�
merges smoothly with �p�p� on the overdoped side. Conse-
quently, �0�p� is a smooth convex function of p ranging
from �p to 2�p. Extrapolating Edip�p�, it varies from ��p to
�3�p in the same range of p. At optimal doping, p= p0, the
values are ����p /2 and �0�3�p /2. The dip position is at
Edip�2�p, in agreement with Ref. 13.

Simple trends are found by plotting the parameters as ra-
tios with respect to �p �Fig. 4�b��. We see that �� /�p,
�0 /�p, and Edip /�p are increasing linearly as a function of p.
Moreover, if we write p as the excess carrier density from the
minimum value of 0.05, i.e., the doping at the SC onset, we
obtain

��

�p
�

p

2p0
�14�

�0

�p
� 1 +

p

2p0
�15�

Edip

�p
� 1.1 +

0.9p

p0
, �16�

where p0�0.11 is the optimal doping. �All relations involv-
ing p will follow this convention�. The first two are obtained
from the Taylor expansion of �� /�p while the third is from
Eq. �13�, using the value �=1.06. Thus Edip /�p shows nearly
twice the slope as �� /�p, and varies from about �1 to �3 in
the complete doping range.

Such a straightforward relationship between the param-
eters was not expected. If �� is indeed the “condensation
amplitude,” it continuously increases relative to the precur-
sor gap, �p, throughout the phase diagram. Since the latter
decreases linearly with doping, the order parameter is para-
bolic shaped

�� =
p�p�p�

2p0
� 2.3 kBTc�p� . �17�

With the previous hypotheses, Eq. �17� expresses a useful
precise relation between the QP peak positions and the order
parameter of the SC transition.

To conclude the discussion on the results from the fits, it
is remarkable that the gap function, ��E�, as displayed in
Fig. 3, scales perfectly as a function of p through the varia-
tion of its amplitude, ��, and the resonance energy, ��0. As
with Refs. 9 and 13, we find no abrupt change in the QP
spectrum, nor in its underlying parameters, while spanning

the carrier concentration. We conclude that a critical point, if
there is one, is situated at the right end of the Tc dome.

B. Shape of the quasiparticle DOS

The gap function ��E� is now uniquely determined for the
range of carrier concentration of interest �0.1 p0.24�. It
is then possible to fit the QP DOS with essentially one free
parameter �p�, aside from the broadening and the background
slope. The spectrum of Fig. 2�b�, from Pan et al., was fitted
by adjusting the value of p, the final value being p=0.175.
This could be an approximate value of the carrier concentra-
tion, as measured by STS at the surface of the sample, but
the background slope adds some uncertainty. Our objective
was mainly to reduce, as far as possible, the number of free
parameters.

The variation of the QP DOS as a function of p is shown
as a surface plot in Fig. 5. As p increases, from underdoped
to overdoped sides, the DOS evolves significantly and its
particular shape depends on the position of the resonance �at
�0�p�� compared to �p�p�, or equivalently on ���p�. The QP
peak position follows a linear law, as expected from Eq. �14�,
whereas the dip follows the curve given by

Edip � 1.1�p�p� + 1.8���p� ,

as previously expressed in �16�. The trends shown in Fig. 5
are thus a direct consequence of the gap function �10� whose
parameters are matched to the phase diagram, Fig. 4.

A continuous evolution of the QP peak shape, in particular
their outer shoulders, is observed in Fig. 5. At first glance,
this is a consequence of the peak to dip distance �2���p�.
However, the precise shape is due to the derivative term,
−��E�d� /dE, in the numerator of Eq. �9� for the DOS. On
the extreme underdoped side, where �p����p�, the shoul-
der of the QP peaks has a steep slope, but with a slight
negative concavity between peak and dip. On the overdoped
side, �p����p�, there is a distinctive positive concavity be-
tween them. In addition, the extreme overdoped case reveals

FIG. 5. �Color online� Plot of the quasiparticle DOS evolution
as a function of p, the carrier density. The values of the parameters
used in the gap function are fixed from Fig. 4�a�: the QP peaks ��p�
follow a linear trend, while the dip position, Edip, lies along the
curve given by �16�. The difference between the dip and the peak
positions is �2���p�. Note the detailed DOS shape, varying sig-
nificantly from underdoped to overdoped sides.
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a different singularity, near �0 �a small kink�. The kink is due
to an extremum of d��E�2 /dE, but this prediction remains to
be verified experimentally.

The question as to whether we obtain “BCS behavior” on
the overdoped side can be addressed. In one sense we do:
this limit gives �p�p�����p��2.3kBTc and a single param-
eter is then tied to Tc. However, the total spectral gap �0
becomes twice too large ��2�p� so that the dip still persists,
near �3�p, which contradicts the BCS d-wave case. Thus,
the precursor gap maintains its influence when p→2p0. In
fact, the results of Figs. 4 and 5 clearly show that the gap
function is non-BCS-like throughout the whole phase dia-
gram.

C. Model of the pseudogap state

We propose a phenomenological description of how the
gap function should evolve when SC coherence is lost, i.e.,
the pseudogap state. Since the model has fixed parameters
for the SC state, we are allowed one additional parameter to
“force” the transition to the PG state. There is very little data
on the QP spectral change, and we try only to be qualitative;
no precise fit to a PG-type spectrum is done.

Recall that the T-dependant BCS gap can be written
��T�=��T���0�, where ��T� is a solution to the finite-
temperature gap equation and verifies ��0�=1 and ��Tc�=0.
A numerically exact, or simple interpolation formula, can be
found for ��T�. In an analogous way, we write

��E� = ��PG�1 − �� + ��SC�E� , �18�

where �SC�E� is the previous gap function and �, � vary
smoothly �but arbitrarily� from 1 to 0 as a function of the
strength of the perturbation �temperature, magnetic field,
etc.�. We assume � and � vanish at T* and Tc, respectively
�see Fig. 6�. The three region phase diagram is a conse-
quence of these two parameters, whereas �PG and �SC are
the characteristic zero-temperature energies. In such a way,
the three states are, evidently,

� � 0 � � 0 SC state

� = 0 � � 0 PG state

� = 0 � = 0 Normal state.

In the case where �PG is strictly identical to �p of Sec. II A,
we get the form

��E� = ��p + ����1 − g�E�� �19�

so that the “condensation amplitude” is ��� and the “total”
spectral gap is �0=��p+���.

The QP-DOS shape corresponding to the PG state is an
unsolved problem, but there are many
models.20–29,56–58,62,76,77 There is a strong indication of a
broad self-energy in this case.7,43,52,53,57,65 Furthermore, as
discussed in the Introduction, the PG-DOS is characterized
by the absence of quasiparticle peaks. Atkinson21 and Atkin-
son et al.65 have extended the earlier work of Huscroft and
Scalettar57 that a noncondensed Bose state produces a peak-
less pseudogap in the DOS. This has recently been applied to
the case of spatial disorder.21 Franz and Millis,18 in an alto-
gether different approach, have found a pseudogap due to
spontaneous currents, also typical of a fluctuating pair sys-
tem.

Our exceedingly simple model is to consider �PG with a
finite imaginary part

�PG = �p�1 − i��� �20�

and to use Eq. �18� for the gap function. With � lowered
from 1 to 0, the SC quasiparticle DOS evolves smoothly into
the PG shape �see Fig. 7�a��. This type of DOS modification
is seen in the STS experiment as the tip is scanned within the
vortex core.12,39,59 It is also seen as the effect of weak
disorder.60 Here ��=0.2, which has a small, but non-
negligible, influence on the energy changes previously dis-
cussed. Note in Fig. 7�a� that the dip features disappear as
�→0, along with the QP peaks.

In Fig. 7�b� we let � vanish, but here Re �PG��p; the
pseudogap is slightly larger than the quasiparticle peak en-
ergy �40 meV as compared to 30 meV�. Now the QP peaks
move progressively out to a higher energy, as expected from
Eq. �18�, while being attenuated. This particular evolution is
strikingly similar to STS observations34–36,61 and is generally
attributed to disorder �inhomogeneity�. In our model, the de-
crease of doping level on the local scale could give this
effect, the result being a wider pseudogap. It corresponds to
the progressive lowering of the p value in the phase diagram
of Fig. 4�a�. However, a disorder potential is expected to
directly affect the SC amplitude; hence, Re �PG could vary
in different regions of the surface.61 Consequently, the SC
state to PG state transition energy depends on the local
change of the precursor gap �Re �PG−�p� and on ��. An
estimate of this energy is given in Sec. III.

The well-known experiment of Renner et al.54 gives the
quasiparticle conductance spectrum as a function of rising
temperature. In Fig. 8, we plot a simulation of the tempera-
ture dependance of the QP spectra using Eqs. �4� and �9� and
the gap function �19�. The standard broadening of NS�E� due
to Fermi statistics is taken into account.74 The value of ��T�
is inferred from the data �inset, Fig. 8� and vanishes at Tc
�89 K. The p value is chosen such that �p�p��42 meV. As
is well established from many experiments, the PG persists
well above Tc, up to the temperature T*. Our model, as
shown in Fig. 8, gives a simple qualitative description of the
QP DOS with rising temperature.

FIG. 6. Extension of the model to finite temperature showing the
T dependence of � and �. �Here, Re �PG=�p.�

QUASIPARTICLE SPECTRUM OF THE CUPRATE… PHYSICAL REVIEW B 74, 174517 �2006�

174517-7



Finally, the two-energy-scales model allows an order of
magnitude for the value of T*, defined by the vanishing of
the precursor gap. Using the data of Refs. 8, 49, and 53, we
find roughly that �p�2.8kBT*, while ���2.3kBTc�p�. Using
Eq. �14�, we then obtain

T* � 1.6� p0

p
�Tc,

assumed valid for T*�Tc. It follows that the two tempera-
tures merge at p=1.6 p0� .18, perhaps remaining merged for
p�1.6 p0; however, this is an open question. Note that the
excess doping level at the �T* ,Tc� crossing point is 0.18,
while the absolute level is 0.23, i.e., well into the overdoped
region of the phase diagram. No evidence for a critical point
under the Tc�p� dome is found.

III. INTERPRETATION OF THE ENERGIES

We turn to the question of interpreting the two energy
scales ��p ,��� that are the main ingredients of the gap func-
tion ��E�, as expressed in �19�. The foregoing work shows
that, for large QP energies and along the antinodal direction,
the total spectral gap is ��E���0=�p+��, where �p de-
fines the QP peak positions and the new parameter �� is
proportional to Tc�p�. We now consider the energy changes
involved in both the normal to SC and the PG to SC transi-

tions. In the latter case, we use �20� for the PG gap, with the
assumption: Re �PG=�p, with a small imaginary part.

Consider first the BCS case of a constant isotropic gap of
value � in the SC spectrum. The approximate change in
energy is given by the familiar integral

�EN − ESC�BCS = Nn�0�

0

2
 d	

2


 d�k� �k

2

Ek
− ��k��

+ Nn�0�

0

2
 d	

2


 d�k

�2

2Ek
�21�

The first and second terms78 are the change in kinetic and
potential energies, respectively, while the variation of the
chemical potential is neglected. The high energy cutoff is
unnecessary since the integrand vanishes faster than 1/�k.
The standard result is

�EN − ESC�BCS =
1

2
Nn�0��2,

or equivalently, putting Np=Nn�0�� /2 as the number of
pairs,

�EN − ESC�BCS

Np
= � �22�

The conventional interpretation is therefore straightforward:
the gap in the QP spectrum is equivalent to the energy gain
per pair in the N→SC transition. The latter intensive quan-
tity is related to the mean-field critical temperature, �
=1.76 kBTc

MF.
In the unconventional case, we must go beyond the mean

field due to three possible effects �i� weak phase-stiffness and

FIG. 7. Variation of the DOS with � varying from 1 �SC state�
to 0 �PG state�. The parameters are p=0.18, giving �p=30 meV
and ��=17.8 meV, in Eq. �18�, and ��=0.2, in Eq. �20�. The broad-
ening parameters for the SC state are: �=0.06, �=0.03�p. In �a�,
Re �PG=�p and in �b� Re �PG=40 meV, i.e., larger than �p. These
variations simulate the loss of SC coherence in �a� in the vortex
core �Refs. 12 and 59� and �b� due to strong disorder �Refs. 34, 35,
and 61�

FIG. 8. �Color online� Simulation of the tunneling conductance
with temperature. The value of �, varying from 1 �SC state� to 0
�PG state�, was inferred from the data,54 shown in the upper inset.
The parameters are p=0.14, giving �p=42 and ��=17.6 meV, in
Eq. �18�; all others are the same as in Fig. 7�a�. Here we assume
Re �PG=��p, where � decreases slightly from unity �see inset�.
The highlighted spectrum corresponds to Tc.
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2D electronic structure �Kosterlitz-Thouless limit�, �ii� prox-
imity to Bose-Einstein condensation, and �iii� coupling to a
collective mode �additional degrees of freedom�. Denoting
E� the energy gain due to one of these processes,

�EN − ESC� = �EN − ESC�BCS� + E�

where �EN−ESC�BCS� is given by �21�, but using the complete
gap function ��Ek� �i.e., an extended BCS energy�. The latter
is calculated by using �18�, with �=�=1, and integrating
�21�,

�EN − ESC�BCS� �
1

4
Nn�0��p

2

where the extra factor of 1 /2 is from the angular integral for
the d-wave case. Here, one would have expected a higher
gap value than �p �between �p and �0�, but the antiresonant
shape of ��E� leads to this simple result and is discussed
below. The total energy change from the normal to SC states
is then

�EN − ESC� =
1

4
Nn�0��p

2 + E� �23�

If one estimates the new number of gapped pairs as Np
=Nn�0��p /2�2, dividing through by Np gives

�EN − ESC�
Np

=
1
�2

�p +
E�

Np
. �24�

This equation matches our expression: �0=�p+��, with the
identification

1
�2

�0 =
�EN − ESC�

Np
and

1
�2

�� =
E�

Np
.

Neglecting the small imaginary part of �PG, we find the en-
ergy change �N→PG�

�EN − EPG�
Np

=
1
�2

�p, �25�

and finally, combining �23� and �24�,

�EPG − ESC�
Np

=
E�

Np
. �26�

Thus the E� term is precisely the energy gain of the SC state
with respect to the PG state: the condensation energy. The
intensive quantity, E� /Np, is of the order of kBTc. Since E� is
not a “pairing” energy, we set Np=N /2 and obtain

�� = 2�2
E�

N
� 2�2 kBTc � 2.8 kBTc

in qualitative agreement with the fits. We have thus shown
that the heuristic parameter �� is consistent with a conden-
sation energy, E�, going beyond the BCS mean-field value.

These arguments cannot prove whether �p is a pairing gap
�preformed pairs above Tc� or a competing order gap �spin
density wave, etc.�. It is compatible with many models where
states, in the energy range ��p, are first removed at the
Fermi level. However, our model suggests that the new quan-

tity, ��=2�2E� /N, is not the opening of a second gap at the
SC transition, for example, in the manner suggested by
Nozières and Pistolesi.62 Indeed, in a first approximation, the
total change in KE and PE �i.e., given by the BCS equation
�21�� is identical with the pseudogap contribution,

�EN − ESC�BCS� � �EN − EPG� �27�

with the consequence

�EPG − ESC�BCS� � 0. �28�

However, as previously noted, this is compatible with experi-
ment; using STS, the PG width measured at the vortex core
is about the same magnitude as the SC gap between the
vortices. The condensation energy term, E�= �EPG−ESC�, is
therefore apart and must be due to additional degrees of free-
dom beyond the mean field.

Behind these results �26�–�28� is a nontrivial movement
of states in the PG→SC transition.63 Consider again Fig. 3
plotting the shape of the gap function, and in particular, the
role of ��. The states at higher energy, E�Edip, are removed
���E���p+��� while they are added near the antiresonance
���E0���p−���. Because of a detailed balance of energy
states in the integrand f��k� of �21�, the effect cancels out and
we are left with the result Eq. �27�. This is explicit in Fig. 9,
where f��k� is plotted as a function of �k �along 	=0�. We use
the previous gap expression with �=1

��Ek� = �p + ��� �1 − g�Ek��

and compare directly the cases of �=1, and �=0. As ex-
pected, the latter curves cross in such a way as the subtended
areas are the same. In our view, this removal of states at
higher energy, also seen in the spectral function �Sec. IV�, is
a significant aspect of the problem. A microscopic theory
should arrive at a clear dependence of E� on this effect.

It is possible that, in some instances, the pseudogap is
larger than the QP peak position: �PG��p. The total energy
change, Eq. �23�, remains valid but �26� becomes

FIG. 9. Plot of the integrand f��k� of the BCS energy equation
�21� in units of Nn�0� / �2
� and for 	=0. The two curves compare
the case of a constant gap, with �p=30 meV �p=.18�, to the case of
the gap function �from Fig. 3�. The latter curve shows a pronounced
dip-hump feature, but the subtended areas are the same.
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�EPG − ESC� = −
1

4
Nn�0���PG

2 − �p
2� + E�.

The change in gap value now opposes the previous conden-
sation energy term. �In fact, if �PG is large enough, then no
transition to the SC state occurs; the above vanishes identi-
cally.� A disorder potential could be such a cause, when am-
plitude fluctuations are expected. Then, the above equation
implies a change in the number of gapped states at the PG
→SC transition and, in this case, E� need not strictly be the
order parameter.

The question for further work is to interpret the conden-
sation amplitude, ��=2�2E� /N. A likely candidate is the
phase stiffness J relevant to the Kosterlitz-Thouless �KT�
transition:

E�

N
= �


2
�J = kBTc

KT.

For free electrons in two dimensions, one shows that62 J
=n�2 /4m; the main point being that J�n, the particle den-
sity. From the previous fits to the data, we inferred that ��

= �p /2p0��p, so that it is at least proportional to the excess
density p. If the KT mechanism is involved, then the princi-
pal quantity of the SC gap function is predicted to be

�� = �2
 J = 2�2 kBTc
KT,

with a new condition on the phase stiffness

�2
 J =
p�p

2p0
.

The latter result is satisfactory; the phase rigidity is now
proportional to both the carrier density and the precursor
interaction. Put another way, using p��Nn�0��p as the den-
sity of gapped states, we have the simple constraint: J� pp�.
Since the latter is valid for all p �ranging from 0 to 2p0�, the
dome-shaped SC phase diagram is obtained, i.e., pp�
�Tc�p�.

In summary, without committing to a specific camp in the
high-Tc problem, the total spectral gap is �0=�p+��, where
�p is the precursor gap and the amplitude �� is proportional
to the condensation energy. The same quantity defines the
amplitude of the mouvement of states in the PG→SC tran-
sition. Although a competing order cannot be excluded, the
two energy scales, and their link to the phase diagram, natu-
rally point to the mechanism of “preformed” pairs followed
by KT condensation. This situation of two energy scales was
suggested in the work of Deutscher,79 where the QP tunnel-
ing gap ��p� is distinct from the coherence gap ��� ?� as
inferred by the Andreev effect.

A. Further comments on the gap function

Consider the question of why the particular QP spectrum,
Ek, with the antiresonant gap function ��Ek�, is needed to
produce the correct QP-DOS. First, the resonance is shown
to cause a shift in the quasiparticle states, at the PG to SC
transition, from higher energy to lower energy, manifested by
the sharp QP peaks and dip features. Nevertheless, a simple

answer for the energy change is obtained. All these points
indicate that the condensate itself is nontrivial.63 Further-
more, the new quantity �� enters the resonance position
�E0��0�, its width and its amplitude �2���; a property
shown to be empirically correct throughout a wide doping
range. Then it seems unlikely that the resonance is due to the
coupling to a quasi-independent collective mode. In the latter
case, the width of the resonance would reflect the collective
mode damping, while its amplitude, the strength of the cou-
pling. Here, these parameters are related to the coherence
amplitude, ���E� /N, possibly tied to the phase-stiffness J,
and hence, to the condensate itself.

The reason for the energy dependence of the gap function
is so far unknown from first principles. Aside from strong-
coupling theory,3 an E-dependent gap appears in McMillan’s
proximity effect,80 two-band superconductivity,81 and the
asymmetric particle-hole case.47 However, a highly relevant
example is the detailed work of Ref. 82 on the crossover
from BCS to Bose-Einstein condensation; but the gap has no
resonance effect there.

The detailed form of the gap function �or self-energy, as
in Sec. IV� represents a different pairing interaction. It is
possible that there is a strong feedback effect between the
precursor state, with gap �PG, and the freezing of phase fluc-
tuations, of amplitude ��. Then there is a complete renor-
malization of the gap function ��Ek�, where Ek is the “exact”
quasiparticle spectrum �final state�. The effect is strong
enough so that if Ek��0, the pairing energy is reduced, �
��p−��, compared to the low-energy value ���p. On the
contrary, at higher energy, the interaction is strong ���p
+��. This type of variation is at the heart of the QP-DOS
shape.

IV. SPECTRAL FUNCTION

A different, yet equivalent, view of the same problem is
given by the spectral function, A�k ,E�. It is more fundamen-
tal since there is no sum over momenta; hence, an ideal
quasiparticle with wave vector k is directly a Dirac peak at
the position E=Ek. It is also the fundamental quantity de-
scribing the ARPES measurement.

Here we discuss A�k ,E� as given by Eq. �8�, with the
quasiparticle dispersion �7�, the total gap function

��Ek� = ��PG�1 − �� + ��SC�Ek�

and with �SC�Ek� the usual resonant form given in �10�. The
gap broadening parameters are as in Sec. II, i.e., �p→�p�1
− i�� and �PG→�p�1− i��� in �SC and �PG, respectively. The
final broadening parameter is �Dynes, and all three have been
determined by the fits in Sec. II.

Since A�k ,E� is calculated along the real �k axis, it fol-
lows that our dispersion law Ek=Ek��k� �Eq. �7�� is complex.
Considering the antinodal direction, the simple model gives

A�k,E� =
1




Im Ek

�E − Re Ek�2 + Im Ek
2 , �29�

which has the expected Lorentzian form with a peak at
Re Ek=E and half-width Im Ek. Such an expression neglects
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many-body effects that are important at higher energy.7,15

The spectral function �29� is presented in gray scale in
Fig. 10 in the �E ,�k� plane and for the case where p=0.18.
Note that the gap function is an explicit function of the QP
energy, Ek, and not �k; thus, one must first find numerically
the �complex� dispersion law Ek��k� in order to apply �29�.
On the lower panel of Fig. 10, we give the spectral function
for the SC state and compare directly with the one for the PG
state �upper panel�. For the SC state, the visibly sharp peak
position describes a continuous curve that deviates signifi-
cantly from the BCS hyperbolic law. The hyperbolic case is
seen in the upper panel, since it is inherent in the model for
the pseudogap. For small �, both curves begin near the gap
value E��p=30 meV, as expected. The QP peak position
�SC state� begins �at P� with a slightly smaller slope than the
BCS case and nearly reaches the E=�k diagonal. This is fol-
lowed by a sharp kink �near �k=60 meV, at D� before slowly
joining the expected asymptote corresponding to a gap value
of �0�48 meV. All of these effects are totally absent in the
BCS framework.

The kink feature in the dispersion law corresponds to the
dip in the QP-DOS. One can read its position, D, either on
the E axis or on the �k axis: in the former, Edip��p+2��

�64 meV, whereas in the latter �k�2��0���60 meV �tak-
ing the point of steepest slope�. The antiresonance in the gap
function is revealed here by the near touching of the diagonal
by the dispersion law at the energy E��0�48 meV. �At
this point �k�E.� Concerning the peak intensity, the sharpest
QP peaks are not at �k=0, E=�p �P in Fig. 10� but at slightly
higher energy, near 40 meV �at P��. At the kink, the peak
intensity drops significantly �highest broadening�, giving a
quite different picture of the peak to dip feature.

Although ARPES can only access the occupied states,
contrary to tunneling spectroscopy, the two techniques probe
the same spectral function �Fig. 10�. Indeed, integrating
A�k ,E� over �k, for a given E, yields the partial tunneling
DOS, ns�E ,	�, as given by Eq. �6�. In ARPES one can fix k,
hence �k, and measure A�k ,E� as a function of E �energy
distribution curve�. Moreover, the dispersion of the QP states
with k� can be probed. Although these two techniques have
different spatial and energy resolutions, it would be of high
interest to establish the common spectral function that
matches both the ARPES and the tunneling data.

As a simple check of the tunneling DOS, in Fig. 11 we
plot both the exact partial DOS �for 	=0�, using Eq. �9�, and
the direct sum over states of the spectral density of Fig. 10.
Given the crude integration method in the latter case, the
agreement is satisfactory. All experimentally observed fea-
tures are found: the pronounced QP peak and the dip, as well
as the states within the gap from the Dynes broadening.

The upper panel of Fig. 10 shows the spectral function
corresponding to the PG state, or �=0 in the gap function,
for direct comparison. Note the significant smearing near
�k�0, or E��p; as expected, there are no well-defined qua-
siparticle peaks. The overall dispersion shape is still hyper-
bolic and follows Ek���k

2+�p
2 as imposed by the model.

The asymptotic line is closer to the diagonal as compared to
the SC case, where the total high-energy spectral gap is
larger, i.e., Ek���k

2+�0
2 �compare M� to M in Fig. 10�. This

gives a direct view of the mouvement of the states in the
PG→SC transition: states well above the PG gap, for Ek

�Edip �upper panel�, are removed and a high density of qua-
siparticle states exist, for EkEdip, in the SC state �lower
panel�.

A. Quasiparticle self-energy

The final objective of this work is to show that the
E-dependant gap function is equivalent to a self-energy. In
the SC state, the carriers of energy �k are modified by the
presence of �k��k�

FIG. 10. Direct comparison of the spectral functions of the PG
state �upper panel� and of the SC state �lower panel�, viewed as
density plots in the �E ,�k� plane. The gap parameters correspond to
p=0.18: �p=30 meV and ��=17.8 meV. Other relevant param-
eters are: �=0.06, ��=0.2 and �=0.06�p. The dispersion law,
Re Ek, which is hyperbolic in the PG case, has a distinctive kink �at
D� in the SC case, causing the dip feature in the DOS. States are
removed at high energy from the PG spectral density �compare M
and M��, and are added at low energy �between P and D�, in the SC
spectrum.
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A�k,E� =
1



Im

1

E − �k − �k��k�
. �30�

Thus, setting �=0 gives the normal state spectrum, whereas
for ideal BCS quasiparticles it is with �k��k�=��k

2+�2−�k.
Finally, the Dynes lifetime broadening is obtained if � has an
imaginary part �Im �=��.

For the general case, where the SC state is given by the
gap function, comparing �30� to our original expression �8�,
gives:

�k��k� = Ek��k� − �k. �31�

However, the final state QP energy, Ek��k�, is a solution of
the implicit equation Ek=��k

2+�k�Ek�2+ i�, and thus, an
analytical expression for �k��k� cannot be given. The com-
putation of Ek��k� is quite straightforward, leading to the
complex valued �k��k� and, hence, to the spectral function
�30�. Formally, the quasiparticle resonance position is given
by Re Ek=�k+Re �k��k�, and its width by Im Ek=Im �k��k�.
Note that using the definition of Ek, and the simple expres-
sion �31�, yields

�k��k� = i� +
�k�Ek�2

Ek − �k + i�
, �32�

which is similar to the form considered by Refs. 7 and 33.
Thus, the E-dependent gap function and the self-energy func-
tion are equivalent.

The self-energy is plotted in Fig. 12 using the same pa-
rameters as those of Figs. 10 and 11. The darker line corre-
sponds to the SC case using the resonant gap function, the
gray line is for the PG model, with a constant gap ���p�.
For small �k, both curves begin at the value Re ��0���p

�30 meV, as expected. However, the SC curve descends
sharply toward zero, as compared to the PG one, and reaches
a minimum near �k�2��p��. This corresponds to the anti-
resonance position in the gap function �E=�0�. The self-
energy then rises abruptly, crosses the PG reference curve,
and with a further change in concavity, slowly decays as a
function �k. The dip position in the QP-DOS is found by the
maximum slope of Re ���k�; it is near the crossing point at
�k�2��0��. Note that this dip position coincides with the

highest broadening, as revealed by Im ���k� in the lower
panel of Fig. 12. The lowest broadening is at �k�40 meV
giving the highest QP peaks in the spectral function, and the
wide peaks seen in the DOS.

In conclusion, the self-energy of Fig. 12 is an effective
means of comparing the change of states from the PG to SC
cases. Indeed, the self-energy of the SC state is smaller than
the PG one for small energies, up to the crossing point, when
the relative magnitude inverts. Our previous observation that
states are removed at large energy from the PG state, for �k

�2��0��, while they are added to the SC state, for �k

2��0��, is seen here in a different way. The strong mini-
mum of Re �, near �k�2��p��, also reveals the condensa-
tion amplitude. The sharpness of these features indicates
ARPES may be a better technique to extract these two pa-
rameters, as compared to quasiparticle tunneling.

In Fig. 13 we plot the pair amplitude Fk=�k /2Ek as a
function of �k,

78 taking the real part. The case where the SC
gap function is used is directly compared to the conventional
pair amplitude, with a constant gap. The obvious dip fea-
tures, near ±50 meV, are due to the same minimum dis-
cussed previously. The investigation of this function is yet to
be done in the case of cuprates; it requires the Andreev effect
or pair tunneling, and not quasiparticle tunneling, in order to
be probed.

V. CONCLUSIONS

Three principal questions have been addressed: Does the
tunneling DOS reveal the order parameter? If so, in what
manner? Does it connect to the phase diagram? We have
tried to answer them from the heuristic point of view, i.e., by
using our resonant gap function and examining the available
data. This E-dependant gap produces the well-known quasi-
particle peak shapes, followed by the dip structures at higher

FIG. 11. �Color online� Tunneling DOS �along 	=0� calculated
using the exact formula �9�, solid line, and the discrete sum over �k

of the spectral density of Fig. 10, triangular dots.
FIG. 12. Complex self-energy plotted against �k along 	=0.

Dark line: SC self-energy; gray line: PG case. �All parameters are
the same as for Figs. 10 and 11.� The strong dip, where Re ���k�
nearly vanishes, is followed by a crossing point with the PG line,
then slowly decays at higher energy. The sudden rise in Re ���k�, at
a maximum of Im ���k�, is at the energy �k�2��0��, and causes
the DOS dip. The sharpest QP peaks are not at �k�0, E��p, but
nearer �40 meV.
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energies. No Fermi surface anisotropy, no van Hove singu-
larity, no strong coupling are needed; only simple d-wave
quasiparticles, with a modified spectrum, are considered.

The model yields two fundamental energy scales, whose
values are determined by the fits to the tunneling spectra: �p,
the quasiparticle peak position, and a second energy, ��. We
found the resonance �along the antinodal direction� to be at
the fixed position �0=�p+��, coinciding with the total spec-
tral gap for high energies, i.e. Ek���k

2+�0
2. Thus, the de-

scription of the SC state depends uniquely on this new en-
ergy scale: ��.

To go a step further, we showed that these two energy
scales fit the phase diagram as a function of carrier density,
p. Although �p decreases linearly with doping, �� follows
Tc, with ��=2.3kBTc, and merges smoothly with �p at high
doping. Thus, the gap function scales perfectly with the car-
rier density; one can then generate the QP-DOS shape for
arbitrary p. The two energy scales have a simple link: ��

� p�p, valid in the range of the available data. If there is a
critical point, it would be at maximal doping where both
energy scales vanish.

The role of �� as a condensation amplitude is compelling.
To check this, we estimated the energy changes associated
with the three states �normal, PG, SC�. A simple interpreta-
tion for each term of the constraint �0=�p+�� is, respec-
tively, the total energy gain �per pair�, the energy gain due to
the precursor gap �PG state�, and the condensation energy
per pair E� /Np. Surprisingly, the number of gapped pairs
turns out to be Np��p /2 and not Np��0 /2. Thus, in this
work, the PG→SC transition does not follow the scenario
proposed by Nozières and Pistolesi,62 wherein a second �and
larger� BCS gap opens on an initial PG state. Although a
mechanism involving a competing order is not excluded, our

results are in support of the preformed-pair model. In either
case, the amplitude of the SC transition turns out to be ��

=�2E� /Np. It is therefore justified, for both scenarios, that
this parameter is proportional to Tc, as found independently
from the fits to the data.

Since the mouvement of states in the PG to SC transition
remains subtle, i.e., not the direct opening of a second �SC�
gap, we took a closer look at the dispersion law Ek��k�. We
discussed the spectral function and the corresponding self-
energy, where the change of the quasiparticle states can be
seen more readily than in the DOS. Indeed, it allows are to
identify features of the QP spectrum as a function of both E
and �k. One finds that in the PG state quasiparticles of higher
energy, �k�2��0��, end up as quasiparticle peaks at lower
energy, �k2��0��, in the SC state. The crossover is pre-
cisely the characteristic energy where the dip feature is seen,
either in the self-energy or in the gap function. By a different
analysis than of the DOS, we found that this movement of
the states depends uniquely on ��.

Our model shows that the principal change of kinetic and
potential energies �as in BCS� is associated with the opening
of the precursor gap �PG��p, at the Fermi level �normal
state to PG state transition�. At the SC transition, the quantity
E� is therefore linked to other degrees of freedom not ac-
counted for in the BCS model. This possibility is accentuated
by the resonant character of the gap function. Although a
particular collective effect is perhaps responsible, a likely
candidate for the condensation energy is the phase stiffness J
in the Kosterlitz-Thouless transition. In this context, we get
an immediate relation between our parameter and J: ��

=�2
J, which is then proportional to the KT transition tem-
perature. A relevant prediction is thus J� p�p, should the KT
mechanism fit the phase diagram, for a wide range of doping.

The three questions above have therefore been given a
tentative answer. One could raise some objection to introduc-
ing an ad hoc gap function, where a microscopic theory is
missing. Some speculations concerning the physical origin of
the gap function have been given in the closing paragraphs
of Sec. III. Our main goal of matching the observed experi-
mental QP-DOS and their characteristics as a function of the
carrier density, works without resorting to additional extra-
neous factors. Moreover, the fits can now be done with a
minimal set of parameters. Finally, the two key parameters,
the QP peak position �p and the coherence amplitude ��,
have been connected to observed physical quantities.
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