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Decoherence and recoherence in a vibrating rf SQUID
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We study an rf SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate
mechanically. The coupling between the rf SQUID and the mechanical resonator originates from the depen-
dence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter
affects the visibility of Rabi oscillations between the two lowest energy states of the rf SQUID. We address the
feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility,

in such a system.
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I. INTRODUCTION

Decoherence occurs when a quantum system is coupled to
a noisy environment at a finite temperature. Decoherence is
commonly quantified by a visibility factor, which character-
izes the relative amplitude of a measured interference signal.
In many cases the main contribution to decoherence origi-
nates from the many degrees of freedom of the environment,
which all have a similar coupling strength to the interfering
degree of freedom of the quantum system. In such a case the
visibility factor is expected to decay monotonically as a
function of time (typically, the decay is exponential). On the
other hand, when only a few degrees of freedom in the en-
vironment significantly contribute, the time dependence of
the visibility factor is not necessarily monotonic. Recoher-
ence occurs when the visibility factor increases with time.
Experimental demonstration of this phenomenon is impor-
tant since it may provide a crucial test to the theory of quan-
tum measurement.'> Decoherence and recoherence were re-
cently discussed theoretically in Refs. 3-9. The interfering
quantum system in Ref. 3 was a single level quantum dot, in
Refs. 47 it was an optical mode in a cavity, and in Refs. 8
and 9 a superconducting charge (Cooper-pair box) and phase
Josephson qubit, respectively. In all these cases, the interfer-
ing quantum system is coupled to a vibrating mode of a
mechanical resonator (typically the lowest, fundamental
mode). Recoherence can occur in such systems provided that
the coupling between the interfering quantum system and the
mode of the mechanical resonator is made sufficiently
strong, whereas the coupling to other degrees of freedom in
the environment is sufficiently weak. Satisfying this condi-
tion experimentally when the interfering degree of freedom
is a single electron, as in the Ref. 3, or a single photon, as in
Refs. 47, turns out to be very difficult.

In the present paper we study an alternative configuration
consisting of an rf superconducting quantum interference de-
vice (SQUID) integrated with a mechanical resonator in the
shape of a doubly clamped beam. The dependence of the
total magnetic flux threading the loop on the beam’s dis-
placement leads to a coupling between the rf SQUID and the
mechanical resonator. We study the effect of such a coupling
on the visibility of Rabi oscillations between the two lowest
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energy states of the rf SQUID, and discuss the required con-
ditions for experimental observation of decoherence and re-
coherence originating from the coupling to the mechanical
resonator.

The paper is organized as follows. The Hamiltonian for
the closed system is obtained in Sec. II. An adiabatic ap-
proximation is employed in Sec. III to simplify the equations
of motion of the system by considering the mechanical mo-
tion as slow in comparison with the faster dynamics of the rf
SQUID. Further simplification is achieved in Sec. IV by tak-
ing into account only the two lowest energy levels of the rf
SQUID. In Sec. V we calculate the effect of the mechanical
resonator on the visibility of Rabi oscillations between these
two energy levels. Corrections due to finite temperature and
mechanical damping are considered in Secs. VI and VII, re-
spectively. The validity of the adiabatic approximation is ex-
amined in Sec. VIII. A numerical example is given in Sec. IX
and discussion and conclusions are given in Sec. X.

Similar systems consisting of a SQUID integrated with a
nanomechanical resonator have been recently studied theo-
retically. Zhou and Mizel have shown that nonlinear cou-
pling between a dc SQUID and a mechanical resonator can
be employed for producing squeezed states of the mechani-
cal resonator.!? More recently, Xue et al. have shown that a
flux qubit integrated with a nanomechanical resonator can
form a cavity quantum electrodynamics system in the strong
coupling region.!!

II. HAMILTONIAN OF THE CLOSED SYSTEM

Consider the rf SQUID shown in the inset of Fig. 1, in
which a section of the loop is freely suspended and allowed
to oscillate mechanically. We assume the case where the fun-
damental mechanical mode vibrates in the plane of the loop
and denote the amplitude of this flexural mode as x. Let m be
the effective mass of the fundamental mode, and wj its an-
gular frequency. A magnetic field is applied perpendicularly
to the plane of the loop. Let @, be the externally applied flux
for the case x=0, and B is the component of the magnetic
field normal to the plane of the loop at the location of the
doubly clamped beam (it is assumed that B is constant in the
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FIG. 1. (Color online) The potential U(x,®) for the case P,
=d(/2 and B;=20. The inset schematically shows the device.

region where the beam oscillates). The total magnetic flux ®
threading the loop is given by

&=, +Bix+LI, (1)

where L is the self-inductance of the loop, and [/ is an effec-
tive length of the beam. The contribution of other mechanical
modes of the beam to ® is assumed to be negligibly small.

A Josephson junction (JJ) having a critical current I, and
capacitance C is integrated into the loop. We first consider
the dynamics of the closed system consisting of the rf
SQUID with the integrated doubly clamped beam. The effect
of damping due to coupling to other degrees of freedom in
the environment will be discussed later.

A. Lagrangian

The Lagrangian of the closed system is a function of the
position x, flux @ and their time derivatives (denoted by
overdot):

CcP?
E:—+T—U(x,q)), (2)

2

where the potential energy U is given by

Do (27TCI>>
COS
04c CD()

2 2L 2m

22 2
o->,-BI
Uzmwox +( . X) ~

. (3)

and ®,=h/2e is the flux quantum (see Fig. 1). The resulting
Euler-Lagrange equations are

Bl
mjé+mw(2)x—z(q)—q)e—le)=O, (4)
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. ®-®,-Bix (27D
C<I>+f+ . sin =0. (5)

Note that the gauge invariant phase across the Josephson
junction y; is given by

27 P
O, ’

(6)

vi=2mn—

where n is the integer. By using this and Eq. (1) the equa-
tions of motion can be rewritten as

mi + magx — Bl =0, (7)

D
I, sin y;+ C—O’)'/J=I. (8)
2

The interpretation of these equations is straightforward.
Equation (7) expresses Newton’s second law where the force
is composed of the restoring mechanical force and the Lor-
entz force acting on the movable beam. Whereas Eq. (8)
states that the circulating current / equals the sum of the

current /. sin vy, through the JJ and the current cv through
the capacitor, where the voltage V is given by the second
Josephson equation V=(®,/2m)7y,.

B. HAMILTONIAN

The variables canonically conjugate to x and ® are
p=0L/dx=mi and Q=3dL/dD=CD, respectively. The
Hamiltonian is given by

2 2
p 0

H="—+_—=+UkxD). 9

om ¥ 20 (x, D) )

Quantization is achieved by regarding the variables x, p,

@, and Q as Hermitian operators satisfying the following

commutation relations [x,p]=[®,Q]=i% and [x,®]=[x,Q]
~[p.®]=[p.0]=0.

II1. ADIABATIC CASE

The Hamiltonian (9) can be written as H ="M+, where
2

p 1L 5,
=—+— , 10
H, 2m+2mwox (10)
Q2
H1=—2C+u(x,(l)). (11)

Using the notation Uy=®3/8mL, x4=Py/Bl, and S,
=27LI./ ®, the term u can be written as

b -, 2 27d
u=UO{4772< o, _;_¢>> —2,8Lcos(?0)] (12)

As a basis for expanding the general state of the system
we use the solutions of the following Schrodinger equation:

H,ln(x) = &,(x)|n(x)), (13)

where x is treated here as a parameter (rather than a degree
of freedom). The local eigenvectors are assumed to be ortho-
normal
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(m(x)|n(x)) = 8- (14)
The wave functions associated with the local eigenstates
Pu( D) =(D'[n(x)), (15)
are the solutions of the Schrodinger equation
2
(— conrt u@m))%,x =2,(X) @ x- (16)

The total wave function is expanded as

o, @,1) = 2 £,(x,0)|n(x). (17)

In the adiabatic approximation'? the time evolution of the
coefficients &, is governed by the following set of decoupled
equations of motion:

2
p .y
(—2 +Vm(x)>§m=lﬁ§m, (18)
m
where the adiabatic potentials V,,(x) are given by

V(x) = %mwéxz +g,(x). (19)

The validity of the adiabatic approximation will be discussed
in Sec. VIIL

To numerically evaluate the eigenvalues &,,(x), it is con-
venient to introduce the dimensionless variables 27®/d,
=m+ ¢, 27D,/ Py=m+¢,, 27x/x4=p,. Using this notation
the Schrodinger equation (16) can be rewritten as

( B T, ) " (20)
— —_— 4+ — = s
Ca¢2 UO (Pn,x n,x‘Pn,x

where B=2¢*/CUy, \, (=€,(x)/ Uy, and

Ui=(¢_¢e—¢x)2+2,8Lcos @. 21)
0

IV. TWO-LEVEL APPROXIMATION

Consider the case where |¢,| <1 (namely, ®,=®/2),
|¢,| <1, and B,>1. In this case the local potential u(¢b)
given by Eq. (21) contains two wells separated by a barrier
near ¢=0. At low temperatures only the two lowest energy
levels contribute. In this limit the local Hamiltonian H; can
be expressed in the basis of the states |*) and ), repre-
senting localized states in the left and right well, respec-
tively, having opposite circulating currents. In this basis, H;
is represented by the 2 X 2 matrix

(bt d) A )
%‘< A b))

The real parameters n and A can be determined by solv-
ing numerically the Schrodinger equation (20).
Using the notation

(22)

tan 0= _ A (23)
e+ b))

‘H, can be rewritten as
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cos @ sinf

Hi=\N1(d+ ) + A2< ) (24)

sin @ —cos 6

The eigenvectors and eigenenergies are denoted as

Hyl£)=e.]%), (25)
where
6 )
COoS — —Sin —
o=l 2 ’ (26)
+ )= s l=)= y
.0 0
sSin — COoS —
2 2
-
e.= =\ (g, + )7+ A% (27)

V. RABI OSCILLATIONS

Consider the following experimental protocol for detect-
ing Rabi oscillations between the two lowest energy states of
the rf SQUID. The first stage consists of state preparation
performed by applying a large constant external flux ¢,. At
time t=0 the external flux is switched off and the system
starts oscillating. At a later time >0 the final state of the rf
SQUID is measured.

A. State preparation

The system is first prepared in an initial state by applying
an external bias flux ¢, such that ¢,>> A/ 7. In this limit one
finds approximately |+)=|"), |-)=|"), and e,==7(¢,
+¢,). Thus, the adiabatic potentials Eq. (19) are given by

1
V.(x)= Emw(z)(x *x0)% - n(ﬂ ¥ ¢e> , (28)
Xo
where
2wy
.XO = B . (29)
Magx 4

Assume also the case where the temperature 7 is rela-
tively low kzT << A. In this limit the rf SQUID is expected to
occupy its ground state | ) in thermal equilibrium. The me-
chanical resonator is expected to be in a thermal state of the
potential well V_(x) centered at x, [see Eq. (28)].

B. Switching off the external flux

At time =0, the external flux ¢, is suddenly switched to
a new value ¢,=0. Using the notation

n2mx mng(z)
Ak, oA G
one finds to lowest order in ¢,,
[y 1+ gi
)= aat (31)
+xl-=—
2)(:0
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2 2
gy = iA(l +§—x—2>, (32)
2 x

and the adiabatic potentials (19) for this case are given by
V.(x)= %mwﬁ(l x>+ A. (33)

Thus, both mechanical states associated with the rf
SQUID states |+) and |-) will at r=0 start oscillating with
different frequencies wyV1+¢ and wy\V1-{¢, respectively,
around the point x=0. Consider the case where {< 1. Using
Eq. (31) one finds that the approximation

J’/— 1
|t(x)>=|i(x=0)>=¥< ) (34)

+1

can be employed in the region |x| =< x, where the mechanical
resonator oscillates.

C. Measuring the rf SQUID final state

Consider the case where the mechanical system was at
time =0 in a given state, denoted as |&y),, with a wave
function &)(x). We first calculate the time evolution for a
given state, and later perform a thermal averaging over initial
states. The state of the system at =0 can be expressed as

Wr=0)=&(t=0)[+(x=0)+&(1=0)]- (x=0)),
(35)

where

£=0)= = 26, 36)

In the last step the state of the rf SQUID is measured.
What is the probability to find the rf SQUID in a given state
|x) at time 7 ? To calculate this probability Pj,)(r) one must
trace out the mechanical degree of freedom. By using Eq.
(17) and employing the two-level approximation one finds in
general

P|X>(t)=de|§+(x,t)<X|+(X)>+§_(x,t)<x|— ).
(37)

As an example, consider the case where |y)=|). Using
Eq. (34) one finds

1 «
Pi~y(1) = > + Ref dx&,(x,0)& (x,1). (38)

Alternatively, using Eqgs. (18) and (33) this can be ex-
pressed as

iA
P=5+5 Re{ w(r)exp(— = tﬂ L 69)

where

iH(- z)t) ( iH(Q)t
expl| —

A 3 ) | §0>e’ (40)

vo(t) = g<§0|exp<

and
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2
H(O) = §—m +Sma(1+ O (41)

Equation (39) indicates that the visibility of Rabi oscillations
(occurring at angular frequency 2A/#) is diminished by the
factor |vy(7)| [note that in general |vy(t)| <1].

The Hamiltonian H, can be written as

H(Q) =1+ {H(0) + V,, (42)
where
2 2

2
P —  mo
Vi=o (I-N1+ 0+ o

- Vi+7+0).  (43)

The Hamiltonian \e"ﬁ{H (0) is associated with a harmonic
oscillator having mass m/\1+{ and a resonance frequency
woV1+{. Assuming that (<1 one can employ the approxi-
mation

H(Q) =1+ £H(0). (44)

This approximation greatly simplifies the analysis since an-
nihilation and creation operators associated with both Hamil-
tonians H({) and H(-{) are common. Note that the time
evolution generated by both Hamiltonians, H({) and
V’TgH(& is periodic in time with the same period
27/ wy\1+{. Thus, the error introduced by this approxima-
tion is small even for times much longer than the period
time, provided that the condition { <1 is satisfied. Using this
approximation and keeping terms up to first order in { yield

ilH(0)t
)

vo(t) = e<§o|exp(— >|§0>e‘ (45)

VI. THERMAL AVERAGING

At finite temperature T the term v,(7) must be calculated
by averaging over a thermal distribution of initial states |&),.
At times <0 the mechanical resonator is expected to be in a
thermal state of the potential well V_(x) centered at x, [Eq.
(28)]. Tt is convenient to express this thermal distribution
using a displacement operator D(«), where

mao, " 1 .
D(a) =eXp( \/ 2—;(a— a)x—iv/ Zﬁmwo(a+ a )p)

(46)

[ mw,
an=Xg Z_ﬁO (47)

For a general c-number «, the operator D(«) transforms
the vacuum state |0) into a coherent state |a), i.e., D(a)|0)
=|a). Using this notation one finds

(1) = <Df<a0>exp(— ilfgo)I)D<ao>>, (48)

where the brackets ( ) represent thermal averaging. It is con-
venient to employ the coherent states diagonal representation

and
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13 of the density operator at thermal equi-

= f J d*aP(a)|

where d’a denotes infinitesimal area in the & complex plane,
namely d’a=d{Re a} d{Im a}, the probability density P(a)
is given by

(P representation)
librium

(49)

P(a)=— ( '“'2> (50)
ex
Oy T ()
and
1
)= ot 1 (51)
is the thermal occupation number.
Thus
vo(t) = TT{PDT(CVO)GXP<— ingfO)t)D(ao)]
=f f d?aP(a) X {a|D"(ap)
Xexp(— igH(O)t)D(aoﬂa). (52)
Using the identity
D(ao>|a>=exp(%w‘>|ao+a>, (53)

and noting that « is real yield

vy(f) = e f f dPaex ( a|2+ §|C; i a|2)

e—t{wot/Z ( gao )
= exp\ —

T 1+&

Xf:dxexp{ (1 +§)(x+ %) }

Xf dy exp[— (1 + &)y?], (54)

where &=(1—-e 90" (n) and ay=ay/ \/@.
In the limit of zero temperature where (1) — 0 one finds

vo(1) = e 40" exp[— ag(1 — e7e0")], (55)

and the visibility factor in this limit is given by

|v0(t)|2:exp[—4ag sin%%)]. (56)

Another case of interest is the limit of short times. The
term |vy(¢)|? is calculated to lowest order in ¢ using Eq. (48)
and perturbation theory
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lwo()P=1- (Z) Vi, (57)

where
Vi =(D"(ag) H*(0)D(ap)) — (D" (ag) H(0)D(axp))*. (58)
Using Egs. (52) and (53) one finds
Vy= ﬁzwé(ag +{(n)). (59)

The result can be expressed in terms of a decoherence rate
’y}'ﬂ’

|V0(t)|2 =1- (7171t)2’ (60)
where
12
ym=§a0w0(1+@> . (61)
@y

VII. EFFECT OF MECHANICAL DAMPING

Consider in general a mechanical resonator in a superpo-
sition of two coherent states | ;) and |a,). Coupling between
the resonator and a thermal bath at temperature 7T induces

decoherence with a rate vy, given by'47
2w, w
=——|a; — a,|” coth 62
Yd 0 | 2| 2y T (62)

where w, and Q are the resonance frequency and quality
factor, respectively.

Damping is thus expected to further diminish the visibility
of Rabi oscillations. The factor v(¢) is written as

(1) = vo()vy(1), (63)

where v,(r) represents the contribution of damping.

To provide a rough estimate of the factor w,(¢) in the
present case the ¢ numbers «; and «, are substituted by the
thermal average values of the distributions associated with
the |+) and |-) states, respectively,® and thus we take

a,(f) = ay exp{—i(l +§>w0t}, (64a)
_ (1_¢
ay(t) = agexp| —i| 1 - 5 wof |- (64b)
We further require that
dVd
— == , 65
dt YaVa (65)
and obtain
4wyt h i t
v, (t) = exp[— %% coth 2o ( - sin( oy )ﬂ .
0 2kgT Lot
(66)

Recall that the recoherence peaks, where |vy(,)| =1, oc-
cur at times t,=27n/{wy, where n is integer [see Eq. (54)].
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Recoherence can be detected only if vy, is sufficiently small.
For the first recoherence peak at time #;, we have

8mag . hawy )
L0 2kgT )’

whereas for the other recoherence peaks the following holds:

va(ty) = eXp<— (67)

Vd(tn) = [Vd(fl)]n. (68)
In the case fiwy<< kpT one has
4 2
v (t) = exp[— é(i—o) ] , (69)

where A7 is the thermal length

fi

Np=
! \2mkgT

(70)

VIII. ADIABATIC CONDITION

We now return to the adiabatic approximation and exam-
ine its validity. In the adiabatic limit the off-diagonal terms
in the set of coupled equations for the amplitudes &, are
considered negligibly small, and consequently no Zener tran-
sitions between adiabatic states occur. This approximation
yields the set of decoupled equations (18). To calculate the
Zener transition probability to lowest order we consider the
off-diagonal elements as a perturbation.

Consider mechanical oscillations with an amplitude x,
and assume the case where ¢,=0. A Zener transition is most
likely to occur near the times when the mechanical resonator
crosses the point x=0, namely, when the mechanical velocity
peaks and the energy gap e,—e_ obtains its smallest value.
The probability p, that a Zener transition will occur per such
a crossing can be calculated using Eq. (C25) of Ref.18,

A2
_ _)%__)’ (71)
2x0Bn MUy

where B,=h wy/U,. The adiabatic approximation is valid
when p,< 1.

pPz= exp(

IX. ESTIMATION OF PARAMETERS

Satisfying all the above-mentioned conditions required for
experimental observation of decoherence and recoherence is
quite challenging. However, a careful design together with
state of the art fabrication and cryogenics techniques may
allow experimental implementation. We examine below an
example of a device having the following parameters:

L=65x10"""H, (72a)
C=74x10"F, (72b)
1,=10 pA, (72¢)
m=10""1° kg, (72d)
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/27 =640 MHz, (72e)
Bl=TX um, (72f)
0=10%, (72g)
T=005K. (72h)

These parameters for both the rf SQUID (Ref. 19) and for the
nanomechanical resonator?® are within reach with present
day technology.

The chosen value of L corresponds to a circular loop with
a radius of about 10 wm and a wire having a cross section of
about (0.1 wm)?, whereas the values of C and I, correspond
to a junction having a plasma frequency of about 8 THz. The
parameter Bl plays a crucial role in determining the coupling
strength between the mechanical resonator and the rf
SQUID. Enhancing the coupling can be achieved by increas-
ing the applied magnetic field at the location of the mechani-
cal resonator B. However, B should not exceed the supercon-
ducting critical field. Moreover, the externally applied
magnetic field at the location of the JJ must be kept at a
much lower value in order to minimize an undesirable reduc-
tion in /... This can be achieved by employing an appropriate
design in which the applied field is strongly nonuniform.

Using these values one finds

B =109, (73a)
Bc=0.78, (73b)
B,=48 X 1074, (73¢)

U,
L -64K, (73d)

kg
x4=2.1 nm, (73e)
x¢\/";—‘;i’(’=9.1 X 10°, (73f)
Ar=9.0 X 10 nm. (73g)

The values of B; and B, are employed for calculating
numerically the eigenstates of Eq. (20). Figures 2(a)-2(c)
show the first three lowest energy states for the case ¢,
+¢,=0, whereas Fig. 2(d) shows the dependence of the en-
ergy of the two lowest energy states on ¢,+ ¢,.

From these results one finds for the values of the 7 and A
parameters in the two-level approximation to Hamiltonian

H, [Eq. (22)],

n=2.5U,, (74a)
A=0.12U,. (74b)

Using these values yield
xo=4.1 X 107 nm, (75a)

174504-6



DECOHERENCE AND RECOHERENCE IN A VIBRATING...

W = ]
state #1 c
8-(a) 10.08 2
Q
L s e e 0100
\_/ \/
2/ No.02 s
0 ———— g
-1 -08-06-04-02 0 02 04 06 08 1
O/
10 (b) o e T ha 5
= i3}
z 5
= 5 T o ;0 =
O~ >
g
o g3
-1 -08-06-04-02 0 02 04 06 08 1
o/t
L (c) ' ' ' state 13|02 5
g s\ Lo 3
3 1
it 0381 31 L S TTTTT S0 T TTTIGLGE [ 1 12 TINGUE | 1T 1 10}
>
@
H

L L 1 L L -0.2
0 02 04 06 08 1
O/

0 L L 1 L
-1 -0.8 -0.6 -0.4 -0.2

@

-0.01 0 0.01 0.02 0.03
(0,40 )/m

-0.03 -0.02

FIG. 2. (Color online) Eigenstates of ;. (a)—(c) The first three
lowest energy states for the case ¢,+@,=0. (d) The energy of the
two lowest states vs ¢,+ ¢,.

[=2.5%X 1074, (75b)
20 _0x 10, (75¢)
X

ap=0.18, (75d)
(n)y=1.2, (75¢)
(Lagwy) ™' =5.6 us, (751)

4 2
—W(@> - 1.0, (75¢2)
{O\Nr

2T
——=6.3 us, (75h)
{ay
X A2
¢ = -30x10°. (751)

2x0B, Uy
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Equations (75f) and (75g) indicate that observation of
both decoherence and recoherence, for the case of the present
example, is feasible, provided that the decoherence time of
the rf SQUID due to other mechanisms is sufficiently long,
i.e., on the order of microseconds.?! Moreover, Eq. (75i) en-
sures the validity of the adiabatic approximation.

X. DISCUSSION AND CONCLUSIONS

A possible, alternative protocol to the presently consid-
ered one for observing decoherence and/or recoherence phe-
nomena is the so-called Ramsey interference experiment that
proceeds as follows:® (i) At time <0, the state is prepared in
the ground state |), identically to the above considered
protocol by applying an external bias flux ¢, such that
¢,>> Al 7; (i) at time t=0, the external flux ¢, is suddenly
switched to the new value ¢,=0, again just as in the above
protocol, but then after one-quarter of a Rabi oscillation pe-
riod, ¢, is suddenly switched back up to the same nonzero
value as was applied during first, preparation stage; (iii) the
flux qubit and mechanical oscillator are then left to interact
for a certain duration with ¢, kept constant; (iv) stage (ii) is
repeated again; (v) the state of the qubit is read out.

The effect of stage (ii) is to prepare the flux qubit in a
state which is an equal magnitude superposition of the circu-
lating current states |) and |"). Each of these states is
associated with the different spatially shifted potentials V,(x)
[Eq. (28)], so that during the interaction stage (iii) an en-
tangled state develops between the oscillator and flux qubit,
giving rise to decoherence of the reduced qubit state. After
one full mechanical period, the entanglement is undone, re-
sulting in recoherence. The second, one-quarter Rabi period
pulse enables one to probe the decoherence and/or recoher-
ence, simply by measuring the probability to be in one of the
measurement basis states, e.g., the ground state | ). By re-
peating the Ramsey protocol many times, allowing the inter-
action duration to range over several mechanical periods,
oscillations in the visibility are observed providing a signa-
ture of decoherence and/or recoherence.

The Ramsey protocol has the obvious advantage over the
above considered protocol (where one always remains at the
¢,=0 degeneracy point during ¢>0) that the decoherence
and/or recoherence times are shorter by the factor of 1/¢.
However, the disadvantage with the Ramsey protocol is that
qubit decoherence times are considerably reduced away from
the degeneracy point. The origin of the reduction in these
two competing time scales is of course the same: the me-
chanical oscillator and flux noise couple more strongly (i.e.,
linear coupling) to the circulating current basis states | )
and |") than to the eigenstate basis states at the degeneracy
point (i.e., quadratic coupling). Depending on how the qubit
decoherence rate varies with the externally applied flux, it
may be that operating a small distance from the degeneracy
point is more favorable for observing recoherence effects.”!
However, the resulting coupled quantum dynamics is not as
simple to describe as at the special limiting bias points where
the Hamiltonian M, [Eq. (22)] is either (approximately)
purely diagonal or off-diagonal.

In the present paper we have considered a flux qubit in the
form of an rf SQUID, a system that is relatively simple to
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analyze. However, a double well potential can be formed
only when the inductance L is sufficiently large and the con-
dition B;>1 is satisfied. In this limit, the loop is relatively
large and consequently large pickup of external flux noise
results in a relatively short flux qubit decoherence time.'> On
the other hand, this problem can be partly solved by employ-
ing the configuration of a loop having three JJ’s,”> where a
portion of the necessary total SQUID inductance is provided
by the effective inductance of the additional JJ’s; the three JJ

PHYSICAL REVIEW B 74, 174504 (2006)

superconducting loop would likely be the preferred choice
for experimental implementation.
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