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Reversal modes in arrays of interacting magnetic Ni nanowires:
Monte Carlo simulations and scaling technique
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The effect of dipolar interactions in hexagonal arrays of Ni nanowires has been investigated by means of
Monte Carlo simulations combined with a scaling technique, which allows the investigation of the internal
structure of the wires. A strong dependence of the coercivity and remanence on the distance between wires has
been observed. At intermediate packing densities the coercivity exhibits a maximum, higher than the nonin-
teracting value. This behavior, experimentally observed, has been explained on grounds of the interwire dipolar
interactions. Also, different reversal modes of the magnetization have been identified.
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I. INTRODUCTION

In recent years, a great deal of attention has been focused
on the study of regular arrays of magnetic particles with
dimensions in the nanometer range. These particles have po-
tential applications in nonvolatile magnetic memory devices
or high-resolution magnetic field sensors' and arrays of dis-
crete patterned magnetic elements, such as magnetic wires,
rings, and dots, have been proposed as a new generation of
ultrahigh density patterned magnetic storage media.> Experi-
mental and theoretical results over the past years show that
there are many factors, such as geometry, anisotropy, and
magnetic interactions among the particles, that influence the
magnetic behavior of the systems. The question of how the
interelement spacing affects the magnetic properties of an
array is relevant in understanding and interpreting experi-
mental results since this spacing can influence both the mag-
netization reversal mechanism and the internal magnetic do-
main structures. The effect of interparticle interactions is in
general complicated by the fact that the dipolar fields depend
upon the magnetization state of each element, which in turn
depend upon the fields due to adjacent elements. Therefore
modeling of such systems is often subject to strong simplifi-
cations like, for example, considering monodomain particles.
In the specific case of wires, Sampaio et al.® have described
an array of microwires as a one-dimensional array of Ising-
type magnetic moments subject to an anisotropy field, repre-
senting the wire shape anisotropy, and with the dipolar inter-
action taken into account as a field depending on the
orientation of the participating magnetic moments. Hyster-
esis curves with some of the features observed in experi-
ments were obtained by Monte Carlo simulations. A more
realistic model was presented in Ref. 4 to describe one- and
two-dimensional arrays of microwires. In this case the mag-
netic moments were allowed to point at any direction on the
plane, and dipolar interactions have been directly calculated.
This approach provides a description limited to very long
wires in a weakly interacting regime, excluding the explora-
tion of many interesting issues. Models for wires with non-
uniform magnetization have been restricted to micromag-
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netic calculations.>”” The introduction of internal degrees of
freedom enables mapping the field in the vicinity of the wire’
and identifying a corkscrew reversal mode.’

In this paper we develop Monte Carlo simulations for an
array of nanowires in which the internal structure of each
wire is taken into account. We focus on arrays of nanowires
created by electrodeposition of nickel in porous alumina
membranes.® This fabrication technique produces hexagonal
arrays of nanowires with long-range ordering, and well con-
trolled center to center distance (D), diameter (d), and length
(€). Typical values are d=10-100 nm, €=0.1-1 um and
D=30-100 nm. More frequently studied are wires with as-
pect ratios €/d>10 in order to enforce the bit character of
individual elements, so we also consider nanowires with this
characteristic. Experimentally it is possible to observe that
the coercive field strongly depends on the ratio d/D, indicat-
ing that the reversal process is greatly affected by magneto-
static interaction among wires.” This effect is observed in
several experiments, in which the hysteresis curves for mem-
branes with different packing densities are measured.3-'0
Wires in the above-mentioned range of sizes have at least 10%
atoms, and since dipolar interactions must be considered in
those systems, numerical simulations at the atomic level are
out of reach with the present computational facilities. In or-
der to circumvent this difficulty, we make use of a scaling
technique presented by d’Albuquerque et al.,'' which was
applied to the calculation of the phase diagram of cylindrical
particles. In this approach the number of particles is reduced
to a value suitable for numerical calculations, which de-
creases the dipolar field felt by each particle. The exchange
coupling constant is then scaled down in order to keep the
correct balance between magnetostatic and exchange ener-
gies, responsible for domain formation and reversal mecha-
nisms. This technique, combined with standard Monte Carlo
simulations, has been used in the study of nanometric ele-
ments, providing results otherwise unattainable with this
approach.!%13

Modeling an array with macroscopic dimensions, even
with the scaling procedure, is not possible due to the large
number of wires. In order to extract information about the
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reversal process taking into account the interaction with
neighboring wires and, at the same time, use reasonable
computational time, we have studied a hexagonal cell with
seven wires, considering the central wire, which interacts
with the full number of first neighboring wires, as represen-
tative of a typical element of a macroscopic array. Monte
Carlo simulations were used to calculate the hysteresis curve
for cells with different interwire spacing. The behavior of the
coercivity and the reversal modes for weak and strong inter-
acting limits were analyzed.

II. MODEL

The internal energy E,,, of a wire array with N magnetic
moments can be written as

N N
Etat=22(Eij_‘]/li'ﬂj)"'EK"'EHv (1)

i=1 j>i
where E;; is the dipolar energy given by
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r;; is the distance between the magnetic moments ; and ﬁj,
and 71;; the unit vector along the direction that connects the
two magnetic moments. J is the exchange coupling constant
between nearest neighbors, and fi; is the unit vector along the
direction of g;. Eg is a cubic crystalline anisotropy term
which can be written as Ex=K3Y [a?B2+Bl v +via?],
where (a;,8;,7;) are the direction cosines of f; referred to

the cube axis,'* and Ey=—3V fi;-H is the contribution of the
external field.

In order to compare our simulations with experimental
results on granular Ni systems, we have considered |u;]|=pu
=0.615up, the lattice parameter ap=3.52 A, K=2
X 10° erg/cm?, and J=1600 kOe/uz.'* The wires have di-
ameter d=30 nm, length =1 um, and were built along the
[110] direction of a fcc lattice comprising about 6 X 10° at-
oms. In order to reduce the number of interacting atoms, we
make use of the scaling technique presented before,!! applied
to the calculation of the phase diagram of cylindrical par-
ticles of height € and diameter d. The authors showed that
such diagram is equivalent to the one for a smaller particle
with d"=dx” and €' =€ 7, being <1 and 7=0.56, if the
exchange constant is also scaled as J'=yJ. It has also been
showed!? that the scaling relations can be used together with
Monte Carlo simulations to obtain a general magnetic state
of a nanoparticle. We use this idea starting from the desired
value for the total number of interacting particles we can deal
with. Based on the computational facilities currently avail-
able, we have estimated a total of N=3500 to be a reason-
able value. With this in mind we have obtained the value y
=8 X 1074, that leads to wires with 504 atoms each.

In what follows we simulate hysteresis curves at tempera-
ture 7=300 K, using the scaling technique described above.
It is important to observe that when measuring a hysteresis
loop, the value of the coercivity is affected by the rate at
which the external field is varied. Similarly, in simulations of
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that curve the number of Monte Carlo steps for each value of
the field is a critical issue to be defined. We have followed
the procedure used by many authors, in which the number of
Monte Carlo steps for a particular case is varied until fair
agreement with experimental results is obtained.'>!7 Then,
the number of Monte Carlo steps is kept fixed and all other
variables can be changed. Monte Carlo simulations were car-
ried out using the Metropolis algorithm with local dynamics
and single-spin-flip methods.'® The new orientation of the
magnetic moment was chosen arbitrarily with a probability
p=min[1,exp(—~AE/kzT)], where AE is the change in energy
due to the reorientation of the magnetic moment, and kp is
the Boltzmann constant. One interesting point to be consid-
ered is the effect of scaling on temperature at which the
simulations are carried out. Since our goal is to obtain hys-
teresis curves, we need to figure out how the scaling is af-
fecting the transition between metastable states. The energy
landscape of the system is rather complicated due to the di-
polar interaction, but in the vicinity of each local minimum
we can analyze the transitions as regulated by energy barriers
of the form K,V where K, is an effective anisotropy constant
which takes into account several energy contributions, and V
is the volume of the particle. Thermal activated transitions
naturally lead to the definition of a blocking temperature
Ty K,V,'” so we use this to relate temperature and size. In
order to keep thermal activation process invariant under the
scaling transformation, the energy barriers must also be in-
variant therefore temperature should scale as the volume,
that is, 7" = X3 7T. From now on, all results refer to the scaled
system.

The hysteresis loops were simulated with the external
field in the direction of the wire axis. The initial state had the
field H=2.0 kOe, higher than the saturation field, and a con-
figuration in which all the magnetic moments were aligned
with the external field. The field was then linearly decreased
at a rate of 300 Monte Carlo steps for AH=0.01 kOe. In this
way, to go from saturation to the coercive field about
120 000 MC steps are needed. The values of coercivity cor-
respond to an average over, at least, ten independent realiza-
tions.

III. RESULTS AND DISCUSSION

Our main concern in this work is to investigate the role of
dipolar interactions in wire arrays, specially its effect in the
coercivity. Figure 1 shows the hysteresis loops for an isolated
nanowire and for the central wire of a cell with spacing D
=40 nm. Comparing the curves we can immediately con-
clude that interaction affects the reversal processes not only
in respect to the coercivity values, but also to the shape of
the curve. The loop for the isolated wire has a 100% square-
ness, while the one for the interacting central wire, only
45%. Although not shown in the figure, the curve for the
central wire of the D=100-nm array almost coincides with
the one for an isolated wire. Similar results have been found
by other authors. For example, regular arrays of monodis-
perse columns have been modeled by Samwell et al.?° and
Yshii and Sato.?! Both papers report analytical calculations
of an internal field parameter for nanowires in a membrane.
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FIG. 1. Hysteresis curves for an isolated wire, and for the cen-
tral wire of a hexagonal array of 7, with interwire distance D
=40 nm.

Considering magnetostatic interactions as the only cause of
shear in the hysteresis loop, the authors find good agreement
with experimental values. Results reported by Sorop et al.??
for Fe nanowires embedded in nanoporous alumina tem-
plates reinforce this idea. By examining the wire morphol-
ogy, and varying the temperature, the authors have discarded
the influence of these factors in the shape of the hysteresis
loop. The squareness of the hysteresis loop has also been
examined by Hwang et al.,”> who fitted experimental curves
for arrays of cylindrical Ni particles with a deterministic
model in which the cylinders are represented by a single
magnetic moment. The arrays have one adjustable parameter,
the standard deviation o for the switching field distribution.
By comparing simulations of hysteresis curves for systems
of interacting particles and 0=0, and noninteracting particles
and o # 0, with experimental curves, they were able to con-
clude that the shear observed is due to interaction among
particles.

The effect of interwire spacing on the coercivity can be
examined in Fig. 2, where its value is plotted as a function of
d/ D, for values of D corresponding to almost noninteracting
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FIG. 2. (Color online) Coercivity of the central wires of a hex-
agonal array of 7, as a function of the interwire distance D. The
wires have diameter d=30 nm and length £=10° nm. The solid line
is a guide to the eye.
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FIG. 3. Internal dipolar energy for the central wire in arrays with
D=40, 70, and 120 nm, and for an isolated wire, along the hyster-
esis cycle.

wires, D=150 nm, up to strongly interacting ones, for D
=40 nm. The same behavior was observed in a square ar-
rangement, but with a less pronounced maximum. For com-
parison, the value obtained for an isolated wire is represented
by the horizontal line. The large-D regime coincides with the
noninteracting limit, but it is interesting to note that the tran-
sition to the strongly interacting regime involves a maximum
in coercivity. Since we are looking at the central wire, the
curve in Fig. 2 reflects the reversal order of the group of
wires. In the limit of noninteracting wires, D=150 nm
(d/D=<0.20) all of them reverse basically at the same time,
for 100 nm=D=70 nm (0.30<d/D<0.43) the central
wire is the last one to revert, and for 60 nm=D =40 nm
(0.50=<d/D=<0.75) it is the first one in the reversal process.
This increase in stability has also been reported by Hertel.’
The author has performed micromagnetic simulations of hex-
agonal arrays of nanowires with fixed geometric parameters.
Using our notation, his system is composed by wires with
€=1 pm, d=40 nm, and D=100 nm, leading to d/D=0.4,
well within the maximum coercivity region. Hertel examines
the effect of increasing the number of wires in the array, as a
form of increasing the interaction among wires, and observes
that the the reversal of some them occurs because the stray
field of neighboring wires adds to the external field and leads
to a higher field to which the magnetic moments are effec-
tively exposed as compared to a single nanowire. On the
other hand, those wires remaining with magnetization anti-
parallel to the field are confronted with the stray field of the
reversed wires which is oriented opposite to the external field
thus reducing the local field. His conclusion is that, in this
case, saturation is reached at higher field strength compared
to a single wire. The reversal process is regulated, in first
order, by the internal dipolar energy of the wire, E;. This
energy corresponds to the dipolar interaction between the
magnetic moments within each wire. Figure 3 shows the be-
havior of E; along the hysteresis curve, for the central wire of
arrays with D=40, 70, and 120 nm, and for an isolated wire.
For D>70 nm the reversal is fast, resulting in a sharp peak
in the energy curve, localized at the coercive field. For D
=40 nm, the reversal starts at zero field, and has a duration
about fives times larger.
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FIG. 4. Internal dipolar energy E, for individual wires along the hysteresis cycle. The upper line corresponds to the central wire, while
the lower one shows the reversal curves for each of the six external wires.

The complexity of the reversal process in strongly inter-
acting arrays is evident when one compares the value of E;
for each wire, for different values of D, along the hysteresis
cycle. The upper curves in Fig. 4 illustrate E; of the central
wire for D=40, 70, and 120 nm, while the lower curves de-
pict E; of the six external wires of the array, for the same
values of D. For D=120 nm, the process consists of a se-
quence of sharp reversals within an interval of 0.3 kOe. For
D=70 nm we observe that a variation of about 0.5 kOe is
needed to reverse all wires, but it is still possible to identify
the reversal of each individual wire. The situation for the
strongly interacting array, with D=40 nm, is quite different.
Each reversal curve has a complicated structure and the su-
perposition is large. Also, the peaks are wider and span a
large interval of field values. The reversal of the whole array
involves a variation of about 1.6 kOe, and only the reversion
of the central wire can be well separated from the others,
acting as a trigger to the reversion of the surrounding wires.

Examining the internal structure of each wire, we notice
another effect from the interaction. Reversion in isolated
wires occurs via nucleation of domain walls at the wire tips,
that propagate and merge near the center as found also in
micromagnetic simulations.> In the D=40 nm array we have
also observed the nucleation of domain walls at the center of
the wire, propagating towards the tips and merging with the
walls coming from there. Figure 5 shows two moments of
the reversal process for such array. In Fig. 5(a) the central
wire has already started to revert and has two domain walls
traveling towards the center. A snapshot taken later [Fig.
5(b)] shows three wires completely reverted, and two of the
outer wires with nucleation of domain walls in the central
part also.

In order to better understand the appearance of the maxi-
mum at D=70 nm, the relative stability of possible wire con-

figurations must be investigated. For this purpose we have
calculated magnetization and energy of the hexagonal array
in the absence of external field, assuming that the wires were
saturated with magnetization along the wire axis. For D
=40 nm, the dipolar energy of the central wire is —1.55 meV,
while the energy of each outer wire is —1.60 meV. Since the
central wire has a higher energy, its reversion is more likely
to occur. For D=70 nm the energies become —1.66 meV for
the central wire and —1.67 meV for the outer ones. In this
case the energy difference is not large enough to make the
central wire considerably less stable. Actually, as some mag-
netic moments in the outer wires acquire components trans-
verse to the wire axis, the central wire has its energy low-

(¢)

FIG. 5. Reversal process in an array with D=40 nm along the
hysteresis curve, for two different moments. Magnetic moments
aligned opposite the field are represented in light grey, while those
already reversed appear in dark grey. Black regions represent the
domain walls. (a) Reversion starts at the central wire, where domain
walls nucleate at the extremes and propagate towards the center. (b)
In two of the border wires there is also the nucleation of domain
walls in the central part. These walls propagate towards the tips,
merging with the ones generated there.
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ered, becoming more stable. The reversal process starts
easily and simultaneously in two opposite external wires,
separated by a distance equal to 2D. This intermediate con-
figuration is very favorable since comprises six antiferro-
magnetic bonds between nearest-neighboring wires, and four
between next-nearest-neighboring wires. The reversal pro-
cess continues with two other pairs of opposite external
wires, being the central wire the last one to reverse, exhibit-
ing a coercivity that is even larger than the one for a nonin-
teracting system. For D> 150 nm the array may be consid-
ered as a noninteracting one, with all the wires reversing
essentially at the same time since they are identical and in-
dependent.

IV. CONCLUSIONS

In this paper we have used a scaling technique combined
with Monte Carlo simulations in order to investigate the re-
versal of a hexagonal array of seven wires. The possibility of
such a scale reduction increases considerably the applicabil-
ity of numerical simulations to material science in general.
This method allows us to consider the internal structure of
each wire during the reversal process. With the proposed
simulation scheme we were able to reproduce experimental
results for Ni nanowires, that is the decrease in remanence
and coercivity as interaction becomes stronger.’* The shear

PHYSICAL REVIEW B 74, 174412 (2006)

observed in the hysteresis curve can be attributed to interac-
tion among wires, a result supported by independent simula-
tions and analytical calculations by other authors. The exis-
tence of a maximum in our coercivity curve (Fig. 2) resides
in the definition of a particular reversal order of the wires
determined mainly by the dipolar interaction. We believe that
the maximum observed in experimental curves® is origi-
nated by a similar process. The positional disorder of the
wires, which is always present in real macroscopic arrays,
may create local cells generating blocking of innermost
wires. Since our wires had no internal disorder, we can dis-
card the influence of such effect in the behavior of coercivity.
Our results show that strongly interacting systems experience
a reversal process much slower than noninteracting.
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