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We theoretically examine the perturbative effects of a series of radio-frequency �rf� pulses, electric field
gradient inhomogeneity, and dipole-dipole coupling on the spin dynamics of spin-1 nuclei dominated by the
quadrupole interaction. The dipole-dipole coupling is between neighboring spin-1 nuclei with identical nuclear
quadrupole resonance frequencies, but the principal axes frames of the electric field gradient at each nucleus
are not aligned. Such a comprehensive treatment is necessary to determine the optimal sequence of rf pulses
which maximizes the echoes in the detection of the substance of interest, for example, an explosive or other
contraband material. We confirm our theoretical model using the nitrogen in powder samples of p-chloroaniline
and sodium nitrite.
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Nuclear quadrupole resonance �NQR� extends the prom-
ise of simple detection of quadrupole nuclei within crystal-
line samples, since neither an electric nor a magnetic static
field needs to be applied.1 However, because the characteris-
tic NQR frequencies fall within the MHz range, the resulting
signals tend to be weak. To increase the sensitivity of NQR
detection, radio-frequency �rf� pulses are often applied to the
sample in quick succession in order to extend or “lock” the
signal in time.2–7

One such sequence, known as spin-lock spin-echo
�SLSE�, was described for nuclear magnetic resonance
�NMR� by Ostroff and Waugh8 and later applied to NQR by
Marino and Klainer.9 This sequence includes an rf prepara-
tory pulse �0 which produces the initial signal and ensuing
pulses �, shifted in phase by 90° from the first pulse, which
serve to continually refocus the signal. The sequence is writ-
ten, for N refocusing pulses, as �0X− ��−�Y −��N, where 2� is
the time between the refocusing pulses. In an attempt to ex-
plain Marino and Klainer’s experimental results, Cantor and
Waugh10 obtained solutions for the problem of two equiva-
lent, both chemically and crystallographically, spin-1 nuclei
under the influence of dipolar coupling and a SLSE se-
quence. Particulary interesting in Cantor and Waugh’s theo-
retical results is the prediction that there should be selective
refocusing of the dipolar coupling depending on the strength
of the refocusing pulses. Such selective refocusing is key to
determining distances between neighboring nitrogen nuclei
through NQR. The major obstacle for demonstrating this
fundamental behavior has been the neglect of other effects
which also strongly influence the effectiveness of the refo-
cusing pulses, namely the distribution of NQR frequencies
due to electric field inhomogeneities and the shift in orienta-
tion of the electric field gradient from one spin-1 nucleus to
the next. Armed with a description of the full-dynamics oc-
curring during refocusing, we have been able to correctly
predict the NQR signal as a function of refocusing pulse
strength, including therefore the demonstration of the selec-
tive refocusing of the pulses.

In the most general case, including all effects, we show

how to calculate the signal numerically, an analytical solu-
tion being out of reach. However, we give analytical solu-
tions for special cases where possible, in order to offer intu-
ition into the problem. We will examine the case of the rf
field being applied near one of the three possible quadrupole
transitions. The results given are easily extended to the other
two transitions, while the method applied here can be applied
to the analysis of any multiple-pulse sequence in NQR. Our
goal is not only to present a consistent theory for multiple-
pulse sequences, but to verify this theory by comparison with
experimental results.

An important insight to this problem can be obtained by
looking at the eigenenergies obtained for two nuclei under
the quadrupole Hamiltonian, and the possible transitions af-
forded by both the rf pulses and dipolar interaction between
nuclei. For a single spin-1 nucleus the possible quadrupolar
levels are in �0�, �−�� �−1�−�1�

�2
, and �+ �� �1�+�−1�

�2
, where �1�,

�0�, �−1� denote states having projections of nuclear spin
along the z-axis of the principle axes �PAS� frame of the
electric field gradient �EFG� centered at the nucleus. Radio
frequency which creates transition between �+ � and �−� is �z,
between �−� and �0� is �y, and between �0� and �+ � is �x.

10 In
Fig. 1, we use �y rf to illustrate that the nine levels can
always be broken down into two separate subsystems, plus a
lone state, that are independent of one another. Each sub-
system involves only four levels, so that instead of dealing
with 9�9 matrices generally required for two spin-1 nuclei,
one has 4�4 matrices. The 4�4 matrices lend themselves
to the use of Dirac notation11 in the following discussion. In
particular, we choose to represent an operator S in the fol-
lowing manner:

S = SW + SV + �9��9�S�9��9� , �1�

SW = �
i=1

4

�
j=1

4

S�i, j��i��j� , �2�
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SV = �
i=5

8

�
j=5

8

S�i, j��i��j� , �3�

where levels �1� to �9� correspond to the nine levels shown in
Fig. 1 and S�i , j� are the matrix elements �i �S � j�. Since both
SV and SW are equivalent to 4�4 matrices, we will make use
of the fact that they can also be represented by a sum of the
16 Dirac matrices. Using the notation of Ref. 11 for Dirac
matrices Ek,l=�k�l, we define two subsets of operators:

Ek,l
W = �

i=1

4

�
j=1

4

Ek,l�i, j��i��j� , �4�

operate only on the W-levels of Fig. 1 �eigenstates �1�
through �4��, and

Ek,l
V = �

i=5

8

�
j=5

8

Ek,l�i − 4, j − 4��i��j� , �5�

operate only on the V-levels of Fig. 1 �eigenstates �5� through
�8��.

For example, the quadrupole Hamiltonian HQ can be re-
written as a sum of the above 32 operators found in Eqs. �4�
and �5� and the lone operator �9��9�. We start with a general
expression for HQ,

HQ = 2�0�1��1� + ��0 + �−���2��2� + �3��3�� + 2�−�4��4�

+ ��0 + �+���5��5� + �6��6�� + ��− + �+���7��7�

+ �8��8�� + 2�+�9��9� , �6�

where the eigenenergies are expressed in terms of those for a
single atom, �±�	Vzz± �Vxx−Vyy�


eQ
4 and �0�−�+−�− for the

nuclear quadrupole moment Q and the second derivatives of
the electric potential V. We rewrite this as

HQ =
��y

2
��3

V + �3
W + �3

W� +
�+

2
�4�9��9� + E00

V − 2E00
W � , �7�

where ��y ��0−�− and E00 is the 4�4 identity operator. By
expressing HQ in this way, we can easily identify the relevant
part of HQ. The identity operators and the lone operator can
be ignored when the system starts from equilibrium, so that
the effective HQ is simply

��y

2 ��3
V+�3

W+�3
W�. This effective

Hamiltonian is derived for near-resonant �y excitation. Ef-
fective Hamiltonians for other excitation frequencies can
easily be derived in a similar manner.

I. GENERAL SOLUTION

The density matrix � describing the states of two spins,
spin a and spin b, evolves under the total Hamiltonian which
includes the quadrupole interaction HQ, the dipole-dipole in-
teraction Hd between two nitrogen atoms, and the applied rf
pulses Hrf. We assume that 0	 �Vxx−Vyy � 	 �Vzz� and that the
rf is applied close to �y, but not necessarily on resonance.
The total Hamiltonian can be written as

Htotal = Hd + Hrf + U + H0, �8�

where H0�
�rf

�y
HQ and U�− 
�

�y
HQ for 
���rf−�y. In gen-

eral both HQ and Hd are time dependent due to thermal mo-
lecular motion.12 However, the theoretical inclusion of this
motion is beyond the scope of this paper, and will be treated
in a later study. We treat both HQ and Hd as static. The
density matrix evolves under the Liouville equation

− i�
d�

dt
= 	�,Htotal
 = 	�,Hd + Hrf + U + H0
 , �9�

which in the interaction representation of H0, where �̃
�eiH0t/��e−iH0t/�, reduces to

− i�
d�̃

dt
= 	�̃,H̃d + H̃rf + Ũ
 . �10�

In the next paragraphs, we evaluate each of the three opera-

tors H̃d, H̃rf, and Ũ.
Working in the frame corresponding to the principle axes

frame of Vij centered at nucleus a with �Vzz � � �Vyy � � �Vxx�
�unprimed frame with unit vectors x̂, ŷ, ẑ�, the dipole Hamil-
tonian for spin-a and spin-b is

Hd/� =
�0

4


�2�

r3 	Ia · Ib − 3�Ia · r̂��Ib · r̂�
 , �11�

where r is the radius vector from a to b, �0 is the permeabil-
ity of free space, and � is the gyromagnetic ratio. For ease of
calculation, we wish to express Ib in the PAS frame of Vij
centered at nucleus-b �primed frame with unit vectors x̂�, ŷ�,
ẑ��:

FIG. 1. �Color online� The energy levels for two nitrogen atoms
are labeled using the notation �ab�, corresponding to the two spins a
and b each with one of the possible eigenstates of HQ ��0�, ���, or
����. The nonzero matrix elements of the dipolar Hamiltonian and
the rf Hamiltonian in the interaction representation of the quadru-
pole Hamiltonian give the possible transitions. In the figure, the
degenerate levels are separated to show the flip-flop terms of the
dipolar Hamiltonian. The gray levels, or V-levels, form a subsystem
isolated from the black levels, or W-levels.
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�Ixb

Iyb

Izb
� = �x̂ · x̂� x̂ · ŷ� x̂ · ẑ�

ŷ · x̂� ŷ · ŷ� ŷ · ẑ�

ẑ · x̂� ẑ · ŷ� ẑ · ẑ�
��Ixb�

Iyb�

Izb�
� . �12�

The dipolar Hamiltonian becomes

Hd/� = �
i=xa,ya,za

�
j=xb,yb,zb

�ijIiIj�. �13�

If we expand the angular momentum operators in terms of
the quadrupole eigenstates �for example, Iya=−i �−��0 �
+ i �0��−� operating on spin-a� and convert to the interaction
representation, we find that only the flip-flop terms of Fig. 1
remain under the secular approximation,

H̃d/� = � � �ije
iH0t/�IiIj�e

−iH0t/� 
 �ya,yb��2��3� + �3��2��

+ �xa,xb��5��6� + �6��5�� + �za,zb��7��8� + �8��7�� .

�14�

In the above expression,

�xa,xb =
�0

4


�2�

r3 	„1 − 3�x̂ · r̂�2
…x̂ · x̂� − 3�x̂ · r̂��ŷ · r̂�ŷ · x̂�

− 3�x̂ · r̂��ẑ · r̂�ẑ · x̂�
 ,

�ya,yb =
�0

4


�2�

r3 	„1 − 3�ŷ · r̂�2
…ŷ · ŷ� − 3�ŷ · r̂��x̂ · r̂�x̂ · ŷ�

− 3�ŷ · r̂��ẑ · r̂�ẑ · ŷ�
 ,

�za,zb =
�0

4


�2�

r3 	„1 − 3�ẑ · r̂�2
…ẑ · ẑ� − 3�ẑ · r̂��x̂ · r̂�x̂ · ẑ�

− 3�ẑ · r̂��ŷ · r̂�ŷ · ẑ�
 . �15�

In addition, we can break up the dipolar Hamiltonian into

two pieces, the first line of H̃d in Eq. �14� corresponds to the
W-levels,

H̃d
W/� =

�

2�
��1

W�1
W + �2

W�2
W� , �16�

and the second line of Eq. �14� to the V-levels,

H̃d
V/� =

�

2�
�1

V +
�

2�
�1

V�3
V, �17�

where ���ya,yb�, ����za,zb+�xa,xb��, and ����za,zb

−�xa,xb��. As can easily be shown using the commutation
relations of the Dirac matrices,11 the three terms of the dipole
Hamiltonian, with the coefficients �, �, and �, commute with
one another.

We irradiate both nuclei with rf near �y with phase � in

the direction rf̂, lasting for a time tp, with field strength B,

H̃rf/� = − eiH0tp/��B cos��rftp − ���ŷ · rf̂Iya

+ y� · rf̂Iyb� �e−iH0tp/�. �18�

In this expression we have anticipated that only the projec-
tion of rf on the y-axis of the spin-a PAS frame and the y� of

the spin-b PAS will survive the secular approximation.13 For
evaluation of this expression, it is convenient to recognize
that we can rewrite it in terms of a set of 12 operators, with
four subsets, shown in Table I. The operators in one subset or
row commute with any operator in another subset or row,
and within a subset the operators are related to each other
like fictitious spin-1 /2 operators, e.g., 	I1

Wa , I2
Wa
= iI3

Wa.
Therefore rewriting H0 /�=�rf�I3

Wa+ I3
Wb+ I3

Va+ I3
Vb�, Iya

=2�I2
Wa+ I2

Va�, and Iyb� =2�I2
Wb+ I2

Vb�, we have

H̃rf/� = − 2�B cos��rftp − ����ŷ · rf̂�	�I2
Wa + I2

Va�cos �rftp

+ �I1
Wa + I1

Va�sin �rftp
 + �ŷ� · rf̂�	�I2
Wb + I2

Vb�cos �rftp

+ �I1
Wb + I1

Vb�sin �rftp
� . �19�

Using the secular approximation to eliminate terms contain-

ing 2�rf, H̃rf /� reduces to

H̃rftp/� = − �a„cos ��I2
Wa + I2

Va� + sin ��I1
Wa + I1

Va�…

− �b„cos ��I2
Wb + I2

Vb� + sin ��I1
Wb + I1

Vb�… ,

�20�

where �a��ŷ ·rf̂��Btp and �b��ŷ� ·rf̂��Btp.
By its definition, U commutes with H0, so that

Ũ/� = U/� = −

�

2
��3

W + �3
W + �3

V�

= − 
��I3
Wa + I3

Wb + I3
Va + I3

Vb� . �21�

For simplicity, we assume that the resonant off-set 
� is the
same for both the nuclei. This is tantamount to saying that
the difference in resonant offset between two neighboring
nuclei is much smaller than 1

2� , where 2� is the spacing be-
tween the refocusing pulses.

Having defined the evolution operators, we turn to the
initial condition of the system in thermal equilibrium, where
the reduced density matrix in thermal equilibrium is given by

�0 = −
HQ

9kT
= −

��y

9kT
�I3

Wa + I3
Wb + I3

Va + I3
Vb� . �22�

After the X-preparatory pulse 	�=0 in Eq. �20�
, with fre-

quency close to �y applied along the direction rf̂ and lasting
for a time t0, the density matrix becomes

�̃�t = t0� = −
��y

9kT
e−i�H̃rf+U�t0/��IWa + IWb

+ IVa + IVb� · k̂ei�H̃rf+U�t0/�, �23�

where we have neglected H̃d �H̃d� H̃rf�. With any row of the
fictitious spin-1 /2 operators of Table I we have the general
relationship14

ei�I·nrI · nee
−i�I·nr = I · 	cos �ne + sin ��ne � nr�

+ ne · nr�1 − cos ��nr
 . �24�
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Using this relationship, each of the four terms of Eq. �23� is

evaluated separately. We recognize ne= k̂ and the rotation due

to the preparatory pulse for spin-a is �nr=�0a ĵ+
�t0k̂ where

�0a��ŷ ·rf̂��B0t0 and similarly for spin-b with �0b

��ŷ� ·rf̂��B0t0. Therefore Eq. �23� becomes

�̃�t = t0� =
− ��y

9kT
�IWa + IVa� · �cos �0a� k̂ − sin �0a� î

�0a

�a�

+

�t0

�0a�
�1 − cos �0a� �

�0a ĵ + 
�t0k̂

�0a�
�

+
− ��y

9kT
�IWb + IVb� · �cos �0b� k̂ − sin �0b� î

�0b

�0b�

+

�t0

�0b�
�1 − cos �0b� �

�0b ĵ + 
�t0k̂

�0b�
� ,

where �0a� ���0a
2 +
�2t0

2 and similarly for b. Experimentally
we subtract successive experiments in which the signs of �0a
and �0b have been inverted, in order to reduce interference
and eliminate ringing effects from subsequent refocusing
pulses. Using this same condition, the above expression re-
duces to

�̃�t = t0� =
��y

9kT
	sin �0a� �IWa + IVa� · n0a

+ sin �0b� �IWb + IVb� · n0b
 , �25�

where n0a�
�0a

�0a�
	î−


�t0

�0a�

1−cos �0a�

sin �0a�
ĵ
 and similarly for n0b. Al-

though n0a and n0b are not in general unit vectors, they ap-

proach î in the limit of a delta-function �t0=0, �=constant�
preparatory pulse.

After the preparatory pulse, the general solution to �̃ is

�̃�t� = e−�i/���Ũ+H̃rf+H̃d��t−t0��̃�t = t0�e�i/���Ũ+H̃rf+H̃d��t−t0�.

�26�

Again we assume that H̃d� H̃rf so that when the rf is on Ũ

+ H̃rf + H̃d
 Ũ+ H̃rf. When the rf is off Ũ+ H̃rf + H̃d= Ũ+ H̃d.

Since Ũ and H̃d commute, we can express Eq. �26� as

�̃�t = 2N� + Ntr + t0� = �DPD�N��t = t0��DPD�†N �27�

where

D � e−�i/��H̃d�,

P � e−�i/��Ũ�e−�i/���H̃rf+Ũ�tre−�i/��Ũ�, �28�

� is the time between the preparatory pulse and the first
refocusing pulse, N the number of pulses, and tr is the refo-
cusing pulse length. We apply Y refocusing pulses, or �= 


2
in Eq. �20�.

The term P, representing three successive rotations as can
be seen in Eq. �28�, can easily be simplified to represent a
single rotation using quaternions14,15 and fictitious spin-1 /2
operators of Table I. The three rotations can then be defined
by rotation axes �n1 ,n2 ,n3� and rotations ��1 ,�2 ,�3�, where
the second rotation depends on whether you are calculating
the rotation for spin-a or spin-b,

�1 = �3 = 
�� , �29�

n1 = n3 = k̂ ,

�2 = �a� � ��a
2 + 
�2tr

2 or

=�b� � ��b
2 + 
�2tr

2, �30�

n2 = na �
�aî + 
�trk̂

�a�
or

=nb �
�bî + 
�trk̂

�b�
, �31�

where �a��ŷ ·rf̂��Brtr and �b��ŷ� ·rf̂��Brtr.
The equivalent total rotation, �tot around ntot, can be found

using the quaternion formalism for a time-symmetric triple
rotation,14,15

cos
�tot

2
= cos �1 cos

�2

2
− sin �1 sin

�2

2
n1 · n2,

sin
�tot

2
ntot = sin

�2

2
n2 + 2 sin

�1

2
n1

��cos
�1

2
cos

�2

2
− sin

�1

2
sin

�2

2
n1 · n2� .

�32�

Using �a−tot for �tot with �2=�a� and �b−tot for �tot with �2
=�b� and similarly for ntot, we can rewrite P as

P = ei�a−totI
Wa·na−totei�b−totI

Wb·nb−totei�a−totI
Va·na−totei�b−totI

Vb·nb−tot

�33�

using the fact that IWa, IWb, IVa, and IVb commute with one
another. Further, we can expand each of the exponentials
with the use of anticommutation and commutation identities
of the Dirac matrices11 to find

TABLE I. Fictitious spin-1 /2 angular momentum operators I

= �I1 , I2 , I3� corresponding to the axes �î , ĵ , k̂�.

Equivalent to I1 Equivalent to I2 Equivalent to I3

IWa� �1
W /2 �2

W /2 �3
W /2

IWb� �1
W /2 �2

W /2 �3
W /2

IVa� �1
V�1−�3

V� /4 �2
V�1−�3

V� /4 �3
V�1−�3

V� /4

IVb� �1
V�1+�3

V� /4 �2
V�1+�3

V� /4 �3
V�1+�3

V� /4
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P = �1W cos
�a−tot

2
+ 2iIWa · na−tot sin

�a−tot

2
� � �1W cos

�b−tot

2
+ 2iIWb · nb−tot sin

�b−tot

2
�

� ��1V + �3
V�/2 + �1V − �3

V�/2 cos
�a−tot

2
+ 2iIVa · na−tot sin

�a−tot

2
�

� ��1V − �3
V�/2 + �1V + �3

V�/2 cos
�b−tot

2
+ 2iIVb · nb−tot sin

�b−tot

2
� . �34�

In addition, because all three of the terms of Eqs. �16� and

�17� for H̃d commute with one another, we can write

D � e−�i/��H̃d� = e−i���1
W�1

W+�2
W�2

W�/2e−i��1
V/2e−i��1

V�3
V/2

= 	�1W + �3
W�3

W�/2 + �1W − �3
W�3

W�/2 cos �

− i��1
W�1

W + �2
W�2

W�/2 sin �


� �cos
�

2
− i�1

V sin
�

2
��cos

�

2
− i�1

V�3
V sin

�

2
� .

�35�

Complete expressions for DPD can be found in the Appen-
dix.

Since the excitation coil is also used as the detection coil,
the signal is proportional to the expectation value of the an-
gular momentum operator I projected back onto the rf-
direction

�I · rf̂� = Tr�I · rf̂�� = Tr�eiH0t�I · rf̂�e−iH0t�̃� , �36�

where we have used the cyclic nature of the trace for square
matrices. We further examine only signals that might arise

near �y so that we replace I ·rf̂ by �ŷ ·rf̂Iya+ ŷ� ·rf̂Iyb� � in the
expression above, which then simplifies to

�I · rf̂� =
2

�Brtr
Tr�	�a�IVa + IWa� + �b�IVb + IWb�
 · nt�̃� ,

�37�

where nt�sin �rftî+cos �rft ĵ. An equivalent expression,
useful in the next section, is

�I · rf̂� = Tr�	sin �rft��1
V + �1

W + �1
W� + cos �rft��2

V + �2
W

+ �2
W�
�avg�̃ + 	sin �rft��1

V�3
V + �1

W − �1
W�

+ cos �rft��2
V�3

V + �2
W − �2

W�
�dif�̃�/��Brtr� , �38�

where

�avg =
�b + �a

2
= �Brtr

y�̂ + ŷ

2
· rf̂ = �Brtr cos

�EFG

2
cos �L,

�dif =
�b − �a

2
= �Brtr

y�̂ − ŷ

2
· rf̂ =

− �Brtr sin
�EFG

2
sin �L sin �L. �39�

In above expression �L and �L are defined with respect to the
axes defined as ŷavg= ŷ+ŷ�

2 cos
�EFG

2

and ŷdif =
ŷ−ŷ�

2 sin
�EFG

2

as shown in

Fig. 2.
In order to calculate the observed signal for a powder one

must average over all orientations of the EFG with respect

to rf̂

�I · rf̂�2N���avg =
1

4

�

0


 �
0

2


�I · rf̂�2N���cos �Ld�Ld�L.

�40�

II. ANALYTIC SOLUTIONS FOR DIPOLAR COUPLING
ONLY

In order to understand the relative contribution of dipolar
coupling and EFG inhomogeneity to the spin dynamics dur-
ing the spin-lock spin-echo pulse sequence, we look sepa-
rately at solutions involving only dipolar coupling and only
EFG inhomogeneity. Starting with the dipolar coupling
alone, we set 
�=0 and U=0 in the above expressions and
are able to obtain analytic solutions for the echo size. We
also define four subsets of operators, shown in Table II,
which are closed under the operation of resonant Y-pulses

FIG. 2. The orientation of the rf excitation ��L ,�L� with respect
to the combined PAS frames of neighboring nuclei, defined by the
average of the relevant axes ŷavg and the difference ŷdif.
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��=
 /2� and dipolar coupling. The three operators in each
subset are rotated within a three-dimensional space. We can
represent these rotations using Pauli spin-matrices, much as
was originally done by Cantor and Waugh.10

Using Eqs. �25� and �39�, the density matrix after the
preparatory pulse can be rewritten in terms of the operators
of Table II,

�̃�t = t0� =
��y

18kT
	sin �0avg cos �0dif��1

V + �1
W + �1

W�

+ sin �0dif cos �0avg��1
V�3

V + �1
W − �1

W�


=
��y

9kT
	sin �0avg cos �0dif�A1 + A3�

+ sin �0dif cos �0avg�A2 + A4�
 . �41�

Further, Eq. �20� simplifies, using Tables I and II, to

H̃rftr/� = − ���1
V + �1

W + �1
W��avg + ��1

V�3
V + �1

W − �1
W��dif�/2

= − ��A1 + A3��avg + �A2 + A4��dif� . �42�

The evolution of the density matrix in Eq. �41� under
irradiation and dipolar coupling will generally result in an
expression with all 12 of the operators of Table II. However,
using the trace properties of the Dirac matrices,11 it is easy to
see from Eq. �38� that the only components which contribute
to the signal are A1, A2, A3, and A4. Following the work of
Cantor and Waugh, but with the operators defined in Table II,
the effective density matrix after N pulses is

�̃�2N�� =
��y

18kT
�sin �0avg cos �0dif�g�N,�avg,����1

W + �1
W�

+ g�N,
�avg

2
,���1

V� + sin �0dif cos �0avg�g�N,�dif,��

���1
W − �1

W� + g�N,
�dif

2
,���1

V�3�� . �43�

The function g�N ,� , p� is defined as

�1 − 2 sin2�N cos−1	cos � cos p
�
cos2 � sin2 p

1 − cos2 � cos2 p
� ,

where p is one of the three possible geometric parameters �,
�, or �.

The expectation value of I from Eq. �38� is then

�I · rf̂��2N�� = Iavg
W + Iavg

V + Idif
W + Idif

V �44�

=
2��y

3kT

1

�Brtr
sin �yt��avg sin �0avg

�cos �0dif�2

3
g�N,�avg,�� +

1

3
g�N,

�avg

2
,���

+ �dif sin �0dif cos �0avg�2

3
g�N,�dif,��

+
1

3
g�N,

�dif

2
,���� , �45�

where Iavg
W , Iavg

V , Idif
W , and Idif

V correspond to the four contrib-

uting terms of �I ·rf̂�2N��� shown in the last equation above.
One can see from Figs. 3�a� and 3�b� that g�N , �2n
+1�90° , p� with integer n gives the maximum value and that
for increasing dipolar coupling, represented by p, the average
echo size for �� �2n+1�90° is smaller. When PAS frames
for neighboring nuclei are misaligned, each of the four terms
of Eq. �44� is maximized for four different refocusing pulses.
When the PAS frames are aligned ��dif=0�, the four terms
collapse to two and we arrive at selective recoupling of two
terms of the dipolar Hamiltonian. By observing the echo size
as a function of the refocusing pulse strength, we can in
principle determine at least two terms of the dipolar Hamil-
tonian. Combining this information with that of another tran-
sition, we then can find the full expression of the dipolar
Hamiltionian, or the distance between neighboring nitrogen
atoms.

TABLE II. Effect of propagators on select terms of the density matrix.

�̃ component Effect of P ��=
 /2� Effect of D

A1=�1
V /2 A1 A1 cos �+B1 sin �

B1=�1
V�2

V /2 B1 cos �avg−C1 sin �avg B1 cos �−A1 sin �

C1=�1
V�3

V /2 C1 cos �avg+B1 sin �avg C1

A2=�1
V�3

V /2 A2 A2 cos �+B2 sin �

B2=−�1
V�2

V /2 B2 cos �dif −C2 sin �dif B2 cos �−A2 sin �

C2=�1
V /2 C2 cos �dif +B2 sin �dif C2

A3= ��1
W+�1

W� /2 A3 A3 cos �+B3 sin �

B3= �−�2
W�3

W−�3
W�2

W� /2 B3 cos 2�avg−C3 sin 2�avg B3 cos �−A3 sin �

C3= ��2
W�2

W−�3
W�3

W� /2 C3 cos 2�avg+B3 sin 2�avg C3

A4= ��1
W−�1

W� /2 A4 A4 cos �+B4 sin �

B4= ��3
W�2

W−�2
W�3

W� /2 B4 cos 2�dif −C4 sin 2�dif B4 cos �−A4 sin �

C4= ��2
W�2

W+�3
W�3

W� /2 C4 cos 2�dif +B4 sin 2�dif C4
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Note that there is no decay associated with g as N in-
creases, but a repetitive pattern evolves. In order for there to
be decay over the echoes, the relative motion of the nuclei
needs to be taken into account. This motion is beyond the
scope of this paper, but is discussed in Refs. 7 and 12. Also
experiments have verified that relaxation rate of the echoes,
characterized by the time-constant T2e, has a strong � depen-
dence, where for shorter �, T2e increases.9,16

In Figs. 3�c�–3�e�, we model the effects of the four con-
tributions in Eq. �44� to the average spin-echo from a powder
sample for three different �EFG’s. It is clearly observable how
the maxima and minima occur at increasing refocusing pulse
strengths as �EFG increases. This effect is due to the reduc-
tion of effective tip angle by cos

�EFG

2 or sin
�EFG

2 as shown in
Eq. �39�.

III. ANALYTIC SOLUTIONS FOR EFG
INHOMOGENEITIES ONLY

We can also find an analytical expression for the echo size
for the case of EFG inhomogeneity without any dipolar cou-
pling. The evolution of the density matrix in the interaction
representation without dipolar coupling reduces from Eq.
�27� to

�̃�t = 2N� + Ntr + t0� = PN�̃�t = t0�P†N �46�

where, from Eq. �33�,

PN = eiN�a−totI
Wa·na−toteiN�b−totI

Wb·nb−toteiN�a−totI
Va·na−tot

�eiN�b−totI
Vb·nb−tot. �47�

Using Eq. �37�, we find after N pulses

�I · rf̂� =
��y

3kT

1

�Brtr
nt · ��a sin �0a� 	cos N�a−totn0a

+ �1 − cos N�a−tot��n0a · na−tot�na−tot + sin N�a−totn0a

� na−tot
 + �b sin �0b� 	cos N�b−totn0b

+ �1 − cos N�b−tot��n0b · nb−tot�nb−tot + sin N�b−totn0b

� nb−tot
� . �48�

In the special case of delta-function pulses, �̃ after the

initial pulse is
��y

9kT 	sin �0a�IWa+IVa� · î+sin �0b�IWb+IVb� · î
.
The rotation due to the refocusing pulse is determined by Eq.

�32�, noting that for delta-function pulses n2= î,

cos
�tot

2
= cos �1 cos

�2

2
,

sin
�tot

2
ntot = sin

�2

2
î + sin �1 cos

�2

2
k̂ , �49�

where here �1=
�� and �2=�a or �b. The evolution of the
density matrix would be fixed or locked if the direction of
net rotation corresponded to the direction of the initial mag-

netization or ntot= î. This condition is fulfilled when �2=
.
Therefore this corresponds to the condition of maximum sig-

nal for a single crystal, as shown in Fig. 4�a�. For a powder,
the maximum signal occurs at about 4

3
 as shown in Fig.
4�b�.

As can be seen seen clearly from Eq. �49�, the greatest
deviation from the locked direction when �2�
 occurs
when �1=
��=
�n+ 1

2
�, for integer n, or 
f = 1

2�
�n+ 1

2
�. The

“dips” which occur for 
f = 1
2�

�n+ 1
2

� are clearly shown in the
theoretical curves of Fig. 4�c� for a single crystal and �d� for
a powder. The above predictions were done for a linewidth
of 150 Hz, much less than the dip spacing � 1

2�
�. As the line-

width approaches 1
2� the dips will get smeared out or disap-

pear; as the linewidth approaches zero the dips will reach
their lowest values. Therefore the off-resonance behavior can
be used as a measure of the contribution to the linewidth of
EFG inhomogeneities.

IV. CALCULATING THE DIPOLAR PARAMETERS

The above calculations are done for a pair of spins. Al-
though it is an intractable problem to determine the precise
evolution of a large number of spins under the effect of di-
polar coupling, we can approximate the effect of a number of
nearby nuclei on a given nuclei by considering the second
moment as a measure of their effect. The expression from
Vega17 for the second moment in NQR,

�2�
�2� = �
k

1

3
� �dif

2

�dif
2 + �avg

2 � �ik
2

�2 +
1

3
� �avg

2

�dif
2 + �avg

2 � �ik
2

�2 +
2

3

�2

�2 ,

�50�

reveals that contributions to the linewidths add in quadrature
for �, �, and �. Therefore we take in the above expression for
�, �ef f =��k�ik

2 , and similarly for � and �.

FIG. 3. �Color online� �a� The function g�N ,� , p� characteristic
of the Nth echo size for an effective refocusing pulse � in the
presence of dipolar coupling and �b� how the average value of g
increasingly deviates from unity for increasing dipolar coupling or
p. �c�–�e� illustrate for a powder sample with �=�=�=10° the rela-
tive contributions to the average echo size for increasing dislocation
between PAS frames of neighboring nuclei by �EFG. Notice how the
maxima and minima occur at increasing refocusing pulse strengths
as �EFG increases.
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We calculated �ef f, �ef f, and �ef f for the two samples that
were studied �distances for p-chloroaniline come from Ref.
18, and for sodium nitrite from Refs. 19–21�. In the compu-
tational results shown in Table II all nuclei within a sphere of
radius 4d, where d is the largest length of the unit cell, were
considered. All numerical values in Table III are in Hz. For
all the transitions of sodium nitrite and for the �x transition
of p-chloroaniline the nearest neighbors have the relevant
axes aligned. However, the other two transitions of
p-chloroaniline have neighboring nitrogen with relevant axes
65° degrees apart.22,23 For these transitions, as shown in
Table III, these unaligned neighboring nitrogens dominate
the dipolar coupling, as opposed to those nitrogens which are
further away but are aligned �last column�.

V. EXPERIMENTAL RESULTS

All experiments were carried out at room temperature.
The sodium nitrite sample consisted of 0.7 kg of NaNO2,

�97+% purity, Aldrich� mixed with oil to give a final volume
of roughly 1 l. Mixing with oil is known to reduce piezoelec-
tric effects due to coupling of the rf fields with the ferroelec-
tric phase. The p-chloroaniline sample consisted of 1 kg of
C6H6ClN, �98% purity, Aldrich� in a volume of roughly 1 l.

All experiments were carried out using Tecmag-based
spectrometers �Tecmag, Houston, TX�.29 A homebuilt probe
with a coil of volume of 1.5 l was used and tuned to the
various NQR frequencies. The quality factor was typically
100 or less and the rf input power was 400 W or less.

In our experiments we acquired echoes for arrayed sets of
SLSE sequences where the pulse lengths were held fixed and
the rf power of either the initial pulse or the refocusing
pulses was arrayed. To compensate for possible variations in
sample temperature during the course of an experiment,
which can lead to changes in line position and linewidth, a
single complete scan contained both a series of SLSE echo
trains with varying initial pulse and a series of SLSE echo
trains with varying refocusing pulses. Typically 16 total
scans were performed with a wait time between SLSE echo
trains on the order of 1 s, at least 3 to 4 times the spin-lattice
relaxation time for the transition under investigation.

The linewidth of the �z transition for sodium nitrite was
measured to be 140 Hz full width at half maximum, corre-
sponding to a variance 
frms=��
�2� / �2
� of 60 Hz. The
variance, according to Eq. �50� and Table III, for dipolar
coupling alone would by 44 Hz. Therefore this sample pro-
vides a good demonstration of the effects of refocusing
pulses in the regime where dipolar coupling contributes sub-
stantially to the linewidth. As shown in Fig. 5, the magnitude
of the first echo signal as a function of refocusing pulse
length differs substantially from later echoes. In particular
two maxima, one for a refocusing pulse of �150° and an-
other for a refocusing pulse of �290° become apparent, cor-
responding to the two maxima seen clearly in Fig. 3 with the
solid black line. The theoretical predictions and the experi-
mental data agree well, with small discrepancies. A possible
cause for the discrepancies is the naive use in the theoretical
model of a single T2e. The value used corresponded to the
experimental value for a 150° refocusing pulse �88 ms�.
However, as measured experimentally, the T2e varied, from
0.64 to 1.27 of the value used in the theoretical model, as a
function of the refocusing pulse �roughly mimicking the
data�. This interesting variation deserves further investiga-
tion.

TABLE III. Dipolar parameters expressed in Hz and calculated for p-chloroaniline and sodium nitrite.

Expression Sodium nitrite p-chloroaniline-� p-chloroaniline-�

�ef f

�

�ef f

�

�ef f

�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�ef f

2
�

�x �yi,yk+�zi,zk �yi,yk−�zi,zk �xi,xk 26 66 26 7 25 12

�y �zi,zk+�xi,xk �zi,zk−�xi,xk �yi,yk 43 29 43 7 24 10 5 8 5

�z �xi,xk+�yi,yk �xi,xk−�yi,yk �zi,zk 26 66 26 20 7 14 4 10 4

FIG. 4. Considering only EFGs and delta-function pulses �a� for
a single crystal and �b� for a powder sample, shows the Nth echo

size �units of
2��y

3kT �, for a Gaussian linewidth �full width at half
maximum=150 Hz� and �=1 ms as a function of the refocusing
pulse strength. �c� for a single crystal and �d� for a powder sample
shows how the average signal size �for 40 echoes� varies little as a
function of off-resonance for the optimal refocusing pulse, but quite
significantly for refocusing pulses of half that value.
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The B-field for Fig. 5 was calibrated by varying the field
strength for the preparatory pulse and keeping the refocusing
pulse fixed ��Brtr180° /

150° �. The experimental results
for these scans are shown as crosses in Fig. 5 �the x-axis for
this data refers to the strength of the preparatory pulse�. By
comparing the experimental results to the standard 3/2
Bessel function given first by Vega24 �shown as the dotted
line in the figure�, we calibrated the experimental B-field in
reference to the voltage from a small sniffer coil placed near
the resonant circuit. Although the Bessel function was origi-
nally derived for the expected signal from a single pulse, our
theoretical predictions for the signal response to a SLSE se-
quence, where the refocusing pulse is close to optimal, re-
veals a dependency on the preparatory pulse strength very
close to that of the 3/2 Bessel function.

The second sample we examined, p-chloroaniline, differs
substantially from sodium nitrite in two ways: �i� neighbor-
ing nitrogen do not have aligned PAS frames and �ii� the
linewidths are dominated by EFG inhomogeniety �the vari-
ance for dipolar coupling alone is between 16 and 17 Hz,
while the measured variance was 3–8 times larger, depend-
ing on the transition and the temperature of the sample�. In
particular the ŷ axes of the PAS for neighboring nitrogen in
p-chloroaniline are separated by 65°, while the x̂ axes are
aligned. Since the �x transition corresponds to the excitation
projected onto the x̂ axes and the �y transition to the ŷ axes,
we measured the response to a SLSE sequence for both tran-
sitions. Figure 6 shows the signal as a function of the refo-
cusing pulse strength �corresponding to the solid lines and
filled-in symbols�, where the strength had been varied by

changing the strength of the B-field. The B-field for the
p-chloroaniline probe was calibrated in a similar manner to
the sodium nitrite, and the relevant curves are shown as open
symbols in Fig. 6.

Despite the small contribution of the dipole coupling to
the overall linewidth, one can still see the effect of the dipo-
lar parameters on some of the features of these graphs. For
instance, one can see that the very shallow dip, denoted by
the vertical dashed lines in both Figs. 6�a� and 6�b�, occurs at
about a 19%, or 1 /cos�65° /2�, larger refocusing pulse for
the �y transition than for the �x transition. The underlying
cause for this shift is the 65° separation in the ŷ axes of
neighboring nitrogen compared to the aligned ŷ axes.

We also varied the pulse-spacing for p-chloroaniline. The
effect of changing the pulse spacing is twofold. One effect,
which is accurately predicted by the theory, demonstrates
that with increased pulsed spacing comes increased evolution
during the time between pulses and a corresponding decrease

FIG. 5. For sodium nitrite, irradiated at �z �1.038 MHz� and
using an optimum preparatory pulse of 119°, the signal from the
first echo �theory in gray dashed line, experiment in gray circles� is
compared to the average echo of 32 �theory in black solid line,
experiment in black squares� as a function of refocusing pulse
strength. The double peak of the averaged data is characteristic of a
sample whose linewidth is dominated by dipolar coupling. For an
optimal refocusing pulse of 150°, we also varied the preparatory
pulse strength �theory in black dotted line, experiment in crosses�.
For all cases, �=1.9 ms, pulse durations are t0=120 �s and tr

=150 �s, and signals are normalized with respect to the optimal
average echo.

FIG. 6. �Color online� For p-chloroaniline irradiated at �a� �x

�3.263 MHz� or �b� �y �2.767 MHz�, using an optimum preparatory
pulse of 119°, the average of 32 echoes varies as a function of pulse
spacing � and as a function of the refocusing pulse strength �theory
in solid lines, experiments in filled symbols�. The field strength was
calibrated by fixing the refocusing pulse at 150° and varying the
preparatory pulse �theory in dotted lines, experiments in open sym-
bols�. Pulse durations were t0=160 �s and tr=200 �s and signals
for different �’s are shown normalized to their respective calibration
curves.
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in the ability of nonoptimal refocusing pulses to refocus the
evolution. This is seen clearly in Figs. 6�a� and 6�b� and in
Fig. 3�b�, by a decrease in signal for nonoptimal pulses. A
second effect, not predicted by our two-spin model, is the
dependence of T2e on both the pulse spacing and the refocus-
ing pulse length. For example, T2e for the optimal refocusing
pulse, varies for �x from 43 ms for �=1.9 ms to 60 ms for
�=0.5 ms and for �y from 36 ms for �=1.9 ms to 47 ms for
�=0.5 ms. The T2e’s dependence on the refocusing pulse
roughly mimics the data shown, so that the weaker refocus-
ing pulses have shorter T2e’s by as much as a factor of 2 from
the optimal value. Again these variations are of interest and
will be explored in a later paper.

In order to underscore the effect of the EFG inhomogene-
ity on the ability of rf pulses to refocus the signal, we exam-
ined the echo signal as a function of off-resonance for the �y

transition of p-chloroaniline. The results for the SLSE se-
quence 119X

° − ��−150Y
° −��N=32 are shown in Fig. 7, where

the gridlines are spaced at 1 / �2�+ tr� to denote where
maxima are predicted to be. Similar “dips” have also been
observed in other multiple-pulse NQR sequences.25–28 These
dips illustrate that even when the linewidth is centered on the
rf frequency, the larger the linewidth, the more part of the
line must be in one of the valleys, and the greater the overall
degradation of the echo size becomes. This is particulary true
as the linewidth approaches 1/ �2�+ tr�.

It is also clear from Fig. 7 that for increasing off-
resonance there is an overall decrease in signal aside from
the “dips.” This decrease is caused by off-resonance during
the pulse changing the net direction of rotation during the
pulse. For example, the B-field used in these off-resonance
experiments corresponds to �Br / �2
�=4.1 kHz, so that with
an off-resonance of 2 kHz the angle of rotation has now been
tipped away from its most effective direction by 26°.

CONCLUSIONS

The response of a system to a SLSE sequence, including
the optimum refocusing pulse, has been shown, both experi-
mentally and theoretically, to depend strongly on both the
dipolar coupling and EFG inhomogeneity. When the line-
width is dominated by EFG inhomogeneity, the optimum re-
focusing pulse is �Brtr=
 for a single crystal and approxi-
mately 4

3
 for a powder sample. In contrast, when the
linewidth is dominated by dipolar coupling, we have selec-
tive refocusing, where one component of the dipolar Hamil-
tonian is refocused for �Brtr=
 and another component is
refocused for 


2 . Since twice as much of the signal is effected
by the latter dipolar component than the former, the optimum
refocusing pulse is slightly larger than 


2 for a single crystal
and slightly larger than 4

3


2 for a powder sample. The exact

maximum is determined by the precise orientation between
neighboring nuclei. When the PAS frames are misaligned,
the optimum refocusing pulse is pushed towards larger val-
ues, increasing approximately as 1/cos��EFG /2�. Further we
have given general expressions for a sample with significant
contributions from dipolar coupling and EFG inhomogeneity
and found these theoretical predictions match well with ex-
perimental results. The results given here can serve not only
to optimize the spin-lock spin-echo sequence for substance
detection, but also to understand other multiple-pulse se-
quences in NQR.
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APPENDIX

The general expression for DPD=DVPVDV+DWPWDW is
given by

DVPVDV =�
ei
���c�

2Cb − s�
2Ca� − ic�e

i
��s��Cb + Ca� − i�− c�Sbc� + s�Sas�� c�Sbs� + s�Sac�

− ic�e
i
��s��Cb + Ca� − ei
���s�

2Cb − Cac�
2� s�Sbc� + c�Sas� − i�s�Sbs� − c�Sac��

− i�− c�Sbc� + s�Sas�� s�Sbc� + c�Sas� e−i
���c�
2Cb

* − s�
2Ca

*� − ic�e−i
��s��Cb
* + Ca

*�
c�Sbs� + s�Sac� − i�s�Sbs� − c�Sac�� − ic�e−i
��s��Cb

* + Ca
*� e−i
���− s�

2Cb
* + c�

2Ca
*�
�

FIG. 7. For a sample of p-chloroaniline, irradiated at �y, as a
function of off-resonance 	
� / �2
�
 for two different pulse spac-
ing. Theory is shown as lines and the data as symbols, with the grid
lines spaced at 1 / �2�+ tr� to correspond to the predicted maxima.
An optimum preparatory pulse of 119° and a refocusing pulse of
150° was used with pulse durations of t0=80 �s and tr=100 �s.
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and

DWPWDW =�
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

� ,

where

a11 = a44
* = ei2
��CaCb, �A1�

a12 = a21 = ei
���ic�CaSb + s�SaCb� , �A2�

a13 = a31 = ei
���s�CaSb + ic�SaCb� , �A3�

a14 = a41 = − SaSb, �A4�

a22 = − s�
2Ca

*Cb + �2is�SaSb + c�CaCb
*�c�, �A5�

a23 = a32 = s�
2SaSb + 	�− iCaCb

* − iCa
*Cb�s� − c�SaSb
c�,

�A6�

a24 = a42 = �ic�SaCb
* + s�Ca

*Sb�e−i
��, �A7�

a33 = − s�
2CaCb

* + �2is�SaSb + c�Ca
*Cb�c�, �A8�

a34 = a43 = e−i
���s�SaCb
* + ic�Ca

*Sb� . �A9�

In the above expressions, the following definitions apply:

� �
� + �

2
,

� �
� − �

2
,

c� � cos��� ,

s� � sin��� ,

S� � sin����
2 + 
�2tr

2

2
� ��

���
2 + 
�2tr

2
,

C� � cos����
2 + 
�2tr

2

2
� + i


�tr

���
2 + 
�2tr

2
sin����

2 + 
�2tr
2

2
� .

Notice that C� reduces to cos��� /2� and S� reduces to
sin��� /2� for 
�tr���.

*Also at Code 6122, Naval Research Laboratory, Washington, D.C.
20375, USA. Electronic address: ksauer@physics.gmu.edu
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