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Field-induced quantum criticality in low-dimensional Heisenberg spin systems
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We study the quantum critical behavior in the antiferromagnetic Heisenberg chain and two-leg Heisenberg
ladder resulting from the application of an external magnetic field. In each of these systems a finite-temperature
crossover line between two different ferromagnetic phases ends with a quantum critical point at zero tempera-
ture. Using the bond-mean-field theory, we calculate the field dependence of the magnetization and the mean-
field spin bond parameters in both systems. For the Heisenberg chain, we recover the existing exact results and
show in addition that the saturation of the zero-temperature magnetization at the field #.=2J is accompanied by
a quantum phase transition, where the bond parameter vanishes. Here J is the exchange coupling constant
along the chain. For the two-leg ladder, we also recover the known results, like the two magnetization plateaus,
and show that at the upper critical field, which corresponds to the appearance of the saturation magnetization
plateau, the chain and rung spin bond parameters vanish. The identification of the order parameters that govern
the field-induced quantum criticality in the systems we study here constitutes an original contribution. Because
no long-range order, which breaks symmetry, characterizes the bond order, the latter could be a proposal for the
so-called hidden order. We calculate analytically the bond parameters in both systems as functions of the field
in the low- and high-field limits at zero temperature. At nonzero temperatures, the calculation of the magne-

tization and bond parameters is carried out by solving the mean-field equations numerically.
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I. INTRODUCTION

According to Sachdev, a second-order quantum phase
transition occurs in a system at absolute zero temperature
when an order parameter vanishes at a critical value of a (an
external) coupling parameter, like pressure or magnetic
field.! Unlike classical phase transitions, which are driven by
thermal fluctuations, a quantum phase transition is driven
solely by quantum fluctuations. In this paper, we examine the
occurrence of quantum criticality in two low-dimensional an-
tiferromagnetic (AF) Heisenberg spin systems, which is in-
duced by an external magnetic field. These systems are the
Heisenberg chain and the two-leg Heisenberg ladder. To the
best of our knowledge, quantum criticality was not addressed
in these systems in the way we do here. We identify the
microscopic parameters that govern the zero-temperature
phase transition in these systems. These parameters are
found to vary with, and vanish at, a critical value of the
magnetic field.

Bonner and Fisher? and Parkinson and Bonner? have cal-
culated the zero-temperature magnetization versus the mag-
netic field for the one-dimensional (1D) Heisenberg model
and found that the magnetization reaches the saturation value
M at the critical field h.=2J according to the law
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which is valid for fields 4 slightly smaller than A.. J is
the spin exchange coupling constant. Note that for the
Heisenberg chain the magnetization does not vanish abruptly
at any value of the field; it increases linearly with the field
near zero, then saturates at /.. By analyzing the spin configu-
ration, one finds that the latter evolves from the well-
understood ground state with short-range AF order in zero
field (a gapless spin liquid with algebraically decaying AF
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correlations and a correlation length ¢é=%) to the ferromag-
netic state with magnetization linearly increasing with field
near zero, then finally to the fully saturated ferromagnetic
ground state when h>h.>? We find that the competition
between the Ising and Zeeman interactions plays an impor-
tant role in the way the magnetization depends on the field
and that the unsaturated ferromagnetic state for 0 <h <<h, is
governed not only by the magnetization, but also by a pa-
rameter reflecting the AF Ising interaction and the quantum
fluctuations: i.e., the spin bond parameter. This bond param-
eter decreases with increasing field, then vanishes at the criti-
cal value h., at which ferromagnetism reaches saturation.
The unsaturated ferromagnetic state for 0<<Z<<h, can be
called a quantum ferromagnet because quantum fluctuations
prevent the saturation of the magnetic moment. For h>h,
the ground state can be said to have classical ferromagnetism
because the quantum fluctuations and Ising interaction are
both irrelevant in this state. In sum, we show in this work
that the saturation of the magnetization in the Heisenberg
chain is accompanied by a second-order phase transition and
identify and calculate the field dependence of the order pa-
rameter governing this phase transition.

The two-leg Heisenberg ladder is characterized by two
bond parameters, one along the chains and the second one
along the rungs. Also in this case, these bond parameters
vanish when ferromagnetism reaches saturation at the upper
critical field h.,, which depends on the rung coupling. It is
known that the two-leg Heisenberg ladder presents two mag-
netization plateaus: one zero-magnetization plateau for fields
smaller than the lower critical field &, =E,, where E, is the
energy gap, and the other plateau in the saturated ferromag-
netic regime realized for fields greater than k., > h.,.* Chitra
and Giamarchi,> among many others, studied the two-leg
ladder using the bosonization technique. They focused on the
fields near A, and argued that a quantum critical transition
occurs at this field. While we do not disagree with Chitra and
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Giamarchi’s treatment of the ladder, we will show that ac-
cording to Sachdev’s definition it is the point /4., not A, that
can be interpreted as a quantum critical point (QCP).

The justification for and importance of the present work
stems from four reasons at least: first, from the importance of
quantum criticality itself because 1D and two-leg ladder real
systems exit. For example, the materials Cu,(CsH,N,),Cl,
and (CsH,N,),CuBr, are two-leg Heisenberg ladders for
which the results and predictions of this paper can be applied
because the magnetic fields needed to attain magnetization
saturation can be realized in laboratories due to the weakness
of the exchange coupling constants in these systems.*¢ In
fact, the phase diagram we calculate for the ladder agrees
well with the phase diagram Chaboussant et al.” proposed for
the material Cu,(CsH;,N,),Cl, using the nuclear magnetic
resonance experimental technique. Second, the results we get
here may contribute to the understanding of quantum criti-
cality in other real systems like high-7~ materials. For both
systems we consider here, we find that a finite-temperature
crossover line ends with a QCP at zero temperature. For
high-temperature superconductors, the proposed QCP in the
doping-temperature phase diagram is of this kind; i.e., it is
believed that the pseudogap appears below a crossover
doping-dependent temperature that defines a line that ends
with a QCP near optimal doping.® Third, the quantum critical
points we examine take place within a magnetically ordered
state; the quantum phase transitions here are not from a dis-
ordered state to an ordered one. Likewise, the proposed QCP
in high-temperature superconductors takes place within the
superconducting state, which is also an ordered state. The
fourth reason is that, as we already mentioned earlier, we
identify the microscopic parameter that gives rise to the
QCP.

This paper is organized as follows. In Sec. II, we explain
the mean-field theory used to study the quantum phase tran-
sition in the 1D Heisenberg model. In Sec. III, we calculate
the field dependence of the bond parameter for the Heisen-
berg chain and show that a phase transition takes place at
zero temperature, but no nonzero-temperature phase transi-
tion occurs. In Sec. IV, we calculate the spin bond-bond cor-
relation function and show that it undergoes a drastic change
at the critical field of the transition. In Sec. V, we study
quantum criticality and analyze the field dependence of the
uniform spin susceptibility in the two-leg ladder. In Sec. VI,
we summarize the results of this work using the field-
temperature phase diagrams. In Sec. VII, we present the con-
clusions of this work.

II. QUANTUM PHASE TRANSITION IN THE
HEISENBERG CHAIN

A. Approach description

We begin by explaining the improvements we made in
this work to the zero-field bond-mean-field theory® (BMFT)
for the Heisenberg chain. Then, we extend the BMFT to the
case when an external magnetic field is applied to the chain.

1. Zero-field BMFT
The 1D Heisenberg model is
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Hip=J2S;-S;, 2)
(i.j)
where S; is the spin-1/2 operator at site i and (i, j) designates
the sum over adjacent sites only. Using the well-known 1D
Jordan-Wigner (JW) transformation
i-1

S;=ciei,  ¢;= > n;,
J=0

Si=n;—1/2, (3)

with n,:cfci, the Heisenberg chain maps onto a Hamiltonian
of 1D interacting spinless fermions; i.e.,

J . 1 1
Hp= EE (¢/cip+Heel) +J2 <c:fci - E)(C:'LICHI - E)

(4)

In the framework of the BMFT, we consider the bond
parameter {c,c;,,) to decouple the Ising quartic term in Eq.
(4). The procedure is as follows. By neglecting the fluctua-
tions in (cc},,), we write

c;rcic;+1ci+1 = <CiczT+1>cchi+1 + <Cl-+1CZ>ClT+IC[ + <Cicj+1><ci+lcj>
2 b (5)

with Q;=(c;cl. ) the mean-field bond parameter. Note that
[(S7SH, )| =|(cicl, )|, which means that the parameter Q; ac-
counts for the quantum fluctuations in the Heisenberg Hamil-
tonian. To recover a result comparable to the des
Cloiseaux—Pearson'? spin-excitation spectrum for the single
Heisenberg chain, namely,

_ T * T
=0icicip1 + 0;ciCi t+ [

E(k) =Jg|sink , (6)
one has to choose Q,=(~1)'Q = Qe'™i, where Q is site inde-
pendent. Here, x; is an integer that labels the site coordinate
along the Heisenberg chain. This yields a phase configuration
along the chain of the form mx;=...,7,0,7,0,..., which
will in turn give®

E(k) = J,|sin k

. (7

when the single-fermion term (the XY term) is also written
within the alteranted phase scheme. The hopping amplitude
for the JW fermions resulting from this treatment is (=1)/;,
with J,=J(1+2Q) indicating that a renormalization of the
single-particle term in Eq. (4) by the Ising interaction took
place. Choosing a uniform Q; and neglecting the alternation
of the sign of XY-hopping amplitude gives a cos k spectrum
that does not agree with the des Cloiseaux—Pearson result.
Physically, we can justify the choice of the staggered Q;
in the following way. Consider two adjacent bonds (2i,2i
+1)(2i+1,2i+2). Because of the AF correlations, the bonds
(2i,2i+1)(2i+1,2i+2) may be in the spin configuration
(Tais Lais1)(Lais1s Taia). Using the argument of only short-
range and short-lived AF order, one has to view the object
(T2i»10ix1) as a renormalized spin singlet, rather than a static
spin arrangement, because of the important spin fluctuations.
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In the mean-field treatment based on the JW fermions, any
two adjacent bonds can be quantitatively represented by the
product {c}.coi11X{Cair1€5:40)» Which turns out to be —Q2,
since Q=(Cyi41Chi1n) and (chicoip1)=—(Caipichy=—0. It is thus
justified to use opposite signs for Q on adjacent bonds. We
assumed that creating a JW fermion is equivalent to having a
spin-up state and destroying a JW fermion corresponds to a
spin-down state.

With all this and Eq. (5), the mean-field Hamiltonian
takes on the form

H1D=NJQ2+§ VIH, Wy, (8)
where the spinor W is given by
W= (el 9)
and the Hamiltonian density by
H=( *O e(k)>, (10)
e(k) O

with e(k)=iJ; sin k. ¢ is the Fourier transform of ¢/. 7=A
or B is the label of the two AF sublattices. The eigenenergies
are E,(k)=+J(1+2Q)|sin k|. The ground-state energy per
site is

1 ( dk
EGS=JQ2—ZBJEzln[1+e‘ﬁEﬂ(k)], (11)
p==

which gives E;(T=0)=JQ>- }TJ(I +20Q) at zero temperature
because only the band with negative energies is filled at this
temperature. Minimizing Egg with respect to Q gives O
=1/ at T=0. At nonzero temperature Q is given by

0= [ EnkSpnirwl 2
a

2 s
Here, ndE,(k)]=1/ [1+¢ePE»®] is the Fermi-Dirac factor. In
. YR ~d 1

the high-T limit with kzg7>J, we get Q= Sk,T 1—ak,77> A Te-
sult that rules out any finite-7" phase transition, in agreement
with the Mermin-Wagner theorem.!' Next, we will extend
the analysis we just finished to the case of a Heisenberg
chain coupled to an external magnetic field.

2. Nonzero-field BMFT

Existing numerical data prove that the magnetization be-
comes nonzero as soon as a magnetic field is applied to the
Heisenberg chain. This suggests that the parameter (S;) has
to be included in the decoupling procedure of the Ising term
when the magnetic field is oriented along the z axis. Hence
we write

JSiSty = J(SSi + J(SE ST = J(SINST
~JIM cl cio +IM cle;—IM: =M., (13)

with M,=(S5) being the magnetization per site. In the pres-
ence of the Zeeman coupling term gugB=.S?, the mean-field
Hamiltonian becomes
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H,p(h) = NJQ® + Nh/2 = NM (M, + 1)J + >, WiH, p(h)¥,.
k

(14)
Now, the Hamiltonian density is given by
2MJ-h  e(k) )
h) = . , 15
Haolk) ( (k) 2MJ-h (15)

where h=gugB, B being the magnetic field, g the Landé
factor, and up the Bohr magneton. Interestingly, contrary to
the current belief, we find that the magnetic field alone is not
the chemical potential for the JW fermions. Rather, the
chemical potential is given by h—2M_J=h(1-2Jy) if h<<J
or by h—J if h>h,. x is the uniform spin susceptibility.
Diagonalizing Eq. (15) yields the following energy eigenval-
ues:

E.(k)=2M_J —h+|e(k)|.
The free energy per site is
h 1 dk
feo=MM.+1)J+JQ* - — | == In[1 + ¢ PE0],
2 T 26 ) 2m,C,
(16)

Calculating the magnetization per site, M,=—df/dh, and
minimizing f with respect to Q yields

1 [ dk
0=-3 J ;T|Sin k|{§ipnp[E,,(k)],
1 [ dk
M=2 | o2 ndE(R)]-2, (17)

p=x

where now Q depends on field 4. Because E, depends on M,
the equation determining M, is self-consistent.

The analysis of the mean-field equations (17) reveals the
existence of a zero-T phase transition at the field h.=2J
where the parameter Q vanishes. This is what we report on in
the next section.

III. FIELD-DRIVEN QUANTUM PHASE TRANSITION IN
THE CHAIN

A. Numerical solution

For a strong field (A>h, as it turns out), the Fermi-Dirac
factors in the expression for M. in Egs. (17) become all equal
to 1 at zero temperature. This leads to M,=1/2 in this limit.
Also, Q vanishes when the field satisfies 2M.J—h+E (k)
<0 for any wave number k, because the difference of the
Fermi-Dirac factors in the equation for Q in (17) is zero in
this limit. Letting M,=1/2 when the field is large and letting
k=m/2, which gives the highest energy, yields h>h,., with
h.=2J for the critical field.

In order to understand how this critical field comes into
play, we plot the excitation energy E. (k) as a function of the
wave number k for three values of the field in Fig. 1. In zero
field, the chemical potential of the JW fermions is zero, so
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E (k)T

FIG. 1. The energy spectrum E_ (k) of the 1D Heisenberg model
is displayed as a function of k=k/ for three magnetic field values.
The dashed line represents the chemical potential of the JW fermi-
ons in zero field. The bandwidth decreases with increasing field &
when h<h,.

only the lower-energy band with energy E_(k) is filled. As
the field is increased, the chemical potential for the JW fer-
mions increases, leading to an increase in the population of
the higher-energy band E, (k). For example, for A=J only
part of this band is filled, but for 2>2J the whole higher-
energy band is filled as is illustrated in Fig. 1. Increasing
further the field above 2J does not affect the population of
the higher-energy band any more. This results in the satura-
tion of the magnetization M, because M, is related to the
total number of the JW fermions as the second of Egs. (17)
shows.

Figure 2 shows the parameter Q and the magnetization M,
as functions of the field /. The field dependence shown here
by M, is in very good agreement with the result of Ref. 3
obtained using the Lancz6s method. Clearly, one can see that
Q vanishes at h=h.=2J for the lowest temperature 7T
=0.01J. We will show in Sec. III B 2 that at zero temperature
Q vanishes at i, with the power exponent 1/2. This behavior
signals the occurrence of a phase transition, which is gov-
erned by the bond parameter Q. We label the state with O
>0 for h<h, as being characterized by bond order because
Q is a spin bond parameter. Interestingly, the bond order
competes with ferromagnetic order, and when the latter
reaches its saturation level at /., the bond order disappears
altogether. For 0 <h<h,, the state is characterized by both
bond order and unsaturated ferromagnetism; for this reason,
this state is called a quantum ferromagnet. When temperature
is nonzero (see the curves for 7=0.01J, 0.1J, and 0.3/ in Fig.
2) the singularity in y=dJM_/dh is replaced by a nonsingular
behavior, and Q goes to zero rather smoothly when field
increases. The critical behavior occurs at 7=0 only.

It is possible to calculate analytically approximate zero-
temperature solutions for the mean-field equations in the
strong- and weak-field limits. We will next show the results
of such a calculation.

B. Analytical zero-temperature solution
1. Behavior in the low-field regime

In this section, we calculate analytically the zero-T field
dependence of Q in the low-field limit. At very low tempera-
tures, only low-energy excitations contribute to the Fermi-
Dirac factors. In these limits, we obtain an approximate ex-
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FIG. 2. The parameter Q and the magnetization M, are plotted
as functions of 4 for three values of temperature. At 7=0, Q van-
ishes at h.=2J, where M_ reaches its saturation value (see text). At
finite temperature, the singularity in the first derivative of M, with
respect to & is replaced by a smooth crossover as seen for all three
temperatures here.

pression for Q by replacing |sink| in E,(k) by [k| in the
Fermi-Dirac factors. For B=o, ng(E_)—ng(E,)=1 for (h
—2M_J)/J, <k</2. Using Egs. (17), one gets

1 h=2M_J 11 (1=2J)*h\?
(_z)z_ _g(ﬁ, et

e 7 2m(l+2m)?

(18)

where we replaced J; by its zero-field and zero-temperature
value; J,=J(1+2/7) because Q=1/ in this case, and the
magnetization is given by M= xh when h<<J. Equation (18)
shows that Q decreases quadratically when field increases in
the vicinity of zero.

To calculate the susceptibility y in the vicinity of zero
field, we expand the Fermi-Dirac factors in the expression of
M. in Egs. (17) and use M_= yh. To first order, one gets

1 dk
M= ZT,,E nlE,(k,h=0)]
1 2M_J-h [ dk 17
R i _2 ﬁ (19)
2 2 2'7TP=i (9Ep h=0

Using the fact that in the absence of a magnetic field the
magnetization is zero, i.e., only the lower-energy band is
filled with JW fermions at zero temperature,

1 [ dk

1
— | — E,(k,h=0)]=~,
> 2Wgtnf[ p(koh=0)]=2

one finds the uniform magnetic susceptibility x (for the re-
sponse along the z axis) to be

Xo

=—, 20
X 1 20y 20
where
1 dk a}’l]:
o= | £3 2
2 2T p ﬁEp h=0

is the susceptibility in the absence of the self-consistent term
2JM  in E,(k). At zero temperature (8=),
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1 1
Xo=7 ) (21)

dk
5 E% AE,(h=0)]=

s

with v,=J(1+2Q). We emphasize that Eq. (20) is valid in the
linear-response regime when i <<J. Also, Eq. (20) shows that
the susceptibility in the present treatment consists of an infi-
nite series of the powers of the susceptibility xy; i.e., it is of
the random-phase-approximation (RPA) form. This is a sig-
nificant improvement from the case where only y, was
considered.'>!3 Note that Jy,~ 0.2 near zero temperature, so
that using x = x, remains only qualitatively acceptable in the
linear-response regime (h<<J) at low temperatures. Equation
(20) shows that the Ising interaction reduces the uniform
susceptibility because of the tendency of the Ising term to
form AF ordering; the term 2Jx, in the denominator results
from the Ising interaction. Figure 3 displays both x and yx, as
functions of temperature in zero magnetic field. Note that
Jx=0.14 at zero temperature yields Jx,=0.194 in agree-
ment with Eq. (21). Clearly, y deviates significantly from
at low temperature. The fact that y is smaller than y, at low
temperature is an indication that quantum fluctuations are
treated better in the present RPA-type approximation.

2. Behavior near the critical region

At zero temperature, both Fermi-Dirac factors at E,(k)
become equal to 1 when the field is greater than h.=2J. Q
vanishes and M, =1/2 for h> h,. For h slightly below h., O
and M, are found to behave as

172
%= _i(l_ﬁ) , (22)

where M =1/2 is the saturation value for the magnetization.
The equation for M, near criticality is the same as that of
Parkinson and Bonner (see Ref. 3 and references therein). In
this regime, the susceptibility diverges at z_ with the critical
exponent 1/2:

2 h -1/2
sz_}zc(l_h_) (h~h). (23)

We now explain how we obtained the equation for Q. In Egs.
(17), we again replace sin k in the Fermi-Dirac factors by &
and get for Q

1 (™ . 1 n—7\2]12
=— dksink=—|1-|— . (24
mJ T J

with ky=arcsin[(h—J)/(J,)]. For h near h,, we let Q=0 in J,
and define d=h.—h where 6 is very small. This yields

E
0~"\a, (25)
ar

which in turn gives the result in Egs. (22). Equation (25) is
found to agree with the numerical result for Q displayed in
Fig. 2.
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FIG. 3. The self-consistent magnetic susceptibility y and the
susceptibility x, are plotted as functions of temperature for zero
field. Clearly, x and y, differ significantly at low temperature, but
are practically equal at very high temperature.

The vanishing of Q at A indicates that a zero-temperature
phase transition takes place at h.. This transition is accom-
panied by the saturation of the magnetization M. It is note-
worthy that this phase transition occurs at the minimum mag-
netic field required to suppress the contribution from the
bond order to the total free energy. Remember that Q is given
rise to by the decoupling of the Ising term in the Heisenberg
model. When this happens—i.e., for 7> h—the contribution
to free energy comes only from the XY and Zeeman terms
and also from the decoupling of the Ising term in the Zeeman
canal (M, terms).

To interpret this transition, which takes place at zero tem-
perature, as a quantum phase transition, we need examine the
second ingredient necessary for a quantum phase transition:
namely, a drastic change in the correlations attributed to the
“order” parameter that vanishes at the critical field i,.! We
will next show that the Ising term is responsible for bond-
bond order below the critical field h.. Above A, this bond-
bond order disappears.

IV. BOND-BOND CORRELATION FUNCTION

In the presence of any nonzero magnetic field, the mag-
netization becomes finite, hence leading to the breakdown of
the SU(2) symmetry. However, the quantum phase transition
is not governed by the magnetization along the z axis, but
rather by the spin-bond correlations in the xy plane of the
spin degrees of freedom. We consider the correlations be-
tween two bonds (AB) at (the Matsubara) time 7=0 and (BA)
at time 7, and a distance R apart from each other. We calcu-
late the bond-bond correlation function defined in the follow-
ing way:

(1,85 (0)ST(0)Sk (DSEE (1)
ot = (T,c)T(0)F (0)cR(Dekly (7))
=—(chT(0)cB(0) )R (DcRt (D)
—(TcB(Deg ONT )kl (7)
=-0?- G**(R,NG"(-R,- 7)

1 dq . i TW,
=‘Q2+EE f S (@i, M (26)
m
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where we have used for the equal-time averages
<c’f(0)c0L (0))=—0Q on bond AB between sites 0 and 1 and
<CR(T)CR+1(T)> Q for bond BA between sites R and R+1.
Note that R=1 corresponds to the nearest-neighbor bond cor-
relations. The first line in Eq. (26) is obtained using the JW
transformation and the second one using Wick’s theorem for
fermions.
The Green’s function is defined by

GPA(R.7) = ~(Te(7)cy (0)) 27)
and the bond response function by
Xo(g,iw,,) = —2 f — Gk, iw,) GP Nk + q,iw, + iw,,),
(28)

where iw, and iw,, are the fermion and boson Matsubara
frequencies, respectively. The subscript b in y, refers to
bond. The matrix of the Green’s functions is

1 [ dk

Xb(qaiwm) =-7
4 ) 27 =0 120

with h'=h—-2M_J. It is interesting to note that in the strong-
field limit (h>h =2J), both the lower- and higher-energy
bands are fully occupied even at zero temperature. This im-
plies that the Fermi-Dirac factors in Eq. (31) are both equal
to 1 in this limit, a result that leads to y;,=0. Also, we have
seen that Q=0 when &> h,, which means that the bond-bond
correlations vanish altogether in this case. In the limit of a
weak field, however, the term QZ, which is nonzero, domi-
nates in (26) when the distance R is large. The term in Y,
yields small corrections that decay with distance R. This
shows that at #,=2J the bond-bond correlations undergo a
drastic change. Thus, all the ingredients necessary for the
field-driven quantum phase transition in the Heisenberg
chain are satisfied: namely, that an order parameter vanishes
under the effect of a coupling (here the magnetic field) and

FIG. 4. The uniform spin susceptibility x(h)=dM./dh is
plotted versus field & for three different temperatures. Note that

x5(0,0)~ x.

= —z[¢(k)+¢(k+q)]2 2 (= 1)+
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GAA GAB
G= (iwn - ,}—llD)_l = (GBA GBB)s (29)
with
GAA=GBB=1< 1 + 1 )
2\iw, +h' —|e| iw,+h' +]e|)’
Y
2 iv,+h'—|e| iw,+h" +le|)’
1 . 1 1
G = —e—“/’( - ) (30)
2 iw,+h'—|e| iw,+h +|e|

Here ¢/*®=¢(k)/|e(k)|. Performing the summation over the
Matsubara frequencies yields

(= DPle(®)] = h']=nid (= 1) |€(k+61)|—h]

31)
(= DPle(®)] = (= D' le(k + q)| + iw,,

the occurrence of a drastic change in the correlation function
associated with this order parameter.

To illustrate the sudden change of behavior at A, we cal-
culate the uniform and static bond susceptibility yx;,, which
we find to be given by

Xb(()’O) ~Xs (32)

where x is the uniform field-dependent spin susceptibility.
Figure 4 shows x as a function of & for three different tem-
peratures. Very close to zero temperature, for 7=0.01J in
Fig. 4, x displays a sharp asymmetric peak at /.. This peak
broadens when temperature increases. We showed earlier
[see Eq. (23)] that at zero temperature, y is singular at h,
with the exponent of the singularity for 7 <<h, being 1/2. x
drops sharply at h!, but becomes nonzero as temperature
increases because the singularity in the derivative of M at h,
disappears as soon as T becomes finite. Note that, in addition
to this sharp change in y,(0,0) at A, the term in Q% in (26)
also undergoes a sharp, but not diverging, change at ..

V. QUANTUM CRITICALITY IN THE TWO-LEG
LADDER

A. Derivation of the mean-field equations

In this section, we will study the quantum criticality aris-
ing from an external magnetic field in the two-leg Heisen-
berg ladder. The Hamiltonian for such a system is
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(33)

where J, is the exchange coupling along the rungs, J the
coupling along the chains, and i=1,...,N and j=1,2 are the
site index along the chains and the chain label, respectively.
N is the number of sites on each of the chains, giving the
total number of sites of the ladder to be 2N. Here, we extend
to the case of a ladder in a finite magnetic field the approach
developed for the two-leg ladder in zero field in Ref. 14.
Performing the Fourier transform along the chains while
keeping the chain labels in the real space gives the following
mean-field Hamiltonian:

Hy ==NQ2J+J )M (M, + 1) + Nh+2NJQ* + NJ , P*

+ 2 WiH,, W, (34)
k
where
Wy = (cfchichich (35)
and
Ji
—h' e(k) o
e(k) 5
. J
k) —h' ?‘ 0
Hyp = (36)
o Tu e(k)
2
J .
?‘ 0 (k) -n'

is the Hamiltonian density. Here, h'=h—(2J+J )M, e(k)
=i/, sink, with J,=J(1+2Q) and J, ;=J,(1+2P). The pa-
rameter Q is defined in the same way along the chains as for
the single Heisenberg chain, but P:(c,-’lcfl) is the bond pa-
rameter along the rungs of the ladder. Physically, P has the
same meaning as Q; i.e., P accounts for the strength of the
rung singlets because P=(c; c},)=[(S7,S},)|. One can think
of O and P as being two values for the same physical pa-
rameter that is spatially anisotropic as a result of J and J
being generally different, and because of the ladder geom-
etry. The mean-field energy spectra, which are given by

E.(k)=—h" £ \J;sin®>k+J°, /4, (37)

depend only on the longitudinal wave vector k. Note that
because we did not perform a Fourier transform perpendicu-
lar to the chains, there is no k, dependence in E, (k). As Eq.
(35) shows, the chain index (1 or 2) appears in the spinor ¢
in stead of k,. E.(k) are characterized by the energy gap
E,=J /2 at k=0 or . Obviously, this is not completely
accurate because exact numerical methods have indicated
that the gap at k=0 is greater than the gap at k=.!%!7 The
energy gap we find here is between the exact gaps at k=0
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and k=1r; one can thus think of the gap we find as a mean-
field average of the true gaps. Note that for the purpose of
studying the quantum phase transition in the two-leg ladder,
the shape of the spectrum is not as crucial as the presence of
the energy gap itself. We will indeed see that our results are
qualitatively correct since they compare well with existing
exact numerical data for the magnetization versus field.
Among the first researchers to have studied the two-leg lad-
der system we find Dagotto et al.,'> Barnes et al.,'® and
Barnes and Riera.!” More recently, Dai and Su'® have pro-
posed a different theory, also based on the JW transforma-
tion, that gave an energy spectrum with the correct behavior
near 0 and 7. Their theory, as they have found, is, however,
not valid in the limit «— 0 for the energy gap because the
gap does not vanish with «. Therefore, we would rather use
the BMFT, which is valid in this limit. Here, a=J/J.
The mean-field free energy per site is

1 1
for(T,h) =JO* + EJLPZ - 5(21 +J )M (M, +1)

h 1
J— —BE,(k)
2 25 E, In[1+e 1. (38)

p—+

Minimizing the free energy with respect to Q and P and
calculating the magnetization yields the following mean-field
equations:

dk J sin’ k,

ZE 27 el {nF[E (k)] = ngEL(K)]},

1 dk J
pP= _f (k) nilE_(k)] - nd E.(k)]},

M.=~ E, (k)] 39
=515 E niE,(k)] (39)
with
I T
e(k) = \NJ3 sin® k+ J* /4. (40)

We will next analyze analytically these mean-field equa-
tions in several limiting cases: like in zero field and tempera-
ture, in zero field and high temperature, in zero temperature
and weak field, and in zero temperature and in the vicinity of
the critical field.

B. Analytical analysis of the mean-field equations

1. Zero-field and zero-temperature regime

We start by examining the zero-field and zero-temperature
solution. In fact we report here new analytical results in this
limit, which were not published in Ref. 14. Using the elliptic
functions E and F in the small-« limit, we obtain
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FIG. 5. Q and P are plotted as functions of a. The solid lines
represent the numerical calculation results. The dash-dotted and
dashed lines are the approximate analytical results of Eqs. (42) for
small « and Eqgs. (44) for large a.

0= 1 30)- 5
T 2,y 477]% 2,y,

‘]Ll (’77' )
p~—Lp( 2], 41
2w, \ 27 “1)

with y=2J,/\J5 | +4J7. Expanding the functions E and F
when a is small (a<%1) leads to

1 o? (8(1 +2/7r)>
2 I ’
7 4l +2/m7)?

Qz

o

@ 1(8(1+2/7r)) @<l). @2

P= n
27 (1 +2/m)

The energy gap in this limit is given by

e a 8(1 +2/)
Eg~2{1+77(1+2/77)1n{ a H (#3)

Note that P~ aIn @ when « is very small and that the con-
tribution to Q from the transverse coupling behaves as
2
a ln a.
In the large-coupling limit with @>1 along the ladder
rungs, Q and P are approximately given by

pz;[l_(ﬁﬂ @s D,

which means that Q~1/a and P~ 1/2 in this limit. This
tells us that the spin bonds along the chains become much
weaker than the bonds along the rungs which gain in
strength.

Figure 5 displays Q and P versus « obtained using the
numerical solution for Egs. (39) and the approximate expres-
sions in Egs. (42) and (44). The agreement between the ana-
lytical and numerical results is noticeably good. As is evident
in Fig. 5, for > 2.5, the large-a expressions agree well with
the exact results. For a<<0.5, the agreement between the
small-a expressions and the exact results is also very good.
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2. Zero-field and high-temperature regime

It is important that we discuss here the temperature de-
pendence of the mean-field parameters Q and P. If Q and/or
P vanished at a certain nonzero temperature, then a phase
transition driven by thermal fluctuations would take place.
However, this is not the case because both parameters do not
vanish at any temperature. To prove this, we calculate Q and
P in the high-temperature limit. Consider the limit kz7T>J
>J, for simplicity. We expand the Fermi-Dirac factors to
get npE_]-ngE.]= TEBT to order 1 in BE,, with E,
==e(k) if h=0. Substituting this into (39) leads to

1
Q~8k3T1 J
4kyT
J 1
~ (45)
8kyT _J
4kyT

which are valid in zero field. This shows that both Q and P
decrease as temperature increases following a Curie-Wiess
T-! law, but they never vanish. The approximate expression
for Q in (45), which is obtained in the limit kz7>J>J |, is
the same as in 1D in the high-T regime and compares well
with the exact numerical result depicted in Fig. 6(a), where
a=0. Equations (45) clearly show that no phase transition
driven by thermal fluctuations occurs in the ladder when the
field is zero. Figures 6(b) and 6(c) display Q and P as func-
tions of T/J for two nonzero values of the rung coupling.
This again shows that there does not exist a temperature
where Q and P vanish. The situation is different for the
ground-state (7=0) field dependence. As in the case of the
Heisenberg chain, we will show that a field-driven quantum
phase transition occurs in the two-leg Heisenberg ladder ex-
actly at the field corresponding to the onset of magnetization
saturation.

C. Quantum phase transition in the two-leg ladder

First, we present the results for Q, P, and M, as functions
of the field h, which are obtained by solving numerically
Egs. (39). Then, we examine these equations analytically
later on in zero 7. In Figs. 7(a) and 7(b), Q, P, and M are
drawn versus h/E, for two values of the rung coupling «. In
Fig. 7(a) temperature is T=0.025J, whereas T=0.28/ in Fig.
7(b). For the two-leg ladder, the critical field above which
the higher-energy band E, (k) becomes completely occupied
is obtained by stating that the maximum energy at k=/2
becomes negative: E,(7/2) <0 which gives

o 0[2
h>h62=1<1+5)+J\/1+Z. (46)

To derive Eq. (46), we set Q=P=0 and M.=0 in E.(7/2).
Figure 8 displays the higher-energy band E,(k) for a=0.5
and several magnetic fields. One notices that E, becomes
completely negative for h=2.27J. The latter is in agreement
with the result 2.28J obtained from Eq. (46) when a=0.5.
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FIG. 6. The bond parameters Q and P are drawn vs temperature
for =0 in (a), «=0.5 in (b), and a=5 in (c). Note that P=0 for
a=0. The magnetic field is zero in all three cases.

Also, for all those fields smaller than the energy gap—i.e.,
h<h,=E, at zero temperature—the energy band E, (k) re-
mains above zero, causing the occupation level to remain at
half-filling. Thus, according to the last of Eq. (39), the mag-
netization remains zero. Indeed, Figs. 7(a) and 7(b) show
that the magnetization is zero at very low temperature for
fields smaller than the energy gap. This is in good agreement
with the results of Hayward, Poiblanc, and Lévy,4 obtained
using the exact diagonalization technique. Our curves for the
magnetization versus field look very similar to theirs. At zero
temperature, M, increases from zero to saturation for fields
hey<h<h,,. Figure 7(a) displays this behavior for M, at
T=0.025J.

Another interesting phenomenon happens when we fix the
magnetic field and vary the rung coupling in the regime
where magnetization is nonzero. The magnetization de-
creases then vanishes at a critical value of «. Figure 9 illus-
trates this behavior for 7=0.027J and h=0.5. This figure
shows also Q and P versus «, which continue to be nonzero
even when M, vanishes. Thus, the vanishing of M, alone in
this case is not enough to speak about a quantum phase tran-
sition in the same sense as before, because the order param-
eters Q and P do not vanish.
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FIG. 7. The bond parameters Q and P and the magnetization are
plotted as functions of i/E,, where E, is the energy gap in zero
field and zero temperature. Note that the magnetization has two
plateaus, one occurring at low fields (A <h,;) and the second one at
high fields (h<h,,).

1. Calculation of Q and P near criticality when a>1

To show beyond doubt that a quantum phase transition
occurs in the two-leg ladder as well, we consider the large
and small-« limits and carry on the calculation analytically at
zero temperature. In the limit > 1, h,~J(1+a+1/a). For
a field slightly smaller than the critical value A, only a
small portion of the higher-energy band E_ (k) remains above
the zero-energy axis. This will correspond to wave numbers
satisfying

Jrsin? k> (h—J—Ja)(h-J) (47)

if we let M, ~1/2 for h only slightly smaller than h.,. Let
6=h-h, with 0<8<h,,. In this case (h—J-Ja)(h-J)
~J*(1-6h.,/J?) for a> 1. Also near h,,, Q~0, so that the
condition (47) yields k>k,, with ky=sin"'(1-h,/2J%)
~ 1/2—h,,/J. Using this analysis in Egs. (39), we get

E (k1]

FIG. 8. The energy spectrum E, (k) is drawn versus k=k/ for
several values of the field /. The dashed line represents the chemi-
cal potential for the JW fermions. Note that this higher-energy band
sinks below the Fermi level when the field is greater than K,
=2.28 for a=0.5, Eq. (46).
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FIG. 9. Very interestingly, the perpendicular coupling « causes
the magnetization to vanish. This is illustrated here for 2#=0.5/ and
T=0.027J. This reflects the competition between the ferromagnetic
ordering and the tendency to form spin singlets on the rungs.

_ V‘th

Q (hc2 - h)l/Z’
JaTr
n.
P~ \J: (hey = )2, (48)

for h slightly smaller than h.. For h>h,, Q=P=0 and
M,=1/2. These two equations clearly prove the occurrence
of a zero-T phase transition at s, with the power exponent
1/2. This exponent is universal because it does not depend
on .

2. Calculation of Q and P near criticality when a<<1

In this case h.,~J(2+a/2+a?/8). Similarly, for 7~ h,,,
the integrals in Egs. (39) yield

E
0= : =(hg— )",
m™J

J”E
P~ &r(hcz—h)m- (49)
W

Note that when #, is replaced by 2J in the equation for Q in
Eqgs. (49), one recovers the same equation (22) as in the 1D
case. Equations (49) also show that a zero-T phase transition
occurs at h.,. One can repeat the same analysis as in 1D for
the bond-bond correlation function and find that a drastic
change occurs at /1,,. Thus, a quantum phase transition takes
place in the two-leg Heisenberg ladder as well at the
a-dependent critical field &,,.

D. Susceptibility versus magnetic field in the two-leg ladder

We now address the field dependence of the spin suscep-
tibility. In Figs. 10(a) and 10(b), we display y as a function
of h for two values of « at several temperatures. We find that
x for the two-leg ladder behaves differently than the 1D
susceptibility, essentially because of the energy gap. For «
=0.5 in Fig. 10(a), x~0 for h<E, at low temperature (T
<E,). But as temperature increases, the influence of the gap
decreases; for 7=0.3J, x looks very similar to the 1D sus-
ceptibility for the same temperature. Similarly, for a=1 in
Fig. 10(b), x becomes nonzero when the effect of the gap is
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FIG. 10. The susceptibility of the two-leg ladder x(h)
=dM_/ dh is drawn versus & for @=0.5 in (a) and @=1 in (b).

overcome by the thermal excitations at enough high tempera-
ture. The peak at the upper critical field %, is shifted to a
higher value for =1 because h,, increases with a. At very
low temperature, y is characterized by two peaks, one near
h., and the second one near /,. This is a consequence of the
two plateaus that characterize the magnetization at low fields
h<h,, and high fields h>h. Note that the asymmetry in
our two peaks is much more pronounced than in the results
of Wang and Yu, ! who used the transfer-matrix renormaliza-
tion group. We think that this is a consequence of the ap-
proximations used in the present mean-field approximation.
Also, our estimate of %, does not agree exactly with theirs.

VI. FIELD-TEMPERATURE PHASE DIAGRAMS

Figures 11(a) and 11(b) show the field-temperature phase
diagrams for the Heisenberg chain and two-leg ladder with
a=0.5, respectively. The dashed lines are not critical lines
but are crossover lines only. For the 1D case, the phase dia-
gram is composed of three phases: the spin-liquid phase at
zero field, the quantum ferromagnetic phase for field-
temperature points to the left of the dashed crossover line,

T=02(h.-h), (50)

and the classical ferromagnetic state to the right of this line.
The crossover line (50) ends with a QCP at the point (T
=0,h=h.,) shown as a solid dot. For the two-leg ladder,
there are also three phases: the gapped-spin-liquid phase
given at low fields and on the vertical axis 7/J and the quan-
tum and classical ferromagnetic phases, which are separated
by a crossover line, that surprisingly has the same equation
as (50) when the gap E, is replaced by the value 0.35J it
assumes for J,=0.5/ and the field h. by h,—ie., T
=0.2(h—h). These crossover lines are determined by locat-
ing for each temperature the field at which Q practically
vanishes or M, practically saturates. The lower-field cross-

174422-10



FIELD-INDUCED QUANTUM CRITICALITY IN LOW-...

1D phase diagram:

0.5+ ’
uantum ferromagnet /
0.4 Q g ‘\S?/
+ 57
~0.3F _Spin liquid @f/
2L pin liqui @47
0.2+ QCP C}/ Classical
r ,/  ferromagnet
0.1F \M//
O— P B N 1 /x ) I U S B .
0 1 2 3 4 5
(@) i

Two-leg ladder phase diagram:

0.5+ ’
L , . 2
04l Quantum ferromagnet ~\$f/ /
Gapped &
EO'3 iz~ spin liquid S
F S
0.2+ QcP C;// Classical
i ,/ ferromagnet
0.1 9 %
O z 1 ’ I 1 1
0 5 10 15
(b) h/Eg

FIG. 11. The field-temperature phase diagrams we calculated in
this work are displayed for the Heisenberg chain in (a) and the
two-leg ladder with =0.5 in (b).

over line in Fig. 11(b) is determined by locating for each
temperature the field where the magnetization becomes non-
zero. The fact that this lower-field line curves towards the
vertical axis is a result of the fact that growing thermal ex-
citations wash out the gap and populate the higher-energy
band with JW fermions that contribute to the magnetization.
The vertical axis (h=0) represents the zero-field gapless
phase (spin liquid) for the Heisenberg chain and the gapped
spin liquid phase for the two-leg ladder.

The labeling of the ferromagnetic states as quantum or
classical is consistent with the result of Parkinson and
Bonner® for the Heisenberg chain who found that all the
curves for magnetization divided by the spin S versus h/S
saturate at the same value h/S=4 even for S — oo, where the
quantum fluctuations become negligibly small; see Fig. 2 of
Ref. 3. Differences between their curves, which correspond
to different S values, occur in the quantum regime for fields
smaller than /4./S. The present finding of a finite-temperature
crossover line ending with a QCP at zero temperature re-
sembles the proposal for the existence of a QCP in high-
temperature superconductors.® For the latter, chemical dop-
ing plays the role of the external parameter and the phase
diagram is presented in terms of doping and temperature.
There is evidence that the crossover line below which the
pseudogap appears at finite temperature ends with a QCP
near optimal doping at zero temperature.

In the high-T region (not shown) of the phase diagram,
with kzT>J for the chain and kz7T> aJ for the ladder, we
find that
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Mzzh/["-kBT(l +J/2kBT)], kBT>JOr kBT> Cl’.,,

(51

which means that M, does not vanish at a critical tempera-
ture and the upper regions of the phase diagrams in Fig. 11
are not limited by a critical line from above. One can rather
speak of a crossover line from the low-T quantum ferromag-
net regime to the Curie-like regime described by Eq. (51) in
the high-temperature regime.

The phase diagram of the two-leg ladder looks like the
experimental one proposed by Chaboussant et al.” for the
two-leg ladder material Cu,(CsH,,N,),Cl,. However, it does
not agree with the phase diagram calculated by Wang and
Lu." Physically, the saturation field should increase as tem-
perature increases as a result of the need to compensate for
the increasing thermal motion when the field attempts to
align the spin moments. The crossover line starting at &,
(the QCP) with a positive slope in our phase diagram reflects
this fact, but the curve obtained by Wang and Lu does not;
refer to Fig. 3 of Ref. 19.

VII. CONCLUSION

In this work, we study the magnetic-field-induced quan-
tum criticality in the antiferromagnetic Heisenberg chain and
two-leg ladder. We show that a quantum phase transition
accompanying the saturation of the magnetization takes
place in each of these two systems at the critical field %, for
the chain and at the upper critical field /4, for the ladder. We
also find that the phase transition in both systems is governed
by the spin bond parameter, which vanishes at the critical
value of the magnetic field where the zero-7' magnetization
saturates. The excellent agreement between our results and
the existing exact numerically obtained results for the mag-
netization curves suggests that the present mean-field treat-
ment is acceptable. The field-temperature phase diagrams are
calculated for both systems. They are both characterized by a
nonzero-temperature crossover line that ends with the quan-
tum critical point (at zero temperature) at the field A, for the
chain and A, for the ladder. The way the bond order behaves
as a function of temperature makes it a candidate for the
so-called hidden order, which could be at the origin of the
pseudogap behavior in high-T~ materials for example. We
plan to persue further this proposal in the future.
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