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We examine a weak-coupling theory for unconventional superconducting states of cubic or tetrahedral
symmetry for arbitrary order parameters and Fermi surfaces and identify the stable states in a zero applied
field. We further examine the possibility of having multiple superconducting transitions arising from the weak
breaking of a higher symmetry group to cubic or tetrahedral symmetry. Specifically, we consider two higher
symmetry groups. The first is a weak crystal field theory in which the spin-singlet Cooper pairs have an
approximate spherical symmetry. The second is a weak spin orbit coupling theory for which spin-triplet Cooper
pairs have a cubic orbital symmetry and an approximate spherical spin rotational symmetry. In hexagonal UPt3,
these theories easily give rise to multiple transitions. However, we find that for cubic materials, there is only
one case in which two superconducting transitions occur within a weak coupling theory. This sequence of
transitions does not agree with the observed properties of PrOs4Sb12. Consequently, we find that to explain two
transitions in PrOs4Sb12 using approximate higher symmetry groups requires a strong coupling theory. In view
of this, we finally consider a weak coupling theory for which two singlet representations have accidentally
nearly degenerate transition temperatures �not due to any approximate symmetries�. We provide an example of
such a theory that agrees with the observed properties of PrOs4Sb12.
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I. INTRODUCTION

It has been observed that a wide variety of heavy fermion
superconductors appear to undergo multiple phase transitions
within the superconducting state. These materials include
UPt3,1 U1−xThxBe13,

2,3 and PrOs4Sb12.
4,5 The fact that mul-

tiple transitions are being observed in such a significant frac-
tion of the total number of heavy fermion superconductors
discovered is presumably providing a valuable insight into
the nature of the superconducting state. Among the heavy
fermion superconductors showing multiple phase transitions,
UPt3 has been most extensively studied. It has a hexagonal
point group symmetry and shows two transitions with a
small �about 10%� splitting of the superconducting transition
temperature. Three main approaches have been used to theo-
retically model the phase diagram of UPt3 and it would be of
interest to see if any of these approaches apply to the other
materials. The first approach uses a weak symmetry breaking
field �SBF� to break the hexagonal symmetry. This field lifts
the degeneracy of a multicomponent order parameter leading
to two transitions.6 The origin of this symmetry breaking
field has been questioned7 and other proposals have emerged.
Zhitomirsky and Ueda have postulated a weak crystal field
model in which spin-singlet Cooper pairs experience an ap-
proximate spherical symmetry which is weakly broken to
hexagonal symmetry.8 Along similar lines, Machida and co-
workers have postulated a weak spin orbit coupling for spin-
triplet Cooper pairs.9 The third approach uses a phenomeno-
logical model that considers two different irreducible
representations of the hexagonal point group that acciden-
tally have nearly the same Tc.

10,11 In all these cases, it is
possible to develop microscopic theories based on a weak
coupling theory that give rise to the two transitions and such
theories have been useful in developing a qualitative under-
standing of this superconductor.12

Among the materials with cubic or tetrahedral point group
symmetry: U1−xThxBe13 and PrOs4Sb12 have shown multiple

superconducting transitions. Both these materials have been
the subject of phenomenological studies. U1−xThxBe13 has
been studied using a phenomenological approach by Sigrist
and Rice13 while PrOs4Sb12 has been examined phenomeno-
logically by Goryo,14 Ichioka et al.,15 Matsunaga et al.,16 and
more recently by Sergienko and Curnoe.17 There have been a
variety of microscopic proposals for the superconducting
states in PrOs4Sb12.

18–20

It is interesting to note that none of these microscopic
theories attempts to provide an origin for the two transitions
for cubic or tetrahedral materials. Existing microscopic theo-
ries predict the properties of the A phase but are forced to
make ad hoc assumptions about the origin of the transition in
the B phase. This is in sharp contrast to the case of UPt3
where microscopic justification for the second transition ex-
ists based on weak coupling theories.12

In the hope of identifying a common origin to multiple
transitions for heavy fermion superconductors, we apply the
conceptual frameworks developed for hexagonal UPt3 to cu-
bic and tetrahedral superconductors. One goal is to examine
under what circumstances weak coupling BCS provides a
microscopic description of the two transitions. We expect
that the BCS theory will capture a large contribution to the
condensation energy of these heavy fermion superconductors
and therefore provides a reasonable basis for such studies.
This is partially justified by the agreement between the ob-
served size of the specific heat jumps at Tc and that predicted
by weak coupling theories. In neither U1−xThxBe13 nor
PrOs4Sb12 has any weak symmetry breaking fields been
identified. Therefore, we begin by exploring possible higher
symmetry groups that are weakly broken. We consider two
higher symmetry groups. The first is motivated by the weak
crystal field theory of Zhitomirsky and Ueda for UPt3.8 In
this theory, the spin-singlet superconducting state has an ap-
proximate spherical symmetry SO�3�, which is weakly bro-
ken to cubic or tetrahedral symmetry. We next consider the
possibility of weak spin-orbit coupling so that the spin-triplet
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superconductor has an approximate O�SO�3� symmetry.
We find that the weak coupling theory for only the latter of
these two higher symmetries allows for one possible scenario
for two transitions. The sequence of transitions found this
way does not agree with experimental data for PrOs4Sb12.
We further show that the weak crystal field theory does allow
for two transitions when strong coupling corrections are in-
cluded. However, the condensation energy associated with
the strong coupling corrections must be comparable to that of
a weak coupling theory to account for experimental results
on the specific heat. These results indicate that a weak cou-
pling theory does not provide an adequate description of the
superconducting state within the context of weakly broken
higher symmetry groups.

Given the failure of a weak coupling theory for PrOs4Sb12
in the above context, we finally ask if it is possible for a
weak coupling theory to provide a description of the two
transitions that agrees with the experimental results. We find
that it is possible for such an approach to succeed and give
one example of when it does. However, without the con-
straints imposed by higher symmetries, a general analysis of
resulting weak coupling theories is not possible and requires
a detailed knowledge of the quasiparticles within the mate-
rial.

The paper is organized as follows. We initially provide an
overview of experimental results for PrOs4Sb12 and
U1−xThxBe13. Then we provide an analysis that results in all
the possible high-temperature superconducting phases al-
lowed within a weak coupling theory for cubic and tetrahe-
dral superconductors. Finally, we examine the origin of the
second transition within the frameworks discussed above.

II. EXPERIMENTAL PROPERTIES OF THE
SUPERCONDUCTORS PrOs4Sb12 AND U1−xThxBe13

The heavy fermion superconductor PrOs4Sb12 is the first
among the rare-earth filled skutterudite compounds showing
a superconducting behavior. It undergoes a normal to super-
conducting transition with Tc1=1.85 K �the high-temperature
phase is known as the A phase� followed by another transi-
tion at Tc2=1.75 K from the A phase to the B phase. This
second transition shows up as a pronounced anomaly in the
specific heat and magnetization measurements.21,22 Note that
the specific heat measurements by Measson et al. have raised
questions about the intrinsic nature of the double supercon-
ducting transition.23 Various experiments have reported a
similar field dependence of the Hc2 curve for both the tran-
sition temperatures.22 Though the symmetry and type of
nodes of the gap structure in the A phase remains inconclu-
sive, experiments suggest the presence of two-point nodes in
the B phase. This has been observed by the power law tem-
perature dependence in specific heat,5 thermal conductivity24

and penetration depth measurements.25 A possible third
phase transition �Tc3� has been observed as an enhancement
of the lower critical field Hc1�T� below T�0.6 K.26 Interest-
ingly this anomaly has not been detected by specific heat
measurements at low temperatures. Experiments have also
observed local broken time-reversal symmetry in the super-
conducting phase through �SR measurements.27

One experimental result on PrOs4Sb12, which has not re-
ceived much theoretical attention yet provides a strong con-
straint, is the low field measurement of the vortex lattice
geometry. The key result is that the vortex lattice is not hex-
agonal near Hc1 for the field along the c axis.28 As the au-
thors of �Ref. 28� have pointed out, this is a strong constraint
because this lattice structure results from a London free en-
ergy whose form depends upon the symmetry of the super-
conducting state. The London free energy can be expanded
in powers of the reciprocal lattice vector q of the vortex
lattice. The form of the free energy is29

F =
h2

8�
�

q
�1 + �2�

i,j
�1 + miiqj

2 − mijqiqj�� . �1�

Here � is the penetration depth and m is the normalized
London effective mass tensor whose components in a weak
coupling theory for a singlet superconductor is given by
mij

−1� �v fiv f j���k��2	FS with v fi being the ith component of
Fermi velocity and ���k�� representing the gap magnitude.
We are justified in keeping q terms up to second order near
Hc1 because in this region q has a small magnitude being
approximately given by q�
 B

�0
. If we consider that the gap

to be invariant under a threefold rotation, we find that the
components of the effective mass tensor are given by

mxx = myy = mzz, mxy = myz = mxz = 0.

This situation would result in a hexagonal vortex lattice near
Hc1. No other symmetry element of the tetrahedral point
group implies a hexagonal vortex lattice. Since the observed
vortex lattice is not hexagonal near Hc1, we conclude that the
superconducting state does not contain a threefold symmetry
axis.

The alloy U1−xThxBe13, which has cubic point group sym-
metry, shows two second-order superconducting transitions
for concentration of thorium exceeding x=0.018 in specific
heat measurements.30 A pronounced peak has been observed
in the ultrasonic attenuation for longitudinal sound propa-
gated along a �100� direction at T=Tc2.31 Measurements by
Bishop et al. found a similar behavior for longitudinal sound
propagated along the �111� direction.32 Significant anomalies
have been observed in Hc1�T� at T=Tc2 �Ref. 33� and the
zero field �SR linewidth shows a marked increase as T de-
creases below Tc2 in samples with x�0.033.34 Finally Lam-
bert et al. found differences in the pressure dependence of Tc
for x	0.018 and x
0.018.35

III. THEORY OF THE HIGH-TEMPERATURE
SUPERCONDUCTING PHASE

For all the theories we consider, the initial transition into
the superconducting state is characterized by either cubic or
tetrahedral symmetry. Therefore, this transition is described
by a single-order parameter symmetry. Here, we provide a
general analysis of the possible superconducting states that a
weak-coupling theory allows for this phase. A similar analy-
sis of this problem has appeared recently by Kuznetsova and
Barzykin.36 However, we find that a weak coupling theory
provides even stronger constraints than found in this work.

S. MUKHERJEE AND D. F. AGTERBERG PHYSICAL REVIEW B 74, 174505 �2006�

174505-2



As a consequence, some of the phases found by these authors
are ruled out.

The cubic group Oh has ten irreducible representations
�irreps� that are listed in Table I. The tetrahedral group has
one three-dimensional �3D� irrep and three one-dimensional
�1D� irreps, two of which are complex conjugates and com-
bine to form a single irrep when time-reversal symmetry is
present. In this section we study the superconducting phases
of materials with cubic- and tetrahedral-point group symme-
try whose basis functions transform as a multidimensional
representation.

The superconducting gap is given by ��k�= ���k��0

+d�k� ·��i�y where ��k�=��−k� is the even-parity spin-
singlet component, d�k�=−d�−k� is the odd-parity spin-
triplet component, and �= ��x ,�y ,�z� represents the Pauli
spin matrices. Among the various irreps of the point group
symmetry there is one, say , which gives the highest tran-
sition temperature. The superconducting state can be written
as a linear combination of the basis functions of this repre-
sentation �� ,m ;k�

��k� = �
m

��,m���,m;k� .

Here �� ,m� is, in general, complex and acts as the order
parameter. For a single representation the fourth-order free
energy for the superconducting state can be written as an
expansion in �� ,m�

F�T,�� = F0�T� + ��
m

���,m��2 + f���,m�4�

with �=�0�T /Tc��−1�, and the fourth-order energy con-
tains all terms which are invariant under G�R�U�1�. The
normal state of the system is represented by the free energy
F0�T�. Here G is the crystal point group symmetry, R and
U�1� are the time reversal and gauge symmetry groups, re-
spectively. The fourth-order terms in the Ginzburg-Landau
theory are characterized by several coefficients �i, which are
arbitrary in a general theory but are constrained in the weak-
coupling limit.

For the spin-triplet systems the fourth-order free energy
within a weak-coupling theory can be evaluated from the
average

��d�k��4 + �q�k��2	

with q= id�k��d�k�*. The q vector is zero for unitary states
and takes finite values for nonunitary states. Since �q�2 gives
a positive fourth-order contribution to the free energy for

nonunitary states, it is unusual for these states to be preferred
stable states within a weak-coupling theory. For the spin-
triplet representations, sixth-order terms in the free energy
are required to remove a residual degeneracy and completely
specify the solution. The sixth-order free energy is given by

1

3
��d�k��6 + 3�q�k��2�d�k��2	 .

For spin-singlet systems the fourth-order free energy will be
given by

����k��4	 .

We now analyze the possible superconducting ground states
for cubic symmetry within the weak-coupling limit.

A. Two-dimensional representation

The cubic group contains one two-dimensional represen-
tation for even-parity states with the gap function

��k� = �1f1Eg
�k� + �2f2Eg

�k� ,

where f1Eg
�k� and f2Eg

�k� form a basis for the Eg irrep. For
the odd-parity states the representative basis functions f1Eu
and f2Eu

are given in Table I and the gap function is given by

d�k� = �1f1Eu
�k� + �2f2Eu

�k� .

The general free energy can be expressed as an expansion in
the order parameters �1 and �2 as

F = �0�1 −
T

Tc
����1�2 + ��2�2� +

7��3�
16��Tc�2N0�4

���1���1�2 + ��2�2�2 + �2��1
*�2 − �2

*�1�2� , �2�

where �0=1 in the weak-coupling limit. The weak-coupling
values of the fourth-order coefficient for the even-parity
states are

�1 = 3�2 = �f1Eg

4 �k�	

with the bracket meaning the average over the Fermi surface.
All averages in the current and future discussion are in a
normalized form such that �f2�k�	=1, where f�k� represents
the basis function. If we minimize this free energy we find
that since �1
0, the phase �2�1, i� will minimize the free
energy. This is true for arbitrary Fermi surfaces and gap basis
functions. This phase belongs to the superconducting class
O�D2� �Ref. 37� and has point nodes along the cube diago-

TABLE I. Irreps and corresponding representative basis functions for even- and odd-parity states of cubic symmetry.

Representation Representative basis function �f� Representation Representative basis function �f�

A1g kx
2+ky

2+kz
2 A1u x̂kx+ ŷky + ẑkz

A2g �kx
2−ky

2��ky
2−kz

2��kz
2−kx

2� A2u x̂kx�kz
2−ky

2�+ ŷky�kx
2−kz

2�+ ẑkz�ky
2−kx

2�
Eg 2kz

2−kx
2−ky

2, kx
2−ky

2 Eu 2ẑkz− x̂kx− ŷky, x̂kx− ŷky

T1g kykz�ky
2−kz

2�, kzkx�kz
2−kx

2�, kxky�kx
2−ky

2� T1u ŷkz− ẑky, ẑkx− x̂kz, x̂ky − ŷkx

T2g kykz, kxkz, kxky T2u ŷkz+ ẑky, ẑkx+ x̂kz, x̂ky + ŷkx
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nals. The gauge factor �2 has been multiplied to keep the
notation consistent with Ref. 36.

For the odd-parity irreps the weak-coupling values for the
fourth-order coefficients are

�1 = 3�fx
2�k�fy

2�k�	�x + 1�, �2 = �fx
2�k�fy

2�k�	�x − 7� ,

where x= �fx
4�k�	 / �fx

2�k�fy
2�k�	 and �fx�k� , fy�k� , fz�k�� form

an arbitrary basis of T1u symmetry and have the same rota-
tion properties as the vector k. If we minimize this free en-
ergy within the weak-coupling limit, the nonmagnetic phase
�= �1,0� belonging to the superconducting class D4 � R is
found to be stable for x	7 �note that a residual continuous
degeneracy remains for which any real combination of the
two components minimizes the fourth-order free energy; this
is lifted by sixth-order terms�. For x
7 the magnetic phase
�=�2�1, i� is stable. Again the gauge factor �2 has been
multiplied to keep the notation consistent with Ref. 36. This
phase belongs to the O�D2� superconducting class and con-
tains point nodes along the cube diagonals. It is interesting to
find a nonunitary phase that is stabilized within a weak-
coupling theory in a zero applied field. The second nonmag-
netic phase �= �0,1� appears to be prohibited in a weak-
coupling theory by the sixth-order term in the free energy

− �3��1�2�3�2
2 − �1

2�2,

where �3 is given by the weak-coupling value

�3 =
1

54
�fx

6�k� + 2fx
2�k�fy

2�k�fz
2�k� − 3fx

4�k�fy
2�k�	 .

We numerically find �3
0 for a variety of basis functions
and Fermi surface structures, but we could not prove this
analytically.

Tetrahedral symmetry does not change the structure of the
�2�1, i�, but does introduce an additional sixth-order term in
the free energy that modifies the �= �1,0� phase. This term is


3

72
�fx

2�k�fy
2�k��fx

2�k� − fy
2�k��	�3��1�2

* + �2�1
*�

����1�4 + ��2�4 − 3��1�2��1�2� − ��1
3�2

*3 + �1
*3�2

3��

as a result the stable A phase ground state is given by
��1 ,�2�, where both �1 and �2 are real �note that there is no
continuous degeneracy in this phase�.17

B. Three-dimensional representation

The free energy for the 3D representation can be written
as

F = �0�1 −
T

Tc
���p1�2 + �p2�2 + �p3�2� +

7��3�
16��Tc�2

�N0�4��1��p1�2 + �p2�2 + �p3�2�2 + �2�p1
2 + p2

2 + p3
2�

��p1
*2 + p2

*2 + p3
*2� + �3��p1�4 + �p2�4 + �p3�4�� . �3�

The weak-coupling values of the coefficients are

�1 = 2�2 = 2�f1T2g

2 �k�f2T2g

2 �k�	 ,

�3 = �f1T2g

4 �k�	 − 3�f1T2g

2 �k�f2T2g

2 �k�	 .

The functions �f1T2g
�k� , f2T2g

�k� , f3T2g
�k�� form a basis for the

T2g irrep. If we define the parameter space in terms of one
free parameter

x̃ =
�f1T2g

4 �k�	

�f1T2g

2 �k�f2T2g

2 �k�	
,

we find that for x̃	3, the state �1, i, 0� is the ground state.
This state belongs to the class D4�E� and contains line nodes
in the z=0 plane. For x̃
3, the phase �1,� ,�2� is a stable
high-temperature phase. This state belongs to the class D3�E�
and contains point nodes. The boundary x̃=3 corresponds to
a spherical Fermi surface. The weak-coupling values provide
a tighter restriction on the allowed phases than that found by
Kuznetsova et al. and result in only magnetic states being the
stable weak-coupling phases. In particular, it should be noted
that x̃
1 for any choice of basis functions, and this con-
straint rules out any nonmagnetic phases.

For the odd-parity states the weak-coupling values are
given by

�1 = x + 3, �2 = −
�x + 1�

2
, �3 =

x − 3

2
,

where again x= �fx
4�k�	 / �fx

2�k�fy
2�k�	. We find that the state

�1,1,1� is stable for x
3 whereas �1,0,0� is stable for x	3
for both T1u and T2u irreps. The boundary x=3 corresponds
to the spherical Fermi surface.

All the possible solutions for the high-temperature phase
within the weak-coupling limit are listed in Table II. For the
tetrahedral symmetry the analysis will be similar to the cubic
at the fourth order since tetrahedral and cubic groups have
the same invariants. The difference in the tetrahedral and
cubic invariants at the sixth order results in the state ���1�,
i��2�, 0� belonging to D2�E� symmetry group giving the

TABLE II. Stable high-temperature phases in the weak-coupling
limit. The corresponding representative basis functions are listed in
Table I. Here �=exp�2�i /3�.

Representation State Nodes Symmetry class

Eg
�2


2
�1, i� P O�D2�

Eu �1, 0� — D4 � R

Eu
�2


2
�1, i� P O�D2�

T2g
1

2

�1, i ,0� L D4�E�

T2g
1

3

�1,� ,�2� P D3�E�

T2u
1

3

�1,1 ,1� P D3 � R

T2u �1, 0, 0� P D4�D2� � R

T1u
1

3

�1,1 ,1� P D3�C3� � R

T1u �1, 0, 0� P D4�C4� � R
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ground state for the tetrahedral symmetry, rather than the �1,
i, 0� state belonging to the D4�E� symmetry group giving the
ground state for cubic symmetry.17

In view of the controversy between the extrinsic versus
intrinsic nature of the transition in PrO4Sb12, we briefly con-
sider that there is a single superconducting transition and ask
if any of the above stable phases can explain the experimen-
tal properties observed at low temperatures. In particular, the
ground states listed in Table II, which may explain the ob-
served properties, are the �1,0� state of Eu, �1, i, 0� for T2g,
and the �1,0,0� state of T1u and T2u. These states have a gap
structure with point nodes or are highly anisotropic. In addi-
tion, each of these states break tetrahedral symmetry which
would result in a distorted vortex lattice structure. Note that
the observation of an increased muon relaxation rate in the
superconducting phases27 does not imply that time-reversal
symmetry is globally broken, but only locally broken.38 We
take this to imply that the order parameter must be multi-
component but that the ordered phase need not break time-
reversal symmetry globally.

IV. WEAKLY BROKEN SO(3) THEORY FOR
SPIN-SINGLET STATES

We now turn to the role that higher symmetries may play
in giving rise to two superconducting phase transitions. In
this section, we consider the weak crystal field theory for
which there is an approximate SO�3� for spin-singlet super-
conductors. Such an approach was proposed to explain the
phase diagram of UPt3 by Zhitomirsky, and Ueda.8

We find the possible superconducting transitions for a
state in which the spin-singlet Cooper pairs are in the l=2
channel. Due to the effect of a weak crystal field, the fivefold
degenerate l=2 irrep of SO�3� split into Eg � T2g of the cubic
group. The free energy for the l=2 irrep of SO�3� has been
found by Mermin and Stare,39 incorporating the weak cubic
field gives

f = �1���1�2 + ��2�2� + �2��p1�2 + �p2�2 + �p3�2�

+ �1�TrB2�2 + �2�TrB*B�2 + �3Tr�B2B*2� . �4�

Here B is a 3�3 traceless symmetric complex matrix given
by the l=2 order parameter ��k�=���B��k�k�. Note that
since the symmetry breaking is weak, spherical symmetry is
broken by the second-order term only. The weak-coupling
limit corresponds to the special case,39 �2=2�1, �3=0. The
magnitude of �3 is only due to strong coupling effects and is
of order Tc /EF. The general form of the gap is

��k� =
�1


6
�2kz

2 − kx
2 − ky

2� +
�2


2
�kx

2 − ky
2� + 
2p1kxky

+ 
2p2kykz + 
2p3kzkx.

Here �= ��1 ,�2� transforms like the Eg representation and
P= �p1 , p2 , p3� transforms like the T2g representation of the
cubic group. The components of matrix B can be written as

Bxx =
�1


3
+ �2, Byy =

�1


3
− �2, Bzz = −

2�1


3
,

Bxy = p1, Byz = p2, Bzx = p3.

We now look for the various transitions into the B phase that
can result in further stable superconducting transitions. The
form of this theory is simple enough to enable us to perform
a general analysis beyond the weak-coupling limit. We will
therefore look for all possible transitions from all possible
stable A phase solutions listed in Ref. 38. From the values of
the fourth-order energies in Table III we find that for �2

0, �3
0 the states P= �1, i ,0� and P= �1,� ,�2� will tend
to stabilize deep in the B phase when the second-order coef-
ficients can be ignored, whereas for �2
0, �3	0 the state
�=�2�1, i� tends to stabilize. Within the weak-coupling
theory these states do not give any stable second-order tran-
sitions into the B phase. If we include strong coupling effects
��3�0�, we find that there is only one second-order transi-
tion for �2
0, �3	0 from the state P= r


2
�1, i ,0� in the A

phase. This transition corresponds to a B phase given by a
linear combination of P= �p�


2
�1, i ,0� and �= ���ei�/2�1,0� with

a transition temperature

TcB = TcA + 31 +
4�2

�3
��TcA − T	� ,

where T	 is the transition temperature corresponding to pure
�= ��1 ,�2� state. This state is highly anisotropic and gives a
distorted vortex lattice structure. It is, therefore, a possible
transition sequence for PrOs4Sb12. The specific heat jump
ratio between the transition at the B phase to the transition at
the A phase is

CB

CA
=

TcB

TcA

�3
2��2 + �3/4�

144�1 + �2 + �3/2���2 + �3/3�2 .

This transition gives a specific heat jump ratio of the order
�3

2, which is negligible close to the weak-coupling limit. It is
also interesting to note that this transition corresponds to a
change in penetration depth of order �3, which can be a
significant change to observe in an experiment. A similar
explanation may hold for the Tc3 in PrOs4Sb12 observed in

TABLE III. Fourth-order free energies �F4� for possible A phase
representation �� for spherical symmetry. Here �= ��1 ,�2� and
P= �p1 , p2 , p3� transforms as irreps of Eg and T2g, respectively, of
cubic symmetry. Here �=exp�2�i /3�.

 F4

�= �1,0�, P=0 �1+�2+�3 /2

�=
�2


2
�1, i�, P=0 �2+�3 /3

�=0, P=
1

2

�1, i ,0� �2+�3 /4

�=0, P= �1,0 ,0� �1+�2+�3 /2

�=0, P=
1

3

�1,� ,�2� �2+�3 /4

�=0, P=
1

3

�1,1 ,1� �1+�2+�3 /2
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penetration depth measurements below T=0.6 K but not yet
observed in specific heat measurements.

V. WEAKLY BROKEN OÃSO„3… THEORY FOR
SPIN-TRIPLET STATES

We will now analyze the transition for the spin-triplet
states within a weak-coupling theory. We consider the effects
of a weak spin-orbit coupling and also include the crystal
field with cubic symmetry and allow the spin channel to be
isotropic. The irreps of the symmetry group are given by the
combined group Oh�SO�3��R. If we consider a weak
spin-orbit coupling in our system, the basis functions split up
into four different irreps. We write the vector gap equation in
terms of these irreps as d�k�=�id

i�k� where the components
are given by

dA1u�k� = �
1

3

�x̂fx�k� + ŷfy�k� + ẑfz�k�� ,

dEu�k� = �1
1

2

�x̂fx�k� − ŷfy�k��

+ �2
1

6

�− 2ẑfz�k� + x̂fx�k� + ŷfy�k�� ,

dT1u�k� = p1
1

2

�ŷfz�k� − ẑfy�k�� + p2
1

2

�x̂fy�k� − ŷfx�k��

+ p3
1

2

�ẑfx�k� − x̂fz�k�� ,

dT2u�k� = q1
1

2

�ŷfz�k� + ẑfy�k�� + q2
1

2

�x̂fy�k� + ŷfx�k��

+ q3
1

2

�ẑfx�k� + x̂fz�k�� . �5�

The components of the vector gap equation can be written in
terms of the basis d�k�=� j� j f j�k�, and we will use both
bases for convenience.

For a weak spin-orbit coupling, we get a free energy of
the form

F = �1���2 + �2���1�2 + ��2�2� + �3��p1�2 + �p2�2 + �p3�2�

+ �4��q1�2 + �q2�2 + �q3�2� + �1���x�4 + ��y�4 + ��z�4�

+ �2���x
2�2 + ��y

2�2 + ��z
2�2� + �3���x · �y�2 + ��y · �z�2

+ ��x · �z�2� + �4���x · �y
*�2 + ��x · �z

*�2 + ��y · �z
*�2

+ c.c.� + �5���x · �y
*�2 + ��y · �z

*�2 + ��x · �z
*�2�

+ �6���x�2��y
*�2 + ��x�2��z

*�2 + ��y�2��z
*�2 + c.c.�

+ �7���x�2��y�2 + ��y�2��z�2 + ��z�2��x�2� . �6�

The weak-coupling values of the normalized coefficients are

�1 = − 2�2 = �fx
4�k�	 ,

�4 =
1

2
�5 = − 2�6 =

1

2
�7 = −

1

2
�3 = �fx

2�k�fy
2�k�	 .

It may be seen from Table IV that for x
3 the states P
= �1,1 ,1� and Q= �1,1 ,1� will minimize the fourth-order
terms whereas for x	3, �= �1,0�, P= �1,0 ,0�, Q= �1,0 ,0�,
and equivalent states minimize the fourth-order free energy.
At x=3 we have a spherical Fermi surface.

TABLE IV. Fourth-order free energies �F4� for possible A phase irreps �� and their corresponding
weak-coupling values �W.C.�. The weak-coupling values are in units of �fx

2�k�fy
2�k�	. The value of x is given

by the ratio �fx
4�k�	 / �fx

2�k�fy
2�k�	. Note that x=3 corresponds to spherical symmetry and �=exp�2�i /3�.

 F4 W.C.

�=1 ��1+�2+�7+2�6� /3 �x+2� /6

v= �1,0�, P= �1,0 ,0�, Q= �1,0 ,0� ��1+�2+�6� /2+�7 /4 �x+1� /4

v=
�2


2
�1, i� ��1+�2−�6+�7� /3 �5+x� /6

P=
1

3

�1,� ,�2� ��1+�7� /3+ ��2+�3+�5� /12− ��4+�6� /12 �15+7x� /24

Q=
1

3

�1,� ,�2� ��1+�7� /3+ ��2+�3+�5� /12− ��4+�6� /12 �15+7x� /24

P=
1

2

�0,1 , i� �3�1+�2−�4−�6� /8+ ��3+�5+5�7� /16 �5x+9� /16

Q=
1

2

�0,1 , i� �3�1+�2−�4−�6� /8+ ��3+�5+5�7� /16 �5x+9� /16

P=
1

3

�1,1 ,1� ��1+�7� /3+ ��2+�3+�5� /12−�4 /12 �x+3� /6

Q=
1

3

�1,1 ,1� ��1+�7� /3+ ��2+�3+�5� /12−�4 /12 �x+3� /6
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To understand if phase transitions are possible, we com-
pare the states that minimize the second-order term with
those that minimize the fourth-order terms. If these are dif-
ferent, then a transition is possible. However, many of these
transitions are first order. For example the nonunitary state
�=�2�1, i�, which is stable in the A phase for x
7 under-
goes a first-order transition to a mixed state with �
=�2�1, i� and P=−i�1,� ,�2�. We find that there is only one
stable second-order transition into the B phase. This instabil-
ity is from P= p�1,1 ,1� to the combination of P= p�1,1 ,1�
and Q=q�1,1 ,1�, where p and q are the order parameter
values. Within the assumption of a small spin-orbit coupling
we write the general form of the gap for the states P
= �1,1 ,1� and Q= �1,1 ,1� as

��k� = cos ���x̂fy�k� + ŷfx�k�� + �ẑfx�k� + x̂fz�k�� + �ŷfz�k�

+ ẑ + fy�k���sin ���x̂fy�k� − ŷfx�k�� + �ẑfx�k� − x̂fz�k��

+ �ŷfz�k� − ẑfy�k��� . �7�

Here � acts as the order parameter. If we assume that the P
= �1,1 ,1� state has the highest transition temperature, there is
a transition from a �=0 state in A phase for which � becomes
nonzero and grows towards a fully gapped system at �
=� /4 �at which the gap has the form x̂fy�k�+ ŷfz�k�+ ẑfx�k��.
This gives a second-order transition temperature

TcB = TcA −
1

2
�x + 3��TcA − T	� ,

and the ratio of jumps in the specific heat at the transition
temperatures of the A and the B phases is

cB

cA
=

TcB

TcA�x + 3�
.

It should be pointed out that for the tetrahedral group there
will be an additional bilinear coupling term in the free energy

�m�P* · Q + P · Q*� ,

which would smear out the transition.
Though we get two transitions in this case, the sequence

does not satisfy the observed physical properties in the skut-
terudite PrOs4Sb12. Owing to the tendency of this system
towards a fully gapped state, such a transition would give a
vortex lattice structure that becomes hexagonal at the lower
temperatures, which is contrary to the experimental observa-
tions where the distortions from a hexagonal structure in-
crease at low temperatures.28 In addition this state does not
satisfy the nodal structure of the gap in the B phase as ob-
served in thermal conductivity and magnetization measure-
ments.

VI. WEAK-COUPLING ACCIDENTAL DEGENERACY
THEORIES

Here we consider the accidental degeneracy between the
T2g and Eg irreps as an example, since as explained at the end
of this section there are many theories that have multiple
transitions.

In weak-coupling theory we can write the fourth-order
free energy by evaluating the average

����k��4	 = ���1f1Eg
�k� + �2f2Eg

�k� + p1f1T2g
�k� + p2f2T2g

�k�

+ p3f3T2g
�k��4	 .

In the above expression �= ��1 ,�2� and P= �p1 , p2 , p3� are
the order parameter values and the representative basis func-
tions f are assumed real. The free energy expression is

F = �1���1�2 + ��2�2� + �2��p1�2 + �p2�2 + �p3�2� + �1����1�2

+ ��2�2�2 + 1
3 ��1�2

* − �2�1
*�2� + �2��p1�4 + �p2�4 + �p3�4�

+ �3�4��p1�2�p2�2 + �p2�2�p3�2 + �p3�4�p1�2� + p1
2p2

*2 + p2
2p3

*2

+ p3
2p1

*2 + c.c.� + �4/2�4���1�2 + ��2�2���p1�2 + �p2�2 + �p3�2�

+ ���1
2 + �2

2��p1
*2 + p2

*2 + p3
*2� + c.c.�� − �5/2�4���1�2

− ��2�2��2�p3�2 − �p1�2 − �p2�2� − 4
3��1�2
* + �1

*�2�

���p1�2 − �p2�2� + ���1
2 − �2

2��2p3
*2 − p2

*2 − p1
*2�

− 2
3�1�2�p1
*2 − p2

*2� + c.c.�� . �8�

Within a weak-coupling theory the normalized coefficients
are given by the following cubic averages

�1 = �f1Eg

4 �k�	, �2 = �f1T2g

4 �k�	 ,

�3 = �f1T2g

2 �k�f2T2g

2 �k�	, �4 = ��f1Eg

2 �k� + f2Eg

2 �k��f1T2g

2 �k�	 ,

�5 = ��f1Eg

2 �k� − f2Eg

2 �k��f1T2g

2 �k�	 .

The spherical Fermi surface corresponds to the special case

�1 = �2 = 3�3 = 3
2�4, �5 = 0.

From Table V we find that for �5	0 the lowest three
fourth-order energies in increasing order correspond to states
P= �1, i ,0�, P= �1,� ,�2�, �= �1, i�. We do not find any
second-order weak-coupling transitions within this range.
For �5
0 the lowest three fourth-order energies in increas-
ing order correspond to states �= �1, i�, P= �1,� ,�2�, P

TABLE V. Fourth-order free energies �F4� for irreps of stable
states �� in the A phase.

 F4

�= �1,0�, P=0 �1

�=
�2


2
�1, i�, P=0 2�1 /3

�=0, P=
1

2

�1, i ,0� ��2+�3� /2

�=0, P= �1,0 ,0� �2

�=0, P=
1

3

�1,� ,�2� �2 /3+�3

�=
1

2

�0,1�, P=
1

2

�0,0 , i� 1/4��1+�2+2�4−4�5�

�=0, P=
1

3

�1,1 ,1� �2 /3+2�3
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= �1, i ,0�. In this case we find only one stable second-order
transition from the state P= �r��1, i ,0� in the A phase to a B
phase where it mixes to the state �=ei�/4���1� , ��2�ei�/2� with
a transition temperature

TcB = TcA −
1

1 − ��2�4 − 
7�5�/��2 + �3��
�TcA − T	� .

The specific heat jump ratio at the transition temperatures is
given by

cB

cA
=

TcB

TcA
 7��2 + �3 − 2�4 + 
7�5�2

12�1��2 + �3� − 7�2�4 − 
7�5�
� .

We find that a specific heat jump ratio that is comparable
to the observed value for the skutterudite PrOs4Sb12, which
is about one21 can be obtained if the gap functions contain
substantial cubic anisotropy. In addition this situation will
result in an anisotropic state with twofold degeneracy. This
sequence of phase transition would also result in a distorted
vortex lattice structure, owing to the large anisotropy of this
state as shown in Fig. 1.

We find that in many cases, the A to B transition is first
order. The reason for this is as follows: for two-order param-
eters � and �, the free energy takes the form

F = �1���2 + �2���2 + �1���4 + �2���4 + �m1���2���2

+ �m2��2�*2 + �2�*2� .

Let �� ,��= ���� , ���ei�� and minimize with respect to �. The
free energy becomes

F = �1���2 + �2���2 + �1���4 + �2���4 + �m���2���2,

where �m=�m1−2 ��m2 � ��f�
2�k�f�

2�k�	. Here we have as-
sumed the basis functions f��k� and f��k� to be real. If there
is a second transition, then it is a second-order transition
when �m

2 	4�1�2, otherwise it is first-order. In our calcula-
tions �m is too large, which leads to the first-order transi-
tions. This is a consequence of the functions f��k� and f��k�
that have been chosen. However, we can get a second-order
transition by considering a two band theory for which f��k�
is large and f��k� is small in one band while f��k� is large
and f��k� is small on the other. Then the condition �m

2

	4�1�2 will be easily satisfied and a second-order A→B
phase transition can exist for almost any two different order
parameter irreps.

VII. CONCLUSIONS

We have considered microscopic theories of unconven-
tional superconductivity in cubic and tetrahedral supercon-
ductors. We have identified the stable weak-coupling uncon-
ventional superconducting states that belong to a single
irreducible representation and have highlighted which of
these can describe the low-temperature properties of
PrOs4Sb12. We have further examined theories for two intrin-
sic superconducting transitions in PrOs4Sb12. We have found
that a theory for which the two transitions are due to a
weakly broken SO�3� symmetry for spin-singlet Cooper pairs
cannot give rise to two transitions in the weak-coupling
limit. However, it is possible for such a theory to produce
two transitions that agree with the experimental properties of
PrOs4Sb12 only when extended to the strong coupling limit.
We further find that for spin-triplet Cooper pairs, weak spin-
orbit coupling in the weak-coupling limit does not give rise
to two superconducting transitions that agree with the experi-
mental properties of PrOs4Sb12. Finally, we consider an ex-
ample of a weak-coupling theory that does not assume an
approximate higher symmetry, but is based on the accidental
closeness of the transition temperatures for two different rep-
resentations. This example is able to describe the observed
properties of PrOs4Sb12.
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dation Grant No. DMR-0381665.
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