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In this paper, we adopt the finite-difference time-domain �FDTD� method to analyze surface acoustic waves
propagating in two-dimensional phononic waveguides. To implement the FDTD program for dealing with
surface acoustic waves, the Bloch theorem and absorbing boundary conditions are employed to deal with the
periodic boundary condition and reflection from a numerical boundary. A phononic crystal consisting of
circular steel cylinders that form a square lattice in an epoxy matrix is considered as an example to study
phononic crystal waveguides. The dispersion relation and displacement fields are calculated to identify the
band gaps and eigenmodes. The result shows the existence of a complete band gap of surface waves and thus
an acoustic waveguide is created accordingly. Eigenmodes of surface waves inside the waveguide are indicated
and pseudo surface acoustic waves propagating inside the straight waveguide are demonstrated. Further,
waveguides with a sharp bend are reported and an improved design is suggested to enhance energy
transmission.
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I. INTRODUCTION

Phononic crystals consisting of periodic elastic materials
have been proved to have a property of band gaps. In various
phononic crystals, both the bulk acoustic wave �BAW�1–3

and surface acoustic wave �SAW�4–8 are analyzed, and com-
plete band gaps, the frequency range that acoustic waves
cannot propagate in any direction, were observed in some
cases. The complete band gap phenomenon plays an impor-
tant role in designing phononic crystal applications such as
elastic wave filters, couplers, and waveguides, especially.
The phononic crystal waveguide is an important elementary
component to build an acoustic wave circuit. Currently, most
of the phononic waveguide researches are focused on the
bulk acoustic waves. The presented BAW waveguides are
consisted of solid/solid,9–11 solid/liquid,12,13 and gas/liquid12

phononic crystals. The designs include straight waveguides
with various widths,10 waveguides with a stub,12 a wave-
guide with hollow cylinders,13 and a coupler of joined paral-
lel waveguides.11 In contrast, the study of SAW in phononic
crystal has had less progress. Laude et al.8 reported a com-
plete band gap of surface acoustic wave in a piezoelectric
phononic crystal; Tanaka and Tamura14 analyzed the surface
and surface-guided waves in phononic lattices. More inves-
tigations on the surface waves in phononic waveguides are
awaited.

In this paper, we study the surface wave propagation in
phononic waveguides. To accomplish this work, a FDTD
method is developed to analyze the dispersion of acoustic
wave in phononic crystals. The Bloch theorem and a per-
fectly matched layer �PML� absorbing boundary condition
are employed to deal with the periodic boundary condition
and numerical nonreflection boundary respectively.15 A steel/
epoxy square lattice phononic crystal is studied and the com-
plete band gap of the surface acoustic wave is obtained. With
the complete band gap property, a phononic waveguide for
surface waves is designed by arranging adjacent point de-
fects. Thus, eigenmodes of surface waves inside the wave-

guide are indicated and surface acoustic waves propagating
inside the straight waveguide are demonstrated. The result
shows that the allowed surface waves can propagate and are
confined within the waveguide. Further, the waveguides with
a sharp bend are reported and an improved design is sug-
gested to enhance energy transmission.

II. FINITE-DIFFERENCE TIME-DOMAIN METHOD

In a linear elastic material, the equation of motion and
constitutive law of elastic materials can be expressed as

�üi = �ij,j + �f i, �1�

�ij = Cijkl�kl, �2�

where � is the density of materials, ui the displacement, �ij
the stress, f i body force, Cijkl elastic constant, and �kl strain.
Equations �1� and �2� describe the property of an infinitesi-
mal element of an anisotropic material in general. These
equations are applicable to the inhomogeneous structure of
phononic crystals by arranging the density and elastic con-
stant periodically. Further, with staggered grids, differential
equations �1� and �2� are transferred into difference equations
based on the Taylor’s expansion to develop the three-
dimensional heterogeneous finite difference formulation.
Then these equations are calculated recursively, indefinitely,
to study the wave propagation in phononic crystals.

The Bloch’s theorem is introduced to treat the periodic
boundary condition of a unit cell of phononic crystals. The
displacement and stress fields of phononic crystals can be
expressed by a plane wave and a periodic function as

ui�x,t� = eik·xUi�x,t� , �3�

�ij�x,t� = eik·xTij�x,t� , �4�

where k is a wave vector. Ui�x , t� and Tij�x , t� are periodic
functions satisfying
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Ui�x + a,t� = Ui�x,t� , �5�

Tij�x + a,t� = Tij�x,t� , �6�

with a lattice translation vector a. In Ref. 16, the equation of
motion and constitutive law were transformed using the pe-
riodic functions to satisfy the conditions �5� and �6�. Instead
of the transformation, we combined Eqs. �3� and �4� with
Eqs. �5� and �6� to write the periodic boundary conditions
�PBC� of displacement ui and stress �ij directly as17

ui�x + a,t� = eik·aui�x,t� , �7�

�ij�x + a,t� = eik·a�ij�x,t� . �8�

With the PBC, both the two-dimensional �2D� and three-
dimensional �3D� phononic crystal cases can be analyzed by
calculating a unit cell. In the analyses of dispersions, a small
disturbance in a random position of the unit cell is set as the
initial condition. Thus, all possible wave modes are trans-
ported inside the considered phononic crystal, and the dis-
placement is recorded and expanded into Fourier series.
Then the eigenfrequencies of a given wave vector k are in-
dicated by selecting the resonance peaks of the spectrum, and
this allows us to find the information about possible types of
bulk waves.

To solve the surface acoustic wave modes of phononic
crystals, extra boundary conditions are needed to develop
surface acoustic waves inside a phononic crystal unit cell. In
this study, we set a free surface boundary condition and use
the PML absorbing boundary condition to deal with the re-
flection from the numerical boundary.

Berenger18 introduced the concept of PML to reduce the
electromagnetic wave reflection form boundary, and the
PML is also developed to calculate the elastic wave
propagation.19,20 In this paper, a 3D PML program of or-
thogonal material is adopted to serve the nonreflection
boundary condition. A stretched coordinate is defined with a
complex variable,

ei = ai + i
�i

�
, �9�

to derive the code of PML region.19 In Eq. �9�, the real part
ai is the scale factor, and �i /� is the imaginary part with the
attenuation factor �i and the circular frequency �. Then the
differential operation in the stretched coordinate is defined
and applied to the equation of motion and constitutive law.
After introducing the plane wave solutions into the equa-
tions, the numerical attenuation is achieved via the factor �i.
In addition, a nonreflection condition at the interface be-
tween PML region and inner space is obtained by setting
corresponding material constants and the unity scale factor.
In the elastodynamic equations for the stretched coordinate,
displacement and stress components are taken spatial partial
differential operation in all directions, thus the variables are
split into three components to realize the difference equa-
tions. Then actual values are obtained from the summation of
splitting components. Finally, the PML equations can be
shown, as follows:

�üi/j + �� ju̇i/j = �ij,j , �10�

�̇ij/m + �m�ij/m = Cijkl
u̇k,l�ml + u̇l,k�mk

2
. �11�

In the above equations, ui/j and �ij/m are the splitting dis-
placement and splitting stress, which satisfy ui=ui/1+ui/2
+ui/3 and �ij =�ij/1+�ij/2+�ij/3. �ij is the delta function and
�ij =1 when i= j, else �ij =0.

After transforming Eqs. �10� and �11� to difference for-
mula, the PML is arranged outside the space boundaries as a
buffer zone with a matched acoustic impedance to suppress
the reflection. A numerical attenuation occurs as waves decay
rapidly inside the region. With this absorbing boundary con-
dition, the reflection is reduced to less than 1% and the PML
boundary is used in both the calculations of dispersion rela-
tion and transmission.

III. COMPLETE BAND GAPS OF STEEL/EPOXY
PHONONIC CRYSTALS

To investigate the band gap of phononic crystal, the dis-
persion relation of elastic waves inside phononic crystals is
calculated first. In this paper, a square lattice phononic crys-
tal consisting of steel cylinders embedded in an epoxy half
space is analyzed to demonstrate the band gap of surface
acoustic wave. The lattice constant a of the phononic crystal
is 8 mm and the radius r of steel cylinder is 3 mm, and thus
the filling ratio f defined as 	r2 /a2 is equal to 0.442. The
density and elastic constant C11 and C44 of steel are assumed
as 7900 kg/m3, 280.2 GPa, and 82.9 GPa, respectively, and
those for epoxy are 1180 kg/m3, 7.61 GPa, and 1.59 GPa.
Thus the impedance of cylinders is more than 15 times the
one of the matrix.

In 2D phononic crystal cases, the surface acoustic wave
propagates within the x-y plane perpendicular to the cylin-
ders. However, the surface acoustic wave is indeed a 3D
problem in the phononic crystals. We defined a 3D unit cell
as shown in Fig. 1�a� to calculate the characteristic mode of
surface acoustic waves. The dimension of this unit cell is
chosen as 1a
1a of the cross section on the x-y plane and
the height h is 9a to develop surface acoustic waves. Then a
free surface boundary is on the surface at z=0, and a 20-
layer PML region is under the bottom surface to apply the
nonreflection boundary. Finally, the PBC is defined on the
other four surfaces of the unit cell. In the FDTD method,
each unit cell is divided into 24
24 grids and a time step
interval is 20 ns to satisfy the numerical stability conditions.

To calculate dispersion curves of acoustic waves, the first
Brillouin zone of the square array phononic crystal is shown
in Fig. 1�b�. The right-angle isosceles triangle refers to the
smallest nonreducible area of this phononic crystal, and the
vertexes of triangle are denoted as �, X, and M, respectively.
Similar to the process in calculating the bulk acoustic waves,
an initial condition is set and the displacement is recorded
and transferred into Fourier series. The eigenmodes are ob-
tained by selecting the resonance peaks on the power spectra.
By varying the wave vector k and repeating the calculation,
the dispersion curve is obtained.
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In a 2D phononic crystal, the structure is infinite along the
z direction. Thus bulk acoustic waves propagate within the
x-y plane perpendicular to the cylinders, and the polarization
modes are decoupled as the in-plane mode �x-y plane� and
the antiplane mode. In Fig. 2, the eigenmodes of bulk acous-
tic waves are presented in solid and hollow circles for in-
plane and antiplane modes respectively. In the in-plane
modes, there is a noticeable wide complete band gap from
90 to 204 kHz and several narrow complete band gaps at
higher range 231–237 kHz and 245–255 kHz. From the
curves of antiplane modes, band gaps locate at 55–143, 153–
212, 225–250, and 270–276 kHz. Considering both modes
together, the complete band gaps are at 90–143, 153–204,
231–237, and 245–250 kHz.

Using the 3D unit cell with PBC, free surface, and PML,
the eigenmodes are obtained and marked as rhombus sym-
bols in Fig. 2. As shown in the figure, extra modes are de-
tected by the sensors on the free surface. For example, dif-
ferent bands appear at 7–79.5 kHz and 199–201 kHz in the
�X direction. Also, some selected peaks overlap the circle

symbol of BAW modes, such as the first and second bands of
in-plane and antiplane transverse waves in the �X direction.
In the higher frequency range, there are numerous peaks, but
most peak values are very small.

To investigate the modes of acoustic wave detected in the
3D phononic crystal unit cell, the displacement distributions
of the eigenmodes are calculated. The calculating setup is the
same as Fig. 1�a� but the initial condition is replaced by a
wave source. The source generates a wave package of chosen
frequency that is the same as the eigenfrequency of the cor-
responding wave vector. Because both the wave vector and
frequency are assigned, the specific eigenmode is excited and
the displacement field is recorded to help identify the prop-
erties of modes. The displacement distributions of the eigen-
modes are plotted in a 3D vector plot. In Fig. 3 and the
following 3D vector figures, the direction of cones is used to
indicate the direction of displacement vector and the size
reflect the magnitude of vectors. The color of cones changes
with the z-axis coordinate of particles to help easily distin-
guish the location. Besides, the unit cell has grid lines in the
location of multiples of the lattice constant.

First, two eigenmodes that differ from those of BAW are
calculated. The eigenmodes of wave vector k= �	 /a ,0� with
frequency f =77 kHz �point A in Fig. 2� and f =199 kHz
�point B in Fig. 2� are shown in Figs. 3�a� and 3�b�. These
modes of wave vector k= �	 /a ,0� propagate along the x di-
rection in Fig. 3. The wavelength of the first band with �k�
=	 /a is 2a and thus only a half of the periodic displacement
field is shown is one unit cell. The wave in Fig. 3�a� has a
main polarization in the sagittal plane, the x-z plane, and the
wave in Fig. 3�b� has a main polarization in the x-y plane.
The result shows confined displacement fields; the amplitude
decays rapidly as the depth increases. Thus, they present a
typical property of surface acoustic wave. An interesting

FIG. 1. �Color online� The phononic crystal with circular rods
�steel� embedded in a background material �epoxy� arranged in
square lattice. �a� The 3D unit cell of phononic crystal employed to
calculate surface acoustic waves; �b� the first Brillouin zone of a
square lattice crystal.

FIG. 2. �Color online� Dispersion of eigenmodes in the square
lattice steel/epoxy phononic crystal.

FIG. 3. �Color online� The 3D displacement fields of eigen-
modes. �a� k= �	 /a ,0�, f =77 kHz �point A of Fig. 2�; �b� k
= �	 /a ,0�, f =199 kHz �point B of Fig. 2�.
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phenomenon is that the band which the mode in Fig. 3�a�
belongs to has a higher velocity than the transverse wave of
BAW modes. That means the surface wave is a leakage type,
and usually named pseudo surface acoustic wave �PSAW�.

In addition, the peaks overlapped on the BAW modes are
also analyzed. For example, the eigenmode of wave vector
k= �	 /a ,0� with frequency f =43 kHz is calculated and the
distribution of displacement field shows a y-direction polar-
ization and the amplitude does not decay rapidly within nine
lattice constants. This reflects the property of transverse
waves, the same with the mode of in-plane transverse bulk
waves. Analysis of another mode of wave vector k
= �	 /2a ,0� with frequency f =84 kHz also shows a rotation
field that remains within the depth of the unit cell. Thus, the
peaks overlapped on the modes of BAW present the property
of BAW.

The analysis shows that the 2D steel/epoxy square
phononic crystal with a free surface allows PSAW instead of
SAW. The dispersion curves show an important fact that
there exists a complete band gap of both BAW and PSAW
�SAW� in this phononic crystal. The complete band gaps
obtained by both results of 2D and 3D unit cell locate from
90–143 kHz and 154–199 kHz. This is the basis on which
to design a phononic crystal waveguide of surface waves.

In brief, some properties of using FDTD method in cal-
culating eigenmodes can be drawn. In the lower frequency
range of the first band, the acoustic wave has a long wave-
length. Thus some PSAW �or SAW� do not develop well
because of the finite depth of the unit cell and the absorbing
boundary condition. Also, in the case of energy leakage sur-
face waves, the characteristic displacement decays rapidly,
and thus sometimes the sensor on the free surface may be
insensitive and miss the leakage modes. Second, in the dis-
persion curves, some eigenmodes calculated from the FDTD
program of 3D condition repeat the result from the 2D BAW
conditions. Finally, the natural property of FDTD limits the
accuracy of result in high-frequency range. Even with imper-
fections, the FDTD method is a powerful tool to calculate
and analyze the eigenmodes, and the accuracy can be raised
by increasing the sampling grid size with the improvement of
computers.

IV. SURFACE ACOUSTIC WAVES INSIDE A PHONONIC
CRYSTAL WAVEGUIDE

A phononic crystal waveguide is designed by arranging
adjacent point defects in a phononic crystal structure. These
defects form a continuous region that is free of inclusions
and in which acoustic waves are expected to propagate. Cur-
rently, most studies focus on BAW in phononic crystal
waveguides9–13 and the analysis of SAW in waveguides is
just started.14 In this section, the FDTD method is used to
calculate surface acoustic wave propagation inside a
phononic waveguide and, further, the bending waveguides
are analyzed.

A phononic crystal waveguide of surface acoustic waves
is formed based on the complete band gap of surface waves.
The acoustic waves in the waveguide cannot penetrate the
periodic structure and thus other eigenmodes �the guided

modes� result from the existence of defects that appeared at
the range of complete band gaps. In the steel/epoxy phononic
crystal presented in Sec. III, the complete band gaps are 90–
143 and 154–199 kHz.

To understand the property of SAW inside phononic crys-
tal waveguides, the supercell technique is used to analyze the
dispersion of a waveguide. We consider a waveguide with a
10 mm width w �the distance between two neighboring cyl-
inders on both sides� as shown in Fig. 4. A 3D supercell
consisting of 11
1
9 unit cells is defined, and then the
waveguide is constructed of ten periodic arrayed cylinders
and a dislocation in the center with the PBC surrounding it.
Similarly, an initial disturbance is defined inside the wave-
guide, and thus acoustic waves are generated and the dis-
placement field is recorded. Then the eigenmodes are se-
lected from the local maximum peaks of spectra as the
procedure of analyzing a unit cell. By setting corresponding
boundaries, both the dispersion calculated by 2D and 3D
supercells are obtained and plotted in Fig. 5. Figure 5 is
focused on the frequency of 70–220 kHz to observe defect
modes in the range of complete band gaps. The extended
bands outside the complete band gaps are omitted and the
region is marked in gray. As shown in the result, other defect
modes of acoustic waves appear in the range of complete
band gaps. The eigenmodes of BAW are marked as solid and
hollow circles and those obtained from the 3D supercell are
rhombus symbols.

The defect modes of BAW are similar to the result of a
previous study,10 and there are different defect modes result-
ing from the free surface and nonreflection condition in the
dispersion diagram. In the 3D supercell, sensors on the free
surface of phononic crystal waveguide receive the signal of
defect modes of both BAW and SAW. The signal of BAW
modes has a small peak value and make the spectrum show a
complex pattern. Thus, in the 3D waveguide calculation, the
BAW modes are removed and only the SAW mode is shown
in Fig. 5. Inside the first complete band gap of 90–143 kHz,
a band extends from wave vector k= �	 /a ,0� with frequency
f =87.5 kHz to k= �0.05	 /a ,0� with f =141 kHz, and an-
other band appears from k= �0.75	 /a ,0� with f =154 kHz to
k= �0.9	 /a ,0� with f =206 kHz in the second complete band
gap of 154–199 kHz.

The displacement fields of the two defect modes are plot-
ted in 3D vector diagrams as those in Fig. 3. The eigenmodes

FIG. 4. �Color online� �a� The structure of a phononic crystal
waveguide; �b� the supercell used to analyze the phononic crystal
waveguide.

JIA-HONG SUN AND TSUNG-TSONG WU PHYSICAL REVIEW B 74, 174305 �2006�

174305-4



of k= �0.5	 /a ,0� with f =114.5 kHz �point A in Fig. 5� and
k= �0.5	 /a ,0� with f =180 kHz �point B in Fig. 5� are cal-
culated and shown in Figs. 6�a� and 6�b�, respectively. Since
the dispersion diagram is presented in a reduced zone
scheme, the actual wave vectors of these two modes in
folded bands are k= �1.5	 /a ,0� and k= �2.5	 /a ,0� with
wavelengths of 1.33a and 0.8a, and the consistent result is
obtained from the displacement fields of x-z plane. The
guided waves propagate along the x direction, and the dis-
placement fields have a confined distribution within the re-
gion of waveguides. The maximum amplitude occurs on the
free surface and the amplitude decays rapidly in a deeper
location. Thus these two bands have a typical property of
surface acoustic waves.

A further discussion of the defect modes in phononic
crystal waveguide is presented as follows. In the calculation
of eigenmode displacement fields, a Gaussian weighted wave
package with specified frequency f is set as the source and
input finite energy into the supercell structure to excite the
selected eigenmode. Then, the sensor on the free surface de-
tects a monotonous displacement variation and the vertical
component Uz recorded after the wave package is excited.
The result shows that the eigenmode has decaying amplitude.
This means an energy leakage, partial acoustic waves propa-
gate downward into the half space, and thus the defect modes
in this phononic crystal waveguide are actual pseudo surface
acoustic waves. Finally, converting the period of signal into
propagation distance, the attenuation coefficient is obtained
as −0.049dB /a and −0.061dB /a for these eigenmodes re-
spectively.

To demonstrate the actual wave propagation inside the
phononic crystal waveguide, the linear waveguide consid-
ered shown in Fig. 7. As a 3D structure, Fig. 7 shows a top
view of the free surface and the actual structure extends to-
ward vertically to the surface. The periodic circles present
the boundaries of steel cylinders and the epoxy matrix. The
waveguide has a width of 10 mm by removing one row of
adjoining cylinder inclusions along the �X-direction, and the
length of waveguide is 25a. An acoustic wave is generated in
the inlet of waveguide with five line sources to simulate an
interdigital transducer �IDT�. The PSAW defect mode of
wavelength �=1.33a with frequency f =114.5 kHz is gener-
ated and the wave propagation pattern is demonstrated. The
displacement field of the z-direction component Uz is pre-

FIG. 5. �Color online� Dispersion diagram of BAW and SAW
eigenmodes in the steel/epoxy phononic crystal waveguide with a
free surface.

FIG. 6. �Color online� The 3D displacement fields of defect
modes inside the phononic crystal waveguide. �a� k= �0.5	 /a ,0�,
f =114.5 kHz �point A of Fig. 5�; �b� k= �0.5	 /a ,0�, f =180 kHz
�point B of Fig. 5�.
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sented in grayscale to show the surface wave propagation.
The black is the minimum �negative� value and the white is
the maximum �positive� value. The scale is fixed in this pa-
per for the convenience to compare the amplitude in different
cases. The result shows that the PSAW is confined well
within the waveguide and only slight energy leaks into the
periodic phononic crystal area. In addition, although the
PSAW has energy leakage, the PSAW propagates along the
waveguide and carries most energy.

In acoustic waveguides, a bend section is an elementary
structure to change the wave propagation direction. Here the
phononic crystal waveguide with a sharp bend is also calcu-
lated to estimate the transmission efficiency. The first case is
a simple junction of two �X-direction waveguides. The
structure is a 17a
17a area and two 11a waveguides are
connected as shown in Fig. 8. The same PSAW of 114.5 kHz
defect mode is launched into the waveguide from the inlet in
the lower-left corner and the Uz displacement field on the
surface is shown in the same grayscale. The displacement
pattern shows that PASW is still confined within the bending
waveguide structure, but most energy of the incident wave is
reflected at the corner of the bend. In the case of a linear
straight waveguide in Fig. 7, the 114.5 kHz PSAW in the
outlet has an amplitude of 2.9
10−14 m as a reference value
that results from a monotonous body force of 1 nt/kg peak
value as a wave source. With the identical wave source, the
maximum amplitude on the surface of the vertical waveguide
branch is about 1.7
10−14 m �59% of the reference ampli-
tude� in the bending waveguide. Another phenomenon is that
BAW modes are also excited as the wave turns, and thus

considerable energy is taken away and the amplitude in the
vertical branch decays rapidly. Thus, a simple joint bend is
not an efficient design.

Another bend structure is shown in Fig. 9. It contains two
linear waveguides in the �X-direction and one in the
�M-direction; thus, the wave turns 45° twice to the left di-
rection. The Uz displacement pattern of 114.5 kHz PSAW
defect mode also shows a strong reflection of the incident
wave. The amplitude of the turned wave is about 1.5

10−14 m �52% of the reference amplitude� in the
�M-direction segment and 0.75
10−14 m �26%� in the ver-
tical �X-direction segment. Finally, the mode of the turned
wave is rebuilt to a symmetric PSAW mode. In these cases,
the wavelengths of PSAW are almost the same with a lattice
constant, and thus there is a strong scattering phenomenon
when acoustic waves encounter inclusions at their propagat-
ing direction. In addition, the antisymmetry conjunction sec-
tion in Fig. 9 also enhances the scattering and the mode
conversion. Therefore, energy disperses while the excited
BAW propagates downward, and thus the surface amplitude
decays when the PSAW encounters the boundary of the
bending waveguides.

To raise the transmission of the bending phononic crystal
waveguide, an improved bend structure is introduced. In the
study of photonic crystals, the scatters are used to enhance
transmission through waveguide bends in two-dimensional
photonic crystal slabs.21,22 The idea is adopted in this paper
to raise the transmission of PSAW in phononic crystal
waveguides. The design is based on the prototype shown in
Fig. 9 and the cylinders of smaller radius 1.3 mm are in-
serted into the �M-direction segment. With the inserted scat-
ters, the conjunction section has a better symmetric geometry
property. This also changes the dispersion curve, compared
to the result shown in the photonic crystal cases, and results
in eigenmodes that propagate in the conjunction section with
less loss. In Fig. 10, the distance d between the center of
scatters is 16.97 mm �3�2a /2�. Then the Uz displacement
pattern of PSAW of 114.5 kHz is calculated and shown. Ob-
viously, the PSAW passing the corner remains the same
eigenmode and therefore the amplitude is raised to 2.1

10−14 m �72% of the reference amplitude�.

Further calculation shows that the transmission of the
guided PSAW is affected by the scatters obviously. If the

FIG. 7. The z-direction displacement field of the 114.5 kHz
PSAW inside a linear phononic crystal waveguide with a width of
10 mm.

FIG. 8. The z-direction displacement field of the 114.5 kHz
PSAW inside a sharp bending waveguide.

FIG. 9. The z-direction displacement field of the 114.5 kHz
PSAW inside a three-segment bending waveguide.
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scatters are moved toward the center of the waveguide, the
dispersion relation is altered. In the case of the distance d of
11.31 mm ��2a�, the amplitude of turned-PSAW at
114.5 kHz becomes 1.4
10−14 m �48% of the reference am-
plitude�. Another important fact is that waves of different
frequency in the structure do not have identical perfor-
mances. The PSAW of 135 kHz in the bend structure of Fig.
10 shifts to BAW mode and the mode decays very rapidly in
the turned waveguide, but has a 1.8
10−14 m �62%� ampli-
tude ratio in the structure with d of 11.31 mm. Therefore, the
transmission efficiency is affected by the scatters and also a
function of frequency. Indeed, setting scatters properly in the

phononic crystal waveguides can raise the transmission and
change the propagation direction in a small region.

V. CONCLUSION

In this paper, we implement a FDTD method to analyze
propagation of surface acoustic wave inside phononic crystal
waveguides. Combing the free surface, PBC, and PML con-
ditions, the eigenmodes of the 2D phononic crystals with a
free surface is calculated in detail. The steel/epoxy phononic
crystal shows a complete band gap for both bulk and surface
acoustic waves. Further, phononic crystal waveguides are de-
signed based on the complete band gap phenomenon. We
found that the defect mode inside the phononic crystal wave-
guide has an energy leakage because the 3D structure allows
the wave propagating downward to the half space. The
eigenmodes of the 2D phononic crystal waveguide with a
free surface is thus identified as PSAW. Although the PSAW
has a slight energy leakage inside the 2D waveguide, it is
possible to have a waveguide with a sharp bend. Adding
scatters inside the phononic crystal waveguides can raise the
transmission and the design depends on the frequency of
PSAW.
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