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Vortex configurations and critical parameters in superconducting thin films containing antidot

arrays: Nonlinear Ginzburg-Landau theory
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Using the nonlinear Ginzburg-Landau (GL) theory, we obtain the possible vortex configurations in super-
conducting thin films containing a square lattice of antidots. The equilibrium structural phase diagram is
constructed which gives the different ground-state vortex configurations as function of the size and periodicity
of the antidots for a given effective GL parameter «". Giant-vortex states, combination of giant- and multivor-
tex states, as well as symmetry imposed vortex-antivortex states are found to be the ground state for particular
geometrical parameters of the sample. The antidot occupation number 7, is calculated as a function of related
parameters and comparison with existing expressions for the saturation number n; and with experimental
results is given. For a small radius of antidots a triangular vortex lattice is obtained, where some of the vortices
are pinned by the antidots and some of them are located between them. Transition between the square pinned
and triangular vortex lattices is given for different values of the applied field. The enhanced critical current at
integer and rational matching fields is found, where the level of enhancement at given magnetic field directly
depends on the vortex-occupation number of the antidots. For certain parameters of the antidot lattice and/or
temperature the critical current is found to be larger for higher magnetic fields. Superconducting/normal H-T'
phase boundary exhibits different regimes as antidots are made larger, and we transit from a plain supercon-
ducting film to a thin-wire superconducting network. Presented results are in good agreement with available

experiments and suggest possible new experiments.
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I. INTRODUCTION

Superconducting (SC) samples with periodic arrays of
pinning sites have received much attention over the last de-
cade. It is now well established that these artificial pinning
centers (i) hold great potential for enhancing the critical pa-
rameters of the sample and (ii) give rise to different kinds of
vortex behavior that is not observed in the presence of ran-
dom pinning. In this respect, arrays of microholes
(antidots)'"'? and submicron magnetic dots,'*!> have been
studied, as their presence in the SC film strongly modifies the
vortex structure compared to the one in nonpatterned
films. 617

Direct imaging experiments,! magnetization and transport
measurements,?> and theoretical simulations'822 of vortex
structures in samples with periodic pinning centers have
shown that the vortices form highly ordered configurations at
integer H,=n®,/S and at some fractional H,,,=>®y/S (n, p,
g being integers) matching fields, where @0:%c/2e:2.07
X 1077 G cm? is the flux quantum, and S is the area of the
primitive cell of the artificial lattice. This remarkable variety
of stabilized vortex lattices may even be broadened by mul-
tiple possible degeneracies. These commensurability effects
between the pinning array and the vortex lattice are respon-
sible for an enhanced pinning and consequently increased
critical currents. Very recently Karapetrov et al.?} investi-
gated vortex configurations in a single crystal superconduct-
ing heterostructure with an array of submicron normal metal
islands by scanning tunneling microscopy. They observed the
coexistence of strongly interacting multiquanta vortex lattice
with interstitial Abrikosov vortices. Different vortex phase
transitions are given, which occur when the number of mag-
netic flux quanta in the sample changes.
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Motivated by those experimental studies on perforated su-
perconductors, significant efforts have been made on the the-
oretical side as well. For example, extensive molecular dy-
namics simulations'®?? in the London limit have been
performed in an attempt to calculate the vortex structure and
their dynamics in a periodic pinning potential. Although the
general behavior of vortex lattices was accurately described,
made approximations are valid only in certain range of pa-
rameters. Namely, in the London approach, vortices are con-
sidered as classical point-particles (with different models for
their interaction) and the influence of the antidots is intro-
duced through model hole potential, which in principle can
never be generalized. Recently, Nordborg and Vinokur?* dis-
cussed in the detail interaction of vortices with an arbitrarily
large cavity, but still within the London theory. This study
was actually an extension of the work of Mkrtchyan and
Shmidt,> who crudely estimated the maximum possible
number of vortices trapped by a single insulating inclusion
with radius R as n,=R/2&(T), where &(T) is the temperature
dependent coherent length. For regular arrays of pinning cen-
ters the saturation number becomes n,~[R/&(0)]? due to the
vortex-vortex interactions.?® The antidot-vortex interaction
and the following maximal occupation number of each anti-
dot appear to be crucial for many phenomena. For example,
experiments on thin films with a lattice of holes showed a
“localization transition:” 27 all vortices drop inside the holes
when the coherence length becomes larger than the interhole
spacing. In Ref. 4 it was shown that the antidot size realizing
the optimum pinning is actually field dependent. The effec-
tive vortex-pinning potential and saturation number of the
pinning sites for different temperature and applied dc fields
were recently investigated experimentally by means of ac
susceptibility measurements, for superconducting films with
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an array of antidots”® and for the case of not fully perforated
holes (i.e., blind holes).'?

Most of the experiments on perforated superconducting
films are carried out in the effective type-II limit (k"
=\2/d&>1/42, d being the thickness of the superconducting
film and N\ the magnetic penetration depth). In this regime,
the vortices act like charged point particles and their interac-
tion with periodic pinning potential can be described using
molecular dynamic simulations.'8-2! However, the overlap of
vortex cores (with size ~§), and the exact shape of the int-
ervortex interaction (depending on the superconducting ma-
terial properties reflected through ), may significantly
modify the vortex structures and consequently the critical
current when this criteria is no longer satisfied.

Besides, the vortex-pinning and the critical current en-
hancement, higher critical field (H,3) near an open circular
hole in a thin film (the so-called “surface superconductivity”)
has been predicted theoretically”® and confirmed
experimentally.?® Cusps in the H-T boundary were observed,
which occurs when the number of vortices which nucleate
inside the hole increases by one, similarly to the known
Little-Parks effect. The ratio between the critical fields in
perforated samples was estimated in limiting cases:
H./H,,=1 when R—0 (or R<¢) and H.3/H,,=1.695 when
R— oo,

In this work superconducting films with square arrays of
antidots are treated within the phenomenological Ginzburg-
Landau theory. This approach considers vortices as extended
objects and no approximations must be made on, e.g., the
vortex-vortex interaction and/or the vortex-antidot interac-
tion. In Sec. II, the details of our numerical formalism are
given. Section III deals with vortex lattices in perforated
films in homogeneous magnetic field, with emphasis on the
number of pinned and interstitial vortices as function of the
antidot-size and interhole distance. In case of weak pinning
potentials, i.e., small size anti-dots, we discuss the triangle to
square vortex lattice transition in Sec. IV. In Sec. V, we ad-
dress the behavior of critical current in the sample as a func-
tion of the applied field, for different geometrical parameters,
and temperature. The dependence of the critical field on tem-
perature, and different regimes in the H-T phase diagram are
discussed in Sec. VI for different antidot size. All presented
findings are then summarized in Sec. VII.

II. THEORETICAL FORMALISM

In this work, we consider a thin superconducting film (of
thickness d<<&,\) with a square array of holes (radius R,
period W) immersed in an insulating media in the presence
of a perpendicular uniform applied field H (see Fig. 1). To
describe the superconducting state of the sample we solve
the coupled nonlinear GL equations, which are written in
dimensionless units in the following form:3%3!

(=iV =AW =W(1 - [V]P), (1)
= 1 = - -
—kK'AA = ;(«1’ V¥ - WVP") - |[PPA. ()
l

We measure the distance in units of the coherence length §&,
the vector potential A in cfi/2e&, the magnetic field H in
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FIG. 1. Schematic view of the sample: a superconducting film
(thickness d) with a regular array (period W) of circular antidots
(radius R).

H,=ch/2e&= K\EHC, and the order parameter W in V—a/f
with a, B being the GL coefficients.

The magnitude of the applied magnetic field H=n®/S is
determined by the number n of flux quanta ®y=hc/2e
=2.07%X 1077 G cm? piercing through the rectangular simula-
tion area S=W, X W,=N,N,W?, with W,,=N,,,W and N,
and N, as integers. At the superconductor-insulator interface
we impose the boundary condition corresponding to zero
normal component of the superconducting current. The peri-

odic boundary conditions for A and W (simulating the peri-
odicity of both superconducting film and antidot lattice) have
the form3?

A(p+b)=A(p) + Vnp), (3)

V(5 +b;) =W exp[2min(p)/Dy], 4)

where b; (i=x,y) are lattice vectors, and 7; is the gauge

potential. These boundary conditions imply that A, ¥ are
invariant under lattice translations combined with specific
gauge transformations 7,,. Other quantities, such as the
magnetic field, the current or the order parameter density are

periodic. We use the Landau gauge A0=Hx5y for the external
vector potential and »,=HW,y+C,, 1,=C,, with C,, C, be-
ing constants.'> Without antidot lattice, when the film is in-
variant under infinitely small translations, the free energy
does not depend on C,, C,. The vortex lattice is only shifted
relative to the simulation region when C, and C, are varied.
This is not the case for an antidot lattice, when the change of
these parameters leads to a displacement of the vortex lattice
relative to the holes, leading to a variation of the free energy.
In general, one must minimize the free energy with respect to
C,, C,. It can be shown that such a minimization gives a zero
current when averaged over the cell area. We find that for a
supercell having one hole, the optimal values are given by
C,,=0,+7 and that for the supercell with 2V holes the
choice C, =0 provides the minimum free energy.

We solved the system of Egs. (1) and (2) self-consistently
using the link variable approach®? in a finite-difference rep-
resentation of the order parameter and the vector potential
using a uniform Cartesian space grid (x,y). The first GL
equation is solved with a Gauss-Seidel iteration procedure.*
The vector potential is then obtained with the fast Fourier
transform technique. The temperature is indirectly included
in the calculation through the temperature dependence of the
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FIG. 2. Contour plots of the Cooper-pair density (white/dark
color, low/high density) in the superconducting film with antidots of
radius R=¢ and interhole distance W=8.0¢ for the matching fields:
H,=1 (a),3/2 (b),2(c),5/2 (d), 3 (e), 4 (), 9/2 (g), and 5 (h). The
film thickness is d=0.1¢ and the effective GL parameter «"= 10.
Dashed lines indicate the antidot lattice.

coherence length &T)=&0)/\|1-T/T,y and penetration
depth N(T)=N(0)/|1=T/T,|, where T, is the critical tem-
perature at zero magnetic field.

III. VORTEX LATTICES—INFLUENCE OF
GEOMETRICAL PARAMETERS

We first consider a supercell containing four holes (W,
=W,=2W) of radius R, with lattice period W (see Fig. 1).
Although our approach is valid for any integer number of
flux-quanta piercing through the simulation region, we will
restrict ourselves here to the so-called (integer and fractional)
matching vorticities.

Figure 2 shows contour plots of |¥|> of the vortex lattice
in case of antidots of radius R=¢ and interhole distance W
=8.0¢ for different matching fields H,,. The film thickness is
d=0.1¢ and the effective GL parameter « =\%/dé=10. At
the first matching field all vortices are trapped in the antidots
[Fig. 2(a)]. Because of their small radius, each antidot is able
to pin only one vortex, and additional vortices localize at
interstitial sites when H>H, [see Fig. 2(b) for H=H;,]. At
the second matching field [Fig. 2(c)] vortices occupy all in-
terstitial sites, forming again a square lattice. For H=Hjy),,
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[Fig. 2(d)] vortices form an ordered lattice with an additional
vortex at every other interstice, added to the H, case. Note
that the size of the vortex cores at neighboring interstitial
sites differs: two vortices at the same interstice strongly in-
teract and effectively bound each others core-areas, while the
neighboring single interstitial vortex does not suffer from
any lack of space resulting in its larger core. At the third
matching field (three vortices per unit cell) two interstitial
vortices in adjacent cells alternate in position [see Fig. 2(e)],
preserving the twofold symmetry, but the vortex unit cell is 4
times the antidot lattice unit cell. At H=H, [Fig. 2(f)] we
observe the first evidence of the competition between the
Abrikosov vortex lattice (characteristic for thin film super-
conductors) and the symmetry of the pinning lattice, as vor-
tices (including pinned ones) form a slightly deformed hex-
agonal lattice. Notice that for H=H,, [Fig. 2(g)] the number
of vortices per antidot unit cell is n=9/2 and the vortex
lattice unit cell is twice the antidot unit cell. At the fifth
matching field [Fig. 2(h)] the dense packing of vortices and
their consequent strong interaction with the antidot lattice
result in the restoration of the square lattice symmetry but
the vortex lattice is tilted over 35° with respect to the antidot
lattice. Our results are in excellent agreement with the ex-
periment of Ref. 1 and previous molecular dynamics
simulations,'® in certain parameter range. Namely, the vortex
configurations are mainly determined by the pinning force of
each antidot, and the vortex-vortex interaction. The latter is
very dependent on the density of vortex packing, as the
known expressions for the vortex-vortex interaction do not
take into account possible overlap of vortex cores. On the
other hand, the antidot-vortex pinning potential is deter-
mined by the antidot-size and the period of the antidot lat-
tice. Our approach takes all these aspects into account and
their influence will be discussed in the remainder of this
paper.

As shown in Fig. 2, for small hole radii, each antidot pins
only one vortex (the hole occupation number 7, the number
of vortices sitting in the holes, equals 1), and the remaining
vortices reside between the holes. One expects that, for
larger hole radius R, vortex configurations with multiquanta
vortices in each hole can become energetically
preferable.??® Figure 3 shows the contour plots of the
Cooper-pair density at the sixth matching field for different
antidot radii. The antidot lattice period is W=6&, the thick-
ness is d=0.1¢ and «“=10. The number of vortices captured
by each hole changes from one for R=0.8& [Fig. 3(a)] to five
for R=2.1£ [Fig. 3(e)]. The vortex arrangement outside the
holes is determined not only by their mutual interaction, but
also by the attraction with the antidots and the repulsion by
their pinned vortices. For small radius R a multivortex struc-
ture is found at the interstitial sites, as apparent from Figs.
3(a) and 3(b) (see also Fig. 2). By further increasing R some
of the vortices enter the holes and the remaining vortices are
strongly caged between the antidots, resulting in the forma-
tion of giant vortices [Fig. 3(d)] and symmetry imposed
vortex-antivortex pairs’* [Fig. 3(c)]. This is apparent from
the contour plot of the phase of the order parameter W (right-
hand column of Fig. 3).

Similar behavior can be achieved if the hole size is kept
the same, but the period of the hole lattice is decreased, as
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FIG. 3. Contour plots of the Cooper-pair density (left-hand col-
umn) and phase of the order parameter (right-hand column, limited
to a single antidot lattice unit) for the sixth matching field H=H,
and for different values of the hole radius: R=0.8¢ (a), 1£ (b), 1.6&
(c), 1.7¢ (d), and 2.1 (e). The lattice period is W=6& and the GL
parameter " =10.

illustrated in Fig. 4. For small period W the interstitial vor-
tices form a giant vortices [Fig. 4(a)] because of the strong
interaction with the pinned vortices in the antidots. With in-
creasing W one extra vortex is depinned and, due to the
symmetry of the sample, vortex-antivortex pair with four
vortices and one antivortex is formed in each interstitial site
[Fig. 4(b)]. Further increase of W leads to a triangular vortex
structure at the interstitial sides with chosen orientation that
minimizes the energy between neighboring cells [Figs.
4(c)-4(e)].

It is well known that the vortex-vortex interaction changes
sign at the point xk=1/ \2. For k> 1/:2, vortices repel each
other while for k< 1/\5 they attract. To see how this attrac-
tive interaction modifies the different vortex lattice configu-
rations we consider a sample with small . Figure 5 shows
the contour plots of the Cooper-pair density for «*=10
(type-II regime) and «“=0.1 (type-I regime) for the second,
third, and fourth matching fields. For the given parameters of
the sample and for " =10 each hole pins one vortex and the
remaining vortices sit at interstitial sites [Figs. 5(a)-5(c)].
The occupation number of each hole is increased to two in
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FIG. 4. Contour plots of the Cooper-pair density (left-hand col-
umn) and phase of the order parameter (right-hand column) for the
fourth matching field H=H, and for the different values of the
lattice period: W=4.2¢ (a), 4.4¢ (b), 5& (c), 5.2¢ (d), and 5.8¢ (e).
The radius of the holes is R=0.8¢ and GL parameter " =10.

the type-1 sample [see Figs. 5(d)-5(i)] due to the enhanced
expulsion of the magnetic field by the superconductor. More-
over, because of the attractive interaction between vortices,
giant vortices become energetically more favorable contrary
to the case for k'=10. Due to the instabilities of vortex
states, which is common for type-I superconductors, variety
of metastable vortex structures can be found (see also Ref.
35). As an example we show in Fig. 6 different metastable
vortex states of the sample in Fig. 5 for x"=0.1. The free
energies of those states are F/F,=-0.3268 (a), —0.2823 (b),
—0.2787 (c), and —0.2755 (d). The ground state free energy
[Figs. 5(f) and 5(1)]is F/F,=-0.3759. Notice that because of
the attractive interaction a giant vortex state is always fa-
vored.

To summarize the above findings, we constructed the
equilibrium vortex phase diagram, which shows the depen-
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FIG. 5. Contour plots of the Cooper-pair density for «"=10
(a)=(c) and k"=0.1 (d)—(f). The lattice period is W=6¢ and the
radius is R=1&. Figures (g)-(i) show the phase of the order param-
eter of the states shown in (d)—(f). The first row is for H=H,, the
second for H=H3, and the bottom row for H=H,.

dence of antidot-occupation number n, on R and W for two
values of «", at the second, fourth, and sixth matching fields
(Fig. 7). The ground- and metastable states are determined in
our calculation by comparing the energy of all stable vortex
states found when starting from different randomly generated
initial conditions. The procedure of finding the free energy of
the different metastable states was similar to that used for the
case of mesoscopic superconducting disks.’*3! It should be
noted, that an energetically unfavorable state remain stable in
the wide range of variation of R and W. Therefore, the tran-
sitions between the vortex states with different occupation
numbers are of first order. It is seen from this figure that n,
increases as the applied field is increased, which is in agree-
ment with experimental results and theoretical predic-
tions.>!22328 With decreasing «" the threshold hole radius for
capturing another vortex decreases due to the smaller pinned
vortex-interstitial vortex repulsion.

Let us compare our numerical results for the hole-
occupation number n, with existing theoretical predictions.
The saturation number n, (n,=n, for larger fields) is usually
estimated as n,=R/2&(T).% Figure 8(a) shows the hole oc-
cupation number n, obtained from this expression and the
one from our GL calculation for different period of the anti-
dots. It is seen from this figure that this expression underes-
timates n, for small period W (dashed and dotted curves).
This is due to the fact that the last expression does not ac-
count for the interaction between vortices sitting at different
holes. For larger period W the occupation number is smaller
in our calculation for a given radius of the holes (gray curve).
A more accurate analysis was presented by Buzdin®® for bulk
superconductors within the London approach. However, his
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FIG. 6. Contour plots of the Cooper-pair density (left-hand col-
umn) and the phase of the order parameter (right-hand column) of
the sample in Fig. 5 for different metastable vortex states at H
=H, and «x"=0.1.

estimation of the critical hole radius R/ &= (W/&)*3 (for W
<\) and R/ &=~ k*3 (for A< W) corresponding to the transi-
tion from single flux quantum to two flux quanta captured by
the hole, differ from our numerically exact results, i.e., the
magnitude of the critical hole radius is largely overestimated
in Ref. 28 for both small and large period W [see Fig. 8(b)].

The maximum number of flux quanta that can be trapped
in a pinning center in a thin superconducting film was re-
cently studied experimentally using scanning Hall probe
microscopy'! and ac susceptibility measurements.® In the lat-
ter case the saturation number was obtained from the transi-
tion to different dynamic regimes, as the interstitial vortices
have higher mobility than those pinned by the antidots. They
studied thin Pb films containing a square antidot array of
period d=1.5 um. The antidots had circular (square) shape
with radius R=330 nm (size a=0.8 um), the film thickness
was d=80 nm (d=100 nm) and the coherence length at zero
temperature was estimated &(0)=30 nm [£(0)=33 nm] in
Ref. 11 (Ref. 8). Let us first discuss the results for the sample
of Ref. 11, where the experimentally obtained saturation
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FIG. 7. The vortex phase diagram: the dependence of the hole
occupation number 7, on the radius of the holes R and the distance
between them W, for k*=10 (solid curves) and « =0.1 (dashed
curves) at the matching fields H=H, (a), H=H, (b), and H=Hg (c).
The gray region shows the normal state region for x“=10 (k"=0.1
when delimited by the full curve).

number was n,=2 at T/T,,=0.77. Figure 9(a) shows the an-
tidot occupation number n, as a function of temperature for
different applied matching fields. At small applied fields (H
< H;) the occupation number is equal to two, which is in
agreement with the experimentally obtained n,. With increas-
ing applied field H> H; one more vortex is trapped by the
holes, i.e., n,=3, which is now larger than the experimental
value. At higher temperatures 7> 0.897,, n, again becomes
equal to 2. In this case one would estimate the saturation
number from n,=R/2&T) (Ref. 25) to be n,=1 for
0.967T, <T<T, and ny=2 for 0.8687 . <T<0.967T.,. We
found the occupation number equal to n,=1 only for the
second matching field at the temperature range 0.9857,
<T<T,. The estimation of Buzdin®® for the critical hole
radius R3<&T)N(T)?, where the transition from n,=1 to
n,=2 occurs, gives the temperature range 7<<0.9857,.,. We
found this transition at this temperature only for the second
matching field. For larger fields the occupation number is
always larger than unity. The giant vortex state is found only
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FIG. 8. (a) The antidot occupation number as a function of the
antidot radius from the London theory (Ref. 25) n,=R/2&(T) (solid
line) and from the GL theory for the period W=5¢ (dashed curve),
W=10¢ (dotted curve), W=15& (dashed-dotted curve) and W=30&
(gray curve) for the fourth matching field and «“=10. (b) The criti-
cal hole radius corresponding to n,=1—n,=2 transition as a func-
tion of the period W. Solid curve is obtained from the London
theory (Ref. 28) and dashed (dotted) curve is the result from the GL
theory for H=H, (H=H,) and " =10.

at H=H, for T>0.984T,, and the vortex-antivortex state is
formed at H=Hj for the temperatures 7>0.9867 .

Up to now we use the temperature dependence for the
coherence length and penetration depth as shown at the end
of Sec. II which is obtained from the BCS theory?® and is
valid near T,. In this case the GL parameter « is tempera-
ture independent. In recent experiments on Pb arrays of
nanowires arrays Stenuit et al’” found that the following
temperature dependence of the coherence length &(7)
=&0)V[1-*]/(1-%) and  penetration  depth  \(T)
=\(0)/V1-¢* which leads to a temperature dependence of
the GL parameter x=x(0)/(1+17), agrees better with experi-
ment. Here t=T/T,, and x(0)=\(0)/£(0). These expressions
are obtained from the two-fluid model. We calculated the
hole occupation number n, using the above temperature de-
pendencies, which is shown in the inset of Fig. 9(a). It is
seen from this figure that the transition from n,=n to n,=n
—1 occurs now at higher temperatures, but the results are
qualitatively similar with the earlier results.

Figure 9(b) shows the occupation number r, as a function
of temperature for different matching fields for the sample of
Ref. 8. The experimentally obtained saturation number was
n,=3 for temperatures T/T,,>0.97. Our calculations give
the same occupation number n,=3 for this range of tempera-
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FIG. 9. The antidot occupation number 7, as a function of tem-
perature 7/T,, for different matching fields for circular antidots
(R=0.33 um) (a) and square (@=0.8 um) (b) holes. The lattice
period for both samples is W=1.5 um and film thickness is d
=80 nm (a) and d=100 nm (b). The inset in (a) shows the hole
occupation number n,, of the same sample as a function of tempera-
ture for a different temperature dependence of &(7)
=&OW[1-r*/(1-%) and k=x(0)/(1+1%), where t=T/T,, and
k(0)=N\(0)/£(0).

tures but only for fields H= H,. The expression for the satu-
ration number n,~a/4&(T) gives in this case n,=1. At larger
fields the occupation number increases, but still there will be
interstitial vortices in the sample.?® These interstitial vortices
lead to a larger dissipation in the sample which was used as
the criterium for the determination of the saturation number
n,. But our calculations show that the appearance of intersti-
tial vortices does not indicate the saturation of trapped vor-
tices.

We have shown in our recent paper>* that a rich variety of
ordered vortex structures: a combination of giant vortices
with multivortices and vortex-antivortex pairs are found in
perforated superconducting samples for fractional matching
fields. Here we consider the dependence of these vortex
states on the effective GL parameter «*. As an example we
constructed the equilibrium vortex phase diagram for H
=H,,, rational matching field (i.e., 4.5 flux quanta per anti-
dot) as a function of R and W, and for x" =10 [Fig. 10(a)] and
«"=0.1 [Fig. 10(b)]. In type-II regime [Fig. 10(a)], for larger
period W the vortex configuration always consists of indi-
vidual vortices, except for n, flux lines pinned by each hole.
One extra vortex per two holes is shared between the adja-
cent cells [insets (2), and (5)] or situated in every other cell
[inset (7)]. With decreasing W, the interstitial vortices be-
come strongly caged between the neighboring antidots, re-
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FIG. 10. The ground-state vortex lattice at H=Hy, as a function
of the antidot-radius R and their periodicity W, for x*=10 (a) and
k"=0.1 (b). The solid lines denote the first order transitions between
the states with different antidot-occupation number #n,, and dashed
ones depict second order configurational transitions. The insets
show the Cooper-pair density plots of the corresponding states in-
dicated by the numbers in the phase diagram.

sulting in the distortion of the individual-vortex lattice. In
this case, the nth matching field becomes larger than the
second critical field for W/&< \27m. But the superconduct-
ing state in perforated films still survives due to enhanced
superconductivity in close proximity around the holes (due
to surface superconductivity). If the radius of the holes is
then increased, individual vortices captured at interstitial
sites can merge for H> H, to a giant vortex [region 1 in Fig.
10(a)]. This transition does not show any hysteretic behavior
and is, therefore, of second order (similarly to the case for
mesoscopic disks?’). The creation of these giant vortex states
is favored because of the repulsion of the vortices by the
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supercurrents around the holes (and consequent compression
of vortices in the central part of the interstitial regions).

The influence of caging depends on the number of con-
fined vortices; the combinations of giant vortices and multi-
vortices may be formed in the interstitial sites [insets (1), (4),
and (6)]. For interstitial vorticity 3, a vortex-antivortex pair
may nucleate, so that local vortex structure conforms with
the square symmetry of the pinning lattice [see inset (3) in
Fig. 10(a) and Ref. 34].

Figure 10(b) shows the ground-state phase diagram found
for k*=0.1. Compared to Fig. 10(a), the threshold antidot
radius for capturing another vortex decreases due to the en-
hanced screening of the applied field. Due to the attractive
vortex-vortex interaction in type-I samples, giant-vortex
states become energetically favorable at the interstitial sites
and spread over the majority of the W-R phase diagram (light
gray areas). For a dense antidot lattice, giant vortices with
different vorticity are found in adjacent cells {L=3 and L
=4 [inset (1)], and L=2 and L=3 [inset (3)]}. Contrary to the
type-II case, these giant vortices can split to smaller giant
vortices for larger spacing of antidots. They exhibit single-
vortex behavior, forming the lattice of two quanta and single
quantum vortices [insets (2) and (4)]. Such new quasi-
Abrikosov lattices of giant vortices result from the competi-
tion of vortex-vortex attraction and imposed square symme-
try of pinning. At the same time, these competing
interactions cause the complete disappearance of the vortex-
antivortex structures as found in type-II samples.

IV. TRIANGULAR TO SQUARE VORTEX LATTICE
TRANSITION IN THE PRESENCE OF A SQUARE
ANTIDOT LATTICE

It is well known that the regular triangular vortex lattice
has the lowest energy in superconductors with no pinning.'”
As we have shown above the square lattice of pinning sites
impose its own symmetry on the vortex structure. If the
vortex-pinning strength in a periodic square array is reduced,
the vortex-vortex repulsion starts to dominate over the pin-
ning force and the triangular lattice is recovered. Transition
between these phases was recently studied in Ref. 39 as a
function of the amplitude of the vortex-pinning site interac-
tion and the characteristic length scale of this interaction
within the London theory (i.e., k" =). They showed that the
transition between triangular and square vortex lattice occurs
for increasing strength of the pinning potential in the case of
small values of pinning potential length scale. In Ref. 39 a
model periodic pinning potential was introduced, the param-
eters of which are difficult to relate to any growth parameters
of the sample.

To circumvent the latter problem we studied the case of
weak pinning potential by introducing small antidots. Thus
in order to decrease the pinning force in our calculations we
just reduced the radius of the antidots R for a given period of
antidot lattice W. Calculations are done for a 8 X 8 unit cell
(W,=W,=8W) with grid points 256 X 256. Figure 11 shows
the phase diagram: the transition between the pinned (white
region) and triangular (light gray region) vortex lattice as a
function of the radius R and period W of antidots for the
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FIG. 11. The phase diagram: square (white region) and de-
formed triangular (light gray region) vortex lattice as a function of
the radius R and period W of antidots at H=H ;3 (a) and H=Hj;4
(b) for k"= (solid curves) and x*=0.9 (dashed curves). The insets
show the Cooper-pair density plots of the corresponding states.

applied fields H=H,;5(a) and H=Hs,,4(b). Let us first discuss
the results for H=H,,;3. When the pinning strength is small
(small R), it is energetically favorable to form a triangular
lattice, where vortices are located between the holes [left-
hand inset in Fig. 11(a)]. For larger radius of the holes a
square vortex lattice becomes the ground state [right-hand
side inset in Fig. 11(a)]. The critical radius of the holes R to
pin the vortices decreases with increasing period, contrary to
the one corresponding to the case of two-flux quanta cap-
tured by the holes [see Fig. 8(b)]. If we decrease the GL
parameter « the transition between pinned and triangular
vortex lattices decreases (dashed curves in Fig. 11) due to the
short range interaction between the vortices.

In Ref. 39 the phase diagram for the transition between
the triangular and square vortex lattice was found to be the
same for all submatching fields not exceeding H=H,, except
H=H, and H=H,,. Contrary to this results our calculations
give a different phase diagram for different fractional match-
ing fields. As an example, we show in Fig. 11(b) the transi-
tion lines between triangular and square pinned vortex con-
figurations for H=Hj3;;c. The triangular vortex lattice is
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FIG. 12. Contour plots of the Cooper-pair density for different
vortex states at H=H;. The radius of the antidots is R=0.14¢, the
period is W=>5¢& and effective GL parameter is «*=o.

formed where some of the vortices are pinned and some of
them are located between the antidots [see the inset of Fig.
11(b)]. For this value of the field the triangular vortex lattice
is found for larger values of the period W and radius R of the
antidots.

For the fields H=H, and H=H,, the pinned vortex lattice
has a square symmetry. An intermediate vortex configuration
for these fields was obtained in Ref. 39 where vortices in odd
rows of pinning centers are depinned and are located be-
tween the pinning sites forming a kind of triangular lattice.
Our calculations show that such vortex configurations can be
found only as a metastable state even for relatively larger
values of the period (4é<W<6§). To make this more clear
we plot in Fig. 12 the ground state (a) and metastable (b), (c)
vortex configurations at the first matching field. In addition
to the triangular vortex state given in Ref. 39 [see Fig. 12(b)]
another triangular vortex state is found, where all the vorti-
ces are located in the interstitial region [Fig. 12(c)].

V. CRITICAL CURRENT OF PATTERNED SC FILMS

In the preceding sections we showed that vortex configu-
rations that are commensurate with the periodic arrays of
antidots exhibits well-defined matching phenomena, which
leads to pronounced peaks in the critical current (see, for
example, Ref. 4). However, the stability of these vortex
states strongly depend on the parameters of the sample. For
example, a multiquanta vortex state become energetically fa-
vorable for large radius of the holes, while small holes can
capture only a single vortex. The additional vortices located
in interstitial sites reduces the critical current considerably.
Therefore, we first investigate the critical current of our
sample as a function of the relevant antidot parameters.

The first step to calculate the critical current is to accu-
rately determine the vortex ground state for given applied
magnetic field, in a manner described in the preceding sec-
tion. Then the applied current in the x direction is simulated
by adding a constant A,, to the existing vector potential of
the applied external field.'"> With increasing A, we find a
critical value of A, such that a stationary solution to Egs. (1)
and (2) cannot be found since a number of vortices is driven
in motion by the Lorentz force. The current j, in the sample
corresponding to the given value of A, is obtained after
integration of the x component of the induced supercurrents
in the y cross section. The maximal achievable value of j,
denotes the critical current j..
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FIG. 13. Critical current density (in units of jo=cH ,&/4m\?) as
a function of the applied magnetic field (in units of the first match-
ing field H,) for three values of the antidot radius: R=1¢ (solid
circles), R=1.9¢ (open circles), and R=2.5¢ (squares). The antidot
lattice period is W=10¢, the film thickness is d=0.1¢ and the effec-
tive GL parameter is «"=10. The insets show the contour plots of
the Cooper-pair density at the second (1) and third (2) matching
fields for R=1.9&.

Figure 13 shows the critical current density j. (in units of
jo=cH,&/4m\?) as a function of applied magnetic field
(normalized to the first matching field H;) for different val-
ues of the antidot radius R for fixed value of the antidot
lattice period W. For small radius (solid circles), where only
one vortex can be pinned by the hole, the peaks at the match-
ing fields decrease with increasing applied field. The oppo-
site behavior is found when there is a caging effect,* i.e.,
j(H,)<j.(H,,), which, e.g., is found for radius R=1.9¢
(open circles) for n,=1 and n,=2. This effect occurs when
there are the same number of interstitial vortices but the
number of pinned ones are different at the different matching
fields. In this case the interstitial vortices feel a stronger re-
pulsive interaction when there are a larger number of pinned
vortices. As is shown in Fig. 13 (open circles), a higher criti-
cal current is found for the third matching field, when a
double vortex occupies each hole and a single one is located
at the interstitial, than for the second matching, with one
vortex in each hole and a single interstitial vortex (see the
insets of Fig. 13). This effect disappears with further increas-
ing the radius R due to the different occupation number n,,
i.e., no interstitial vortices at H=H,.

In order to show the range of radius R and period W of
antidots, where this caging effect is active, we constructed a
R-W phase diagram for H=H, and H=H;, shown in Fig.
14(a). The shadowed area indicates the vortex state with a
single interstitial vortex for both H=H, (solid line) and H
=H; (dashed curves). Figure 14(b) shows the ratio
Je(H3)!j.(H,) as a function of period W. The critical radius R
is taken from the middle of the region (dotted curve). It is
seen from this figure that, although we have the same vortex
structure for all values of the period 46< W= 10§, the en-
hancement of j,. is found only for W= 6.6¢. For small period
the pinned vortices at H=H; suppresses superconductivity
around the holes and interstitial vortices are easily set into
motion, reducing the critical current.
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FIG. 14. (a) The dependence of the antidot occupation number
n, as a function of antidot radius R and lattice period W (see also
Fig. 7). The solid (dashed) line indicates the transition between the
states with different n, at H=H, (H=H3). The shadowed area indi-
cates the vortex state with a single interstitial vortex for both ap-
plied fields (the occupation number in this region is n,=1 for H
=H, and n,=2 for H=H;). (b) The ratio of j.(H3)/j.(H,) as a
function of the period W, where the radius of the antidots corre-
spond to the dotted line in the middle of the dashed area.

Figure 15 shows the critical current density as a function
of the field for two values of the period: W=4¢ (open circles)
and W=8¢ (solid circles) at R=1.25&. As we showed above,
the j.(H) curve shows pronounced maxima at integer fields
H,, H,, and H5 and at some of the fractional matching fields.
However, while the qualitative behavior of j.(H) in Fig. 15 is
as expected, its quantitative behavior reveals a counterintui-
tive phenomenon. Namely, one expects higher critical cur-
rent in the sample with larger interhole distance, simply due
to the presence of more superconducting material. Indeed,
that is the case for H=< H;, where the superconductor is able
to compress all flux lines in the holes. However, for higher
magnetic fields, the critical current drops sharply immedi-
ately after the first matching field H,, which is related to the
appearance of interstitial vortices. On the other hand, the
smaller interhole distance affect the hole occupation number
(see Fig. 7), and the additional vortices after H=H, are still
captured by the holes (as illustrated by Cooper-pair density
plots in the inset of Fig. 15). Consequently, the critical cur-
rent in this case is larger for smaller periodicity. Note that
even for smaller periodicity a sharp drop in j, is observed for
H>H,, as every additional vortex disturbs the stability of
the vortex lattice. Even at H=H,, although all vortices are
captured by the holes, the critical current is lower, due to a
stronger suppression of the order parameter around the holes
compared to the H=H; case. The height of the matching
peaks is decreasing with further increasing field (due to the
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FIG. 15. Critical current density of the superconducting film as
a function of the applied magnetic field for two values of the antidot
lattice period: W=8¢ (solid circles) and W=4¢ (open circles). The
insets show contour plots of the Cooper-pair density at the second
(1,3) and third (2,4) matching fields for W=4¢ (1,2) and W=8¢
(3,4). The radius of the holes is R=1.25¢, the film thickness is d
=0.1¢ and the effective GL parameter is «"=10.

presence of interstitial vortices), which agrees with experi-
ment (see Ref. 4), and these peaks strongly diminish for
higher fields as the vortex-flow overwhelms the pinning po-
tential.

When we apply a dc current into the superconductor the
vortex lattice is distorted before the vortices start moving. To
illustrate this phenomenon, we plot in Fig. 16 the Cooper
pair density of the superconducting film at the applied cur-
rents (in y direction) j=0 (first column), j=0.5;, (second
column) j=0.95j, (third column) for different matching
fields. At the first [Fig. 16(a)] and second [Fig. 16(b)] match-
ing fields all the vortices are displaced over the same dis-
tance, conserving the square symmetry in the lattice of vor-
tices. At larger fields, when there is a large number of
interstitial vortices [Figs. 16(c)—16(e)], the vortex configura-
tion is changed by the current and some of the vortices are
jammed at the interstitial sites. If we initially have giant vor-
tices [Fig. 16(f)] they can be split into multivortices with
increasing j. Our calculations also show that there is no tran-
sition from the multivortex state to the giant vortex state
when we increase the applied current, and the occupation
number of the antidots n, is found to be independent of j.

Another interesting feature following from the displace-
ment is found for fractional matching fields. For example,
Fig. 2(d) shows alternating two-vortex—single-vortex struc-
ture at H=Hs,,, where applying small current in the y direc-
tion can shift the excess vortex from one interstitial site to
another. Note that the resulting state has identical configura-
tion and energy as the previous one. In order to estimate the
energy barrier between these two vortex states we performed
calculations for a superconducting film of thickness d
=13 nm with an array of antidots with period W=1 um, ra-
dius R=0.13 pum, at temperature T=0.97.. We take &(0)
=40 nm and \(0)=80 nm, which are typical values for Pb
thin films. We found an energy barrier of AF=6.2 meV,
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FIG. 16. Contour plots of the Cooper-pair density for H=H, (a),
H=H, (b), H=H; (c,g), H=H, (d,f), and H=Hj (e), and for the
applied current j=0 (first column), j=0.5;, (second column) and j
=0.95/, (third column). GL parameter is «" =10, the period of the
antidots lattice is W=6¢& and the radius of the antidots is R=0.8¢ (e),
R=1£ (a—d), R=1.3¢ (f), and R=2£ (g).

which is significantly higher than the thermal activation en-
ergy at this temperature (k7=0.56 meV), but still low
enough for successful switching by a relatively weak current.
Moreover, when an ac is applied to the sample, the vortex
can shift back and forth between the adjacent cells, resulting
in resonant dissipation.

So far, we presented results at a fixed temperature. In
what follows, we include temperature in our numerical
analysis through the temperature dependence of the coher-
ence length & We now consider the superconducting film
with thickness d=20 nm, interhole distance W=1 um, and
antidot radius R=0.2 um. We choose the coherence length
£(0)=40 nm and the penetration depth A\(0)=42 nm, which
are typical values for Pb films. Figure 17 shows the calcu-

PHYSICAL REVIEW B 74, 174512 (2006)

j, (10° Aiem®)

4 —e—T/T =086

«—
5

> 3H Nod / —o—TM 088 [
(Do "]

—u—T/T_=0.90 0.0F

b \b—o, o
PN N / - o= TIT_=092
o ke --A--TIT,_=0.94
\ £\ - a- TT,=096 W=1.0 um
1 b -0 AW -*--TT =098 R=0.2 ym
A AN :FK .5 d=20 nm
Wa A el
o & *. E '.%'_-E:D:A--i\
ok R S e .:Q::é::é‘.:%-‘ M‘f&ﬁg‘g;ﬁ;‘i
0 1 2 3 4 5

H/H,

FIG. 17. Critical current density of the perforated superconduct-
ing film as a function of the applied magnetic field (in units of the
first matching field H,) at temperatures 7/7.,=0.86—0.98. The lat-
tice period is W=1 um, the antidot radius is R=0.2 wm, and film
thickness is d=20 nm.

lated critical current of the sample as a function of the ap-
plied field normalized to the first matching field at tempera-
tures 7/7,,=0.86-0.98. As expected, decreasing the
temperature leads to a larger critical current for all values of
the applied field. The relative height of the peak at zero field
with respect to one at the first matching field increases with
increasing temperature [see Fig. 18(a)]. At higher tempera-
tures, i.e., for &T)>R, a certain suppression of the order
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FIG. 18. The ratio of j.(Hy)/j.(H,) (a) and j.(H3)/j.(H,) (b) as
a function of temperature for the sample with parameters given in
Fig. 17. The insets show the Cooper-pair density plots at tempera-
tures indicated by the solid circles in the main figure (a).
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FIG. 19. Numerically obtained j.(H) characteristics of the su-
perconducting film with antidot arrays (parameters given in the fig-
ure) for the coherence length at zero temperature £(0)=40 nm (solid
circles) and £(0)=25 nm (open circles). The solid curve denotes
experimental data (taken from Ref. 9).

parameter is present around the antidots [right-hand inset in
Fig. 18(a)] as the core of pinned vortices overlaps with the
interstitial regions. Consequently, the suppressed order pa-
rameter leads to a smaller j.. The caging effect is found for
temperatures 7<0.937T,, [see Fig. 18(b)] and it disappears
with temperature when approaching 7., since the vortices
entirely cover the interstitial regions and effectively destroy
superconductivity.

This effect that the critical current is larger for larger
fields was recently observed experimentally.” The considered
sample was a Pb film of thickness 50 nm, with square anti-
dots of size a=0.5 um and period W=1.5 um. The coher-
ence length and the penetration depth at zero temperature
were estimated to be &0)=40 nm and A(0)=80 nm. Al-
though plotted for other purposes, Fig. 6(b) in Ref. 9 dem-
onstrates a clear overshoot of the critical current at H=Hj;
with respect to the one at H=H,, at the temperature
0.974T .. Figure 19 shows the comparison of the calculated
critical current density (dots) with experiment (solid line).
Our j .(H) curve shows the same qualitative behavior as the
experimental one, though a quantitative agreement is lacking
for the experimentally estimated values of &) and A\(0).
Better correspondence was achieved for smaller values of
&(0), indicating somewhat “dirty” sample in the experiment.
No further attempts were made to improve the quantitative
agreement with experiment because of the different determi-
nation of j. in the experiment and in our theory. In our cal-
culations we use a dynamical criterium, i.e., we assume nor-
mal state as soon as vortices are set in motion, whereas in
transport measurements a certain value of the threshold volt-
age was used to determine the critical current and the surface
barrier at the edges is important. Therefore, our result should
be considered as a lower limit to the experimental critical
current. The qualitative behavior of j,. at the matching fields
should not be influenced by these facts.

VI. SUPERCONDUCTING-NORMAL T, (H) PHASE
BOUNDARY

The presence of antidot lattice in a superconducting film
not only enhances the vortex pinning, which was discussed
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FIG. 20. H-T phase boundary for the superconducting film with
an antidot array. The film thickness is d=50 nm, the period of the
antidot lattice is W=1.5 um, the antidot size is varied as a
=0.25 um (solid curve), a=0.5 um (dashed curve), a=0.75 um
(dotted curve), and a=1.0 um (dashed-dotted curve). Thin solid
curve denotes the upper critical field (H,,) of the plain supercon-
ducting film [Eq. (5)], thin dashed curve gives the third critical field
H.;=1.69H., for a plain superconductor-vacuum boundary, and
thin dotted curve is the critical field of a superconducting strip with
thickness w=0.5 um [Eq. (6)].

in the preceding section, but also affects substantially the
nucleation of superconductivity. Due to the superconducting-
vacuum interface at the antidots, surface superconductivity
will be important around each antidot, at fields above the
bulk critical field H,,(T). This makes it possible to enhance
the critical field in patterned superconducting films above
H,,(T) and even beyond the third critical field H (7). The
ratio H.5(T)/H_,(T) tends to the value 1.69, the enhancement
factor for a semi-infinite slab.>® However, for a dense antidot
lattice a much larger enhancement can be achieved. Namely,
if the antidots are sufficiently closely spaced, almost the en-
tire sample may become superconducting at high fields
through surface superconductivity.

The critical field of superconducting Pb films with a
square array of antidots was investigated in Ref. 41 by the
magnetoresistance measurements. The experimentally ob-
tained H-T phase boundary shows a cusplike behavior with
cusps at integer and some fractional matching fields. The
amplitude of the cusps depend on the resistive criterion: the
cusps become sharper and their amplitude increases with de-
creasing this criterion.

We numerically investigated the H-T phase boundary for
a superconducting film of thickness d=50 wm in the pres-
ence of a regular array of square antidots with lattice period
W=1.5 um. We take the coherence length at zero tempera-
ture as £(0)=40 nm and penetration depth as A(0)=42 nm.
Figure 20 shows the calculated T.(H) phase diagram for dif-
ferent sizes of the antidots: a=0.25 um (solid curve), a
=0.5 uwm (dashed curve), a=0.75 um (dotted curve), and a
=1.0 um (dashed-dotted curve). For comparative reasons,
we also plotted the phase boundary for a plain film (thin
solid curve) with the same coherence length £(0)=40 nm,
obtained from the well-known expression for the upper criti-
cal field,
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It can be easily seen that the antidot lattice has a profound
influence on the critical magnetic field, as compared to a
reference nonpatterned film. The critical temperature is en-
hanced at every field, and vice versa, regardless of the size of
the antidots. Note also that matching features are present in
T.(H) at integer matching fields. For small radius of the an-
tidots matching peaks at higher integer matching fields H
>H, are weakly pronounced, due to the small hole-
saturation number (see Sec. III). We did not observe clear
evidence of fractional matching features.

For small radius of the antidots the sample basically acts
as a nonpatterned film for temperatures close to 7, and the
dependence of the critical temperature on the applied field is
almost linear. For larger sizes of the antidots (e.g., dotted and
dashed-dotted curves in Fig. 20), the critical field becomes
substantially higher than the third critical field of a semi-
infinite slab (thin dashed curve), and the peaks at matching
fields are more pronounced. In addition, 7.(H) exhibits a
parabolic background as for a thin slab in a perpendicular
field, as well as to a thin film in a parallel field, which can be
described in the London limit by3®

_12¢m

Hc3 Hc2(T)’ (6)

where w stands for the width of the superconducting strip.

VII. CONCLUSIONS

We have studied the vortex structure of a thin supercon-
ducting film with a regular array of antidots, which shows a
rich variety of ordered vortex lattice configurations for dif-
ferent matching and fractional matching fields H,. For small
radius of the holes, the vortex configurations with one vortex
captured in each hole and the others located in the interstitial
sites are realized, where interstitial vortices form regular pat-
terns, either as multivortices or giant vortices, or combina-
tion of giant vortex and multivortex states. For particular
geometrical parameters of the sample and the applied field, a
symmetry imposed vortex-antivortex configuration is found.
Depending on the ratio between the hole radius R and the
interhole distance W, multiquanta vortices may be forced
into the antidots, in spite of their low saturation number at
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smaller magnetic fields. To illustrate the transition between
possible multiquanta states in the holes we showed a diagram
of the occupation number 7, as a function of the radius of the
holes and interhole distance for different values of the effec-
tive GL parameter. n, increases with decreasing «* due to the
enhanced expulsion of the magnetic field from the supercon-
ductor and giant vortices become energetically favorable be-
cause of the attractive interaction between the vortices.

When the pinning force of the antidots is small, i.e., small
radius of the antidots, the triangular vortex lattice becomes
energetically favorable. Depending on the applied field all
the vortices can be located between the antidots, or some of
them are pinned by the antidots and some of them are located
between the pinning centers. We calculated the phase dia-
gram which shows the transition between the triangular and
pinned square vortex lattices for two values of the applied
field and GL parameter x. We found that the results from the
simple London theory for the phase diagram are different
from our GL results for different applied fields. Moreover,
we could not find triangular vortex structures for the fields
H=H,; and H=H,, as a ground state for a dense antidot
lattice.

The critical current j. of the sample shows well-defined
peaks at different matching H, and fractional matching
fields, indicating that vortices are strongly pinned by anti-
dots. However, the level of j. enhancement at particular
magnetic field strongly depends on the antidot occupation
number 7n,. For certain parameters of the sample, the critical
current becomes larger at higher matching fields, contrary to
conventional behavior.

We also studied the T.(H) phase boundary of regularly
perforated superconducting film. When an antidot array is
present the critical temperature T.(H) is enhanced compared
to a nonpatterned film and distinct cusps in the phase bound-
ary are found for different matching fields, which is in agree-
ment with experiment.*!' This behavior is in contrast to the
Little-Parks*> type structures found in finite size
superconductors.*? The increase of the antidot size for given
lattice period leads to the change of the T.(H) background
from linear to parabolic behavior except for T near 7.
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